Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Jul 31;66(Pt 8):o2151–o2152. doi: 10.1107/S160053681002965X

2-Amino-4-methyl­pyridinium 2-hy­droxy­benzoate

Madhukar Hemamalini a, Hoong-Kun Fun a,*,
PMCID: PMC3007449  PMID: 21588437

Abstract

The asymmetric unit of the title mol­ecular salt, C6H9N2 +·C7H5O3 , contains two cations and two anions. Both the salicylate anions contain an intra­molecular O—H⋯O hydrogen bond, which generates an S(6) ring. Both the 2-amino-4-methyl­pyridine mol­ecules are protonated at their pyridine N atoms. In the crystal, both cations form two N—H⋯O hydrogen bonds to their adjacent anions, forming ion pairs. Further N—H⋯O links generate sheets lying parallel to the ab plane. In addition, weak C—H⋯O bonds and aromatic π–π stacking inter­actions [centroid–centroid distances = 3.5691 (9) and 3.6215 (9) Å] are observed between the cations and anions.

Related literature

For related structures, see: Navarro Ranninger et al. (1985); Luque et al. (1997); Qin et al. (1999); Jin et al. (2001); Albrecht et al. (2003); Kvick & Noordik (1977). For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).graphic file with name e-66-o2151-scheme1.jpg

Experimental

Crystal data

  • C6H9N2 +·C7H5O3

  • M r = 246.26

  • Triclinic, Inline graphic

  • a = 7.2417 (2) Å

  • b = 12.5520 (3) Å

  • c = 14.7699 (3) Å

  • α = 68.752 (2)°

  • β = 82.038 (2)°

  • γ = 88.824 (2)°

  • V = 1238.58 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.32 × 0.10 × 0.04 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.971, T max = 0.996

  • 23090 measured reflections

  • 8280 independent reflections

  • 5112 reflections with I > 2σ(I)

  • R int = 0.047

Refinement

  • R[F 2 > 2σ(F 2)] = 0.056

  • wR(F 2) = 0.155

  • S = 1.00

  • 8280 reflections

  • 359 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.28 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053681002965X/hb5564sup1.cif

e-66-o2151-sup1.cif (24.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053681002965X/hb5564Isup2.hkl

e-66-o2151-Isup2.hkl (396.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O3A—H1A3⋯O2A 0.99 (2) 1.61 (2) 2.5310 (16) 154 (2)
N1A—H1NA⋯O1Bi 0.99 (2) 1.71 (2) 2.6965 (17) 174 (2)
N2A—H2NA⋯O1Aii 0.90 (2) 1.99 (2) 2.8645 (19) 164 (2)
O3B—H1B3⋯O2B 0.94 (3) 1.62 (3) 2.5179 (16) 158 (2)
N2A—H3NA⋯O2Bi 0.94 (2) 1.91 (2) 2.8468 (18) 178 (2)
N1B—H1NB⋯O2A 0.96 (2) 1.76 (2) 2.7186 (17) 172.7 (17)
N2B—H2NB⋯O1A 0.96 (2) 1.84 (2) 2.7976 (18) 177.0 (16)
N2B—H3NB⋯O1Biii 0.93 (2) 1.88 (2) 2.8097 (19) 174.3 (13)
C8B—H8BA⋯O2Biv 0.93 2.47 3.357 (2) 159
C10B—H10B⋯O3B 0.93 2.38 3.039 (2) 128

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

MH and HKF thank the Malaysian Government and Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

supplementary crystallographic information

Comment

There are numerous examples of 2-amino-substituted pyridine compounds in which the 2-aminopyridines act as neutral ligands (Navarro Ranninger et al., 1985; Luque et al., 1997; Qin et al., 1999) or as protonated cations (Luque et al., 1997; Jin et al., 2001; Albrecht et al., 2003). In order to study some hydrogen bonding interactions, the synthesis and structure of the title salt, (I), is presented here.

