Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Jul 24;66(Pt 8):o2114. doi: 10.1107/S160053681002862X

(±)-2-Methyl­piperazin-1-ium perchlorate

Cong-Hu Peng a,*
PMCID: PMC3007435  PMID: 21588404

Abstract

In the title compound, C5H13N2 +·ClO4 , the monoprotonated piperazine ring adopts a chair conformation. In the crystal structure, cations and anions are linked by inter­molecular N—H⋯O and N—H⋯N hydrogen bonds into layers parallel to (Inline graphic01).

Related literature

For the properties of simple mol­ecular–ionic crystals, see: Czupiński et al. (2002); Katrusiak & Szafrański (1999, 2006).graphic file with name e-66-o2114-scheme1.jpg

Experimental

Crystal data

  • C5H13N2 +·ClO4

  • M r = 200.62

  • Monoclinic, Inline graphic

  • a = 6.8977 (5) Å

  • b = 8.1292 (6) Å

  • c = 16.2201 (11) Å

  • β = 98.614 (3)°

  • V = 899.25 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.41 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.20 mm

Data collection

  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) T min = 0.80, T max = 0.90

  • 8953 measured reflections

  • 2055 independent reflections

  • 1541 reflections with I > 2σ(I)

  • R int = 0.040

Refinement

  • R[F 2 > 2σ(F 2)] = 0.075

  • wR(F 2) = 0.224

  • S = 1.05

  • 2055 reflections

  • 109 parameters

  • H-atom parameters constrained

  • Δρmax = 0.86 e Å−3

  • Δρmin = −0.56 e Å−3

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053681002862X/rz2472sup1.cif

e-66-o2114-sup1.cif (14.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053681002862X/rz2472Isup2.hkl

e-66-o2114-Isup2.hkl (101.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1C⋯O1 0.90 2.38 3.258 (6) 166
N1—H1C⋯O3 0.90 2.54 3.250 (5) 136
N2—H2D⋯O2i 0.90 2.43 2.998 (7) 121
N2—H2C⋯N1ii 0.90 1.99 2.883 (4) 169

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This work was supported by a start-up grant from Anyang Institute of Technology.

supplementary crystallographic information

Comment

Recently, much attention has been devoted to simple molecular–ionic crystals containing organic cations and acid radicals in 1:1 molar ratio due to the tunability of their special structural features and their interesting physical properties (Czupiński et al., 2002; Katrusiak & Szafrański, 1999; Katrusiak & Szafrański, 2006). As a contribution in this field, the crystal structure of title salt is reported here.

The asymmetric unit of the title compound (Fig.1) consists of a monoprotonated 2-methylpiperazinium cation and a ClO4-anions. The piperazine ring adopts a chair conformation. In the crystal structure, cations and anions are linked by intermolecular N—H···O and N—H···N hydrogen bonds (Table 1) into layers parallel to the (1 0 1) plane (Fig.2).

Experimental

(±)-2-Methylpiperazine (20 mmol) and 10% aqueous HClO4 solution in a molar ratio of 1:1 were mixed and dissolved in 25 ml water. The mixture was heated to 343 K to form a clear solution. On slow cooling of the reaction mixture to room temperature, block crystals of the title compound were formed.

Refinement

All H atoms were placed in calculated positions, with C—H = 0.96–0.98Å and N—H = 0.90 Å, and refined using a riding model, with Uiso(H) = 1.2Ueq(C, N) or 1.5 Ueq(C) for methyl H atoms.

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title compound with atom labels. Displacement ellipsoids were drawn at the 30% probability level

Fig. 2.

Fig. 2.

Packing viewed along the a axis. Hydrogen bonds are drawn as dashed lines

Crystal data

C5H13N2+·ClO4 F(000) = 424
Mr = 200.62 Dx = 1.482 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71075 Å
Hall symbol: -P 2yn Cell parameters from 1541 reflections
a = 6.8977 (5) Å θ = 3.1–27.5°
b = 8.1292 (6) Å µ = 0.41 mm1
c = 16.2201 (11) Å T = 293 K
β = 98.614 (3)° Block, colourless
V = 899.25 (11) Å3 0.30 × 0.25 × 0.20 mm
Z = 4

Data collection

Rigaku SCXmini diffractometer 2055 independent reflections
Radiation source: fine-focus sealed tube 1541 reflections with I > 2σ(I)
graphite Rint = 0.040
Detector resolution: 13.6612 pixels mm-1 θmax = 27.5°, θmin = 3.1°
ω scans h = −8→8
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) k = −10→10
Tmin = 0.80, Tmax = 0.90 l = −21→20
8953 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.075 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.224 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.1123P)2 + 1.4914P] where P = (Fo2 + 2Fc2)/3
2055 reflections (Δ/σ)max < 0.001
109 parameters Δρmax = 0.86 e Å3
0 restraints Δρmin = −0.56 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.4992 (5) 0.6921 (5) 0.6807 (2) 0.0414 (8)
H1B 0.5975 0.7730 0.7019 0.050*
H1A 0.5525 0.6233 0.6407 0.050*
C2 0.4487 (5) 0.5875 (5) 0.7518 (2) 0.0406 (8)
H2A 0.5644 0.5267 0.7759 0.049*
H2B 0.4118 0.6591 0.7947 0.049*
C3 0.1170 (5) 0.5531 (5) 0.6809 (2) 0.0389 (8)
H3A 0.0599 0.6227 0.7194 0.047*
H3B 0.0205 0.4703 0.6603 0.047*
C4 0.1591 (5) 0.6579 (5) 0.6075 (2) 0.0384 (8)
H4A 0.2062 0.5856 0.5664 0.046*
C5 −0.0190 (7) 0.7490 (7) 0.5654 (3) 0.0646 (13)
H5A 0.0152 0.8117 0.5196 0.097*
H5B −0.0656 0.8218 0.6048 0.097*
H5C −0.1201 0.6716 0.5452 0.097*
Cl1 0.56264 (14) 0.19954 (12) 0.59443 (6) 0.0442 (4)
N1 0.2890 (5) 0.4712 (4) 0.7261 (2) 0.0392 (7)
H1C 0.3305 0.3941 0.6929 0.047*
N2 0.3194 (4) 0.7764 (3) 0.63945 (18) 0.0352 (7)
H2D 0.3494 0.8369 0.5966 0.042*
H2C 0.2761 0.8453 0.6761 0.042*
O1 0.3667 (7) 0.1613 (7) 0.6079 (3) 0.1041 (16)
O2 0.5363 (11) 0.2923 (9) 0.5226 (3) 0.154 (3)
O3 0.6614 (5) 0.2921 (5) 0.6628 (2) 0.0759 (11)
O4 0.6557 (9) 0.0550 (9) 0.5835 (6) 0.215 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0355 (18) 0.044 (2) 0.046 (2) −0.0020 (15) 0.0098 (15) 0.0026 (16)
C2 0.0404 (19) 0.0397 (19) 0.0410 (19) 0.0043 (15) 0.0037 (15) 0.0042 (15)
C3 0.0395 (19) 0.0380 (18) 0.0401 (18) −0.0068 (15) 0.0095 (15) −0.0047 (15)
C4 0.043 (2) 0.0402 (19) 0.0315 (17) −0.0016 (15) 0.0028 (14) −0.0028 (14)
C5 0.054 (3) 0.079 (3) 0.056 (3) 0.010 (2) −0.007 (2) 0.004 (2)
Cl1 0.0500 (6) 0.0457 (6) 0.0378 (5) 0.0080 (4) 0.0094 (4) −0.0044 (4)
N1 0.0481 (18) 0.0298 (14) 0.0415 (16) 0.0004 (13) 0.0130 (13) 0.0016 (12)
N2 0.0422 (16) 0.0319 (15) 0.0329 (15) −0.0012 (12) 0.0103 (12) 0.0013 (12)
O1 0.089 (3) 0.149 (4) 0.080 (3) −0.040 (3) 0.034 (2) −0.028 (3)
O2 0.196 (7) 0.199 (7) 0.067 (3) −0.086 (5) 0.017 (3) 0.048 (4)
O3 0.072 (2) 0.076 (2) 0.074 (2) 0.0078 (18) −0.0083 (19) −0.0251 (19)
O4 0.132 (5) 0.151 (5) 0.318 (11) 0.089 (4) −0.105 (6) −0.155 (7)