The asymmetric unit of the title compound consists of two crystallographically independent 2-amino-4-methylpyridinium cations (A and B) and two salicylate anions (A and B) (Fig. 1). Each 2-amino-4-methylpyridinium cation is planar, with a maximum deviation of 0.004 (1) Å for atom N1A in cation A and 0.006 (2) Å for atom C11B in cation B. In the cations, protonation at atoms N1A and N1B lead to a slight increase in the C9A—N1A—C10A [122.06 (14)°] and C9B—N1B—C10B [121.76 (13)°] angles compared to those observed in an unprotonated structure (Kvick & Noordik, 1977). The bond lengths (Allen et al., 1987) and angles are normal.

In the crystal structure (Fig. 2), the carboxylate groups of each salicylate anions interact with the corresponding 2-amino-4-methylpyridinium cations via a pair of N—H···O hydrogen bonds forming an R22(8) ring motif (Bernstein et al., 1995). Furthermore, these motifs are connected via N—H···O hydrogen bonds, forming a two-dimensional network parallel to the ab-plane. There is an intramolecular O—H···O hydrogen bond in the salicylate anions, which generates an S(6) ring motif. In addition, weak C—H···O and π–π interactions are observed between the cation-anion pairs, [Cg1(N1A/C8A–C12A)& Cg4(C1A–C6A)] and [Cg2(N1B/C8B–C12B) & Cg3(C1B–C6B)], with centroid-centroid distances of 3.5691 (9) Å (1+x, y, z) and 3.6215 (9) Å (-1+x, y, z), respectively.

Experimental

A hot methanol solution (20 ml) of 2-amino-4-methylpyridine (54 mg, Aldrich) and salicylic acid (69 mg, Merck) were mixed and warmed over a heating magnetic stirrer hotplate for a few minutes. The resulting solution was allowed to cool slowly at room temperature and colourless needles of (I) appeared after a few days.

Refinement

Atoms H1A3, H1B3,H1NA, H2NA, H3NA, H1NB, H2NB, H3NB were located from a difference Fourier map and were refined freely [N–H= 0.90 (2)– 0.99(20 Å and O–H =0.94 (2)–0.99 (2) Å]. The remaining hydrogen atoms were positioned geometrically [C–H = 0.93 or 0.96 Å] and were refined using a riding model, with Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating group model was used for the methyl group.

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Hydrogen bonding patterns in compound (I).

Crystal data

C6H9N2+·C7H5O3 Z = 4
Mr = 246.26 F(000) = 520
Triclinic, P1 Dx = 1.321 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.2417 (2) Å Cell parameters from 3981 reflections
b = 12.5520 (3) Å θ = 2.7–31.4°
c = 14.7699 (3) Å µ = 0.10 mm1
α = 68.752 (2)° T = 100 K
β = 82.038 (2)° Needle, colourless
γ = 88.824 (2)° 0.32 × 0.10 × 0.04 mm
V = 1238.58 (5) Å3

Data collection

Bruker APEXII CCD diffractometer 8280 independent reflections
Radiation source: fine-focus sealed tube 5112 reflections with I > 2σ(I)
graphite Rint = 0.047
φ and ω scans θmax = 31.6°, θmin = 1.5°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −10→10
Tmin = 0.971, Tmax = 0.996 k = −15→18
23090 measured reflections l = −21→21

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.155 H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0755P)2] where P = (Fo2 + 2Fc2)/3
8280 reflections (Δ/σ)max < 0.001
359 parameters Δρmax = 0.38 e Å3
0 restraints Δρmin = −0.28 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1A 0.68689 (15) −0.11656 (9) 0.22307 (8) 0.0266 (3)
O2A 0.61939 (14) 0.06247 (9) 0.20906 (8) 0.0243 (2)
O3A 0.85815 (16) 0.22440 (9) 0.12227 (8) 0.0255 (2)
C1A 0.9761 (2) 0.14446 (13) 0.10815 (11) 0.0204 (3)
C2A 1.1562 (2) 0.18050 (15) 0.05960 (12) 0.0290 (4)
H2AA 1.1918 0.2575 0.0369 0.035*
C3A 1.2811 (2) 0.10169 (17) 0.04530 (13) 0.0366 (4)
H3AA 1.4012 0.1260 0.0133 0.044*
C4A 1.2299 (2) −0.01322 (16) 0.07799 (13) 0.0350 (4)
H4AA 1.3150 −0.0660 0.0684 0.042*
C5A 1.0506 (2) −0.04874 (14) 0.12505 (12) 0.0263 (3)
H5AA 1.0156 −0.1257 0.1462 0.032*
C6A 0.9217 (2) 0.02859 (13) 0.14131 (10) 0.0198 (3)
C7A 0.7306 (2) −0.01258 (12) 0.19453 (11) 0.0200 (3)
N1A 0.68931 (17) 0.46245 (11) 0.40308 (10) 0.0214 (3)
N2A 0.74130 (19) 0.65677 (12) 0.35534 (11) 0.0247 (3)
C8A 0.6621 (2) 0.57734 (14) 0.23833 (11) 0.0239 (3)
H8AA 0.6670 0.6489 0.1885 0.029*
C9A 0.6984 (2) 0.56827 (13) 0.33225 (11) 0.0207 (3)
C10A 0.6458 (2) 0.36749 (13) 0.38600 (12) 0.0243 (3)
H10A 0.6395 0.2966 0.4368 0.029*
C11A 0.6114 (2) 0.37414 (15) 0.29629 (13) 0.0281 (4)
H11A 0.5826 0.3084 0.2852 0.034*
C12A 0.6199 (2) 0.48242 (15) 0.21964 (12) 0.0257 (3)
C13A 0.5855 (2) 0.49005 (17) 0.11939 (13) 0.0338 (4)
H13A 0.6056 0.5677 0.0745 0.051*
H13B 0.4593 0.4655 0.1225 0.051*
H13C 0.6698 0.4417 0.0971 0.051*
O1B 0.24453 (15) 0.57634 (9) 0.41257 (8) 0.0228 (2)
O2B 0.17672 (15) 0.39175 (8) 0.45092 (8) 0.0239 (2)
O3B 0.08596 (16) 0.31742 (9) 0.32564 (9) 0.0257 (3)
C1B 0.10480 (19) 0.42674 (12) 0.26094 (11) 0.0192 (3)
C2B 0.0707 (2) 0.44786 (13) 0.16487 (12) 0.0223 (3)
H2BA 0.0358 0.3880 0.1471 0.027*
C3B 0.0891 (2) 0.55775 (13) 0.09701 (11) 0.0229 (3)
H3BA 0.0664 0.5716 0.0333 0.027*
C4B 0.1412 (2) 0.64860 (13) 0.12204 (11) 0.0234 (3)
H4BA 0.1538 0.7225 0.0755 0.028*
C5B 0.1739 (2) 0.62728 (13) 0.21704 (11) 0.0212 (3)
H5BA 0.2080 0.6878 0.2340 0.025*
C6B 0.15685 (19) 0.51694 (12) 0.28802 (11) 0.0174 (3)
C7B 0.19489 (19) 0.49451 (12) 0.39042 (11) 0.0183 (3)
N1B 0.26797 (18) −0.00016 (10) 0.30554 (9) 0.0190 (3)
N2B 0.34027 (19) −0.18896 (11) 0.33877 (10) 0.0242 (3)
C8B 0.0346 (2) −0.14199 (13) 0.40050 (11) 0.0202 (3)
H8BA −0.0036 −0.2186 0.4305 0.024*
C9B 0.2159 (2) −0.11240 (12) 0.34789 (11) 0.0188 (3)
C10B 0.1505 (2) 0.08329 (12) 0.31225 (11) 0.0203 (3)
H10B 0.1904 0.1595 0.2817 0.024*
C11B −0.0243 (2) 0.05709 (13) 0.36292 (11) 0.0218 (3)
H11B −0.1028 0.1148 0.3680 0.026*
C12B −0.0857 (2) −0.05856 (13) 0.40769 (10) 0.0207 (3)
C13B −0.2817 (2) −0.08836 (15) 0.46052 (12) 0.0277 (4)
H13D −0.2952 −0.1695 0.4954 0.042*
H13E −0.3683 −0.0649 0.4138 0.042*
H13F −0.3067 −0.0497 0.5061 0.042*
H1A3 0.743 (3) 0.1794 (19) 0.1574 (17) 0.061 (7)*
H1NA 0.719 (3) 0.4528 (17) 0.4688 (16) 0.049 (6)*
H2NA 0.748 (3) 0.7276 (17) 0.3090 (14) 0.035 (5)*
H1B3 0.111 (3) 0.327 (2) 0.3833 (18) 0.063 (7)*
H3NA 0.769 (3) 0.6423 (17) 0.4187 (16) 0.044 (6)*
H1NB 0.390 (3) 0.0191 (17) 0.2677 (14) 0.046 (6)*
H2NB 0.457 (3) −0.1645 (16) 0.2974 (14) 0.039 (5)*
H3NB 0.302 (2) −0.2656 (16) 0.3608 (13) 0.029 (5)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1A 0.0262 (6) 0.0192 (5) 0.0306 (6) −0.0005 (4) −0.0029 (5) −0.0047 (5)
O2A 0.0183 (5) 0.0199 (5) 0.0321 (6) 0.0006 (4) −0.0010 (4) −0.0071 (5)
O3A 0.0233 (6) 0.0201 (5) 0.0297 (6) −0.0014 (4) 0.0001 (5) −0.0061 (5)
C1A 0.0193 (7) 0.0240 (7) 0.0168 (7) 0.0010 (6) −0.0036 (6) −0.0057 (6)
C2A 0.0231 (8) 0.0311 (9) 0.0268 (9) −0.0053 (7) 0.0022 (6) −0.0052 (7)
C3A 0.0234 (8) 0.0492 (11) 0.0310 (10) −0.0004 (8) 0.0051 (7) −0.0104 (8)
C4A 0.0281 (9) 0.0431 (10) 0.0323 (10) 0.0099 (8) 0.0014 (7) −0.0145 (8)
C5A 0.0272 (8) 0.0280 (8) 0.0239 (8) 0.0064 (6) −0.0042 (6) −0.0099 (7)
C6A 0.0192 (7) 0.0234 (7) 0.0162 (7) 0.0026 (6) −0.0040 (5) −0.0062 (6)
C7A 0.0208 (7) 0.0206 (7) 0.0176 (7) 0.0015 (6) −0.0063 (6) −0.0046 (6)
N1A 0.0196 (6) 0.0233 (6) 0.0208 (7) 0.0000 (5) −0.0031 (5) −0.0073 (5)
N2A 0.0277 (7) 0.0210 (7) 0.0242 (7) 0.0021 (5) −0.0069 (6) −0.0057 (6)
C8A 0.0165 (7) 0.0309 (8) 0.0208 (8) 0.0033 (6) −0.0028 (6) −0.0052 (6)
C9A 0.0137 (6) 0.0239 (7) 0.0227 (8) 0.0024 (5) −0.0021 (6) −0.0067 (6)
C10A 0.0216 (7) 0.0223 (7) 0.0279 (8) −0.0023 (6) −0.0024 (6) −0.0079 (6)
C11A 0.0218 (8) 0.0332 (9) 0.0330 (9) −0.0034 (7) −0.0017 (7) −0.0171 (7)
C12A 0.0136 (7) 0.0395 (9) 0.0255 (8) 0.0008 (6) −0.0022 (6) −0.0138 (7)
C13A 0.0239 (8) 0.0534 (11) 0.0275 (9) −0.0020 (8) −0.0040 (7) −0.0185 (8)
O1B 0.0295 (6) 0.0175 (5) 0.0216 (6) −0.0026 (4) −0.0058 (4) −0.0065 (4)
O2B 0.0298 (6) 0.0162 (5) 0.0225 (6) −0.0027 (4) −0.0036 (5) −0.0030 (4)
O3B 0.0318 (6) 0.0153 (5) 0.0302 (6) −0.0019 (4) −0.0077 (5) −0.0070 (5)
C1B 0.0150 (6) 0.0170 (7) 0.0252 (8) 0.0019 (5) −0.0024 (6) −0.0073 (6)
C2B 0.0196 (7) 0.0245 (7) 0.0280 (8) 0.0012 (6) −0.0054 (6) −0.0149 (7)
C3B 0.0193 (7) 0.0297 (8) 0.0222 (8) 0.0031 (6) −0.0055 (6) −0.0117 (7)
C4B 0.0238 (8) 0.0223 (7) 0.0218 (8) 0.0008 (6) −0.0036 (6) −0.0053 (6)
C5B 0.0226 (7) 0.0194 (7) 0.0225 (8) −0.0010 (6) −0.0032 (6) −0.0087 (6)
C6B 0.0132 (6) 0.0180 (7) 0.0207 (7) 0.0000 (5) −0.0024 (5) −0.0067 (6)
C7B 0.0152 (7) 0.0174 (7) 0.0209 (7) 0.0010 (5) −0.0016 (5) −0.0058 (6)
N1B 0.0184 (6) 0.0159 (6) 0.0217 (6) −0.0014 (5) −0.0032 (5) −0.0053 (5)
N2B 0.0221 (7) 0.0158 (6) 0.0330 (8) −0.0004 (5) −0.0030 (6) −0.0071 (6)
C8B 0.0214 (7) 0.0181 (7) 0.0188 (7) −0.0048 (6) −0.0033 (6) −0.0034 (6)
C9B 0.0216 (7) 0.0162 (7) 0.0185 (7) −0.0001 (5) −0.0066 (6) −0.0048 (6)
C10B 0.0235 (7) 0.0160 (7) 0.0214 (7) 0.0010 (6) −0.0067 (6) −0.0056 (6)
C11B 0.0229 (8) 0.0229 (7) 0.0216 (8) 0.0035 (6) −0.0066 (6) −0.0093 (6)
C12B 0.0208 (7) 0.0264 (8) 0.0148 (7) −0.0008 (6) −0.0056 (6) −0.0061 (6)
C13B 0.0202 (8) 0.0356 (9) 0.0251 (8) −0.0018 (7) −0.0020 (6) −0.0087 (7)

Geometric parameters (Å, °)

O1A—C7A 1.2500 (18) O1B—C7B 1.2580 (17)
O2A—C7A 1.2843 (16) O2B—C7B 1.2722 (17)
O3A—C1A 1.3591 (17) O3B—C1B 1.3549 (18)
O3A—H1A3 0.99 (2) O3B—H1B3 0.94 (2)
C1A—C2A 1.396 (2) C1B—C2B 1.402 (2)
C1A—C6A 1.402 (2) C1B—C6B 1.404 (2)
C2A—C3A 1.380 (2) C2B—C3B 1.376 (2)
C2A—H2AA 0.9300 C2B—H2BA 0.9300
C3A—C4A 1.385 (3) C3B—C4B 1.393 (2)
C3A—H3AA 0.9300 C3B—H3BA 0.9300
C4A—C5A 1.384 (2) C4B—C5B 1.383 (2)
C4A—H4AA 0.9300 C4B—H4BA 0.9300
C5A—C6A 1.3933 (19) C5B—C6B 1.397 (2)
C5A—H5AA 0.9300 C5B—H5BA 0.9300
C6A—C7A 1.495 (2) C6B—C7B 1.499 (2)
N1A—C10A 1.356 (2) N1B—C9B 1.3550 (18)
N1A—C9A 1.3566 (19) N1B—C10B 1.3584 (18)
N1A—H1NA 0.99 (2) N1B—H1NB 0.96 (2)
N2A—C9A 1.329 (2) N2B—C9B 1.3331 (18)
N2A—H2NA 0.90 (2) N2B—H2NB 0.96 (2)
N2A—H3NA 0.93 (2) N2B—H3NB 0.930 (19)
C8A—C12A 1.366 (2) C8B—C12B 1.373 (2)
C8A—C9A 1.411 (2) C8B—C9B 1.412 (2)
C8A—H8AA 0.9300 C8B—H8BA 0.9300
C10A—C11A 1.355 (2) C10B—C11B 1.359 (2)
C10A—H10A 0.9300 C10B—H10B 0.9300
C11A—C12A 1.415 (2) C11B—C12B 1.411 (2)
C11A—H11A 0.9300 C11B—H11B 0.9300
C12A—C13A 1.504 (2) C12B—C13B 1.506 (2)
C13A—H13A 0.9600 C13B—H13D 0.9600
C13A—H13B 0.9600 C13B—H13E 0.9600
C13A—H13C 0.9600 C13B—H13F 0.9600
C1A—O3A—H1A3 103.3 (12) C1B—O