Geometric parameters (Å, °)

C1—N2 1.485 (5) C4—C5 1.507 (6)
C1—C2 1.514 (5) C4—H4A 0.9800
C1—H1B 0.9700 C5—H5A 0.9600
C1—H1A 0.9700 C5—H5B 0.9600
C2—N1 1.465 (5) C5—H5C 0.9600
C2—H2A 0.9700 Cl1—O4 1.363 (5)
C2—H2B 0.9700 Cl1—O2 1.377 (5)
C3—N1 1.459 (5) Cl1—O3 1.426 (4)
C3—C4 1.526 (5) Cl1—O1 1.436 (4)
C3—H3A 0.9700 N1—H1C 0.8998
C3—H3B 0.9700 N2—H2D 0.9000
C4—N2 1.500 (5) N2—H2C 0.9000
N2—C1—C2 109.3 (3) C3—C4—H4A 108.5
N2—C1—H1B 109.8 C4—C5—H5A 109.5
C2—C1—H1B 109.8 C4—C5—H5B 109.5
N2—C1—H1A 109.8 H5A—C5—H5B 109.5
C2—C1—H1A 109.8 C4—C5—H5C 109.5
H1B—C1—H1A 108.3 H5A—C5—H5C 109.5
N1—C2—C1 113.3 (3) H5B—C5—H5C 109.5
N1—C2—H2A 108.9 O4—Cl1—O2 111.5 (6)
C1—C2—H2A 108.9 O4—Cl1—O3 112.1 (3)
N1—C2—H2B 108.9 O2—Cl1—O3 110.9 (3)
C1—C2—H2B 108.9 O4—Cl1—O1 107.8 (5)
H2A—C2—H2B 107.7 O2—Cl1—O1 103.9 (4)
N1—C3—C4 114.3 (3) O3—Cl1—O1 110.3 (2)
N1—C3—H3A 108.7 C3—N1—C2 111.6 (3)
C4—C3—H3A 108.7 C3—N1—H1C 109.0
N1—C3—H3B 108.7 C2—N1—H1C 109.1
C4—C3—H3B 108.7 C1—N2—C4 112.5 (3)
H3A—C3—H3B 107.6 C1—N2—H2D 109.1
N2—C4—C5 110.5 (3) C4—N2—H2D 109.1
N2—C4—C3 107.8 (3) C1—N2—H2C 109.1
C5—C4—C3 113.0 (4) C4—N2—H2C 109.1
N2—C4—H4A 108.5 H2D—N2—H2C 107.8
C5—C4—H4A 108.5
N2—C1—C2—N1 54.6 (4) C1—C2—N1—C3 −52.3 (4)
N1—C3—C4—N2 −54.1 (4) C2—C1—N2—C4 −57.7 (4)
N1—C3—C4—C5 −176.4 (3) C5—C4—N2—C1 −179.4 (3)
C4—C3—N1—C2 52.7 (4) C3—C4—N2—C1 56.8 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1C···O1 0.90 2.38 3.258 (6) 166
N1—H1C···O3 0.90 2.54 3.250 (5) 136
N2—H2D···O2i 0.90 2.43 2.998 (7) 121
N2—H2C···N1ii 0.90 1.99 2.883 (4) 169

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1/2, y+1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2472).

References

  1. Czupiński, O., Bator, G., Ciunik, Z., Jakubas, R., Medycki, W. & Świergiel, J. (2002). J. Phys. Condens. Matter, 14, 8497–8512.
  2. Katrusiak, A. & Szafrański, M. (1999). Phys. Rev. Lett.82, 576–579.
  3. Katrusiak, A. & Szafrański, M. (2006). J. Am. Chem. Soc.128, 15775-15785. [DOI] [PubMed]
  4. Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053681002862X/rz2472sup1.cif

e-66-o2114-sup1.cif (14.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053681002862X/rz2472Isup2.hkl

e-66-o2114-Isup2.hkl (101.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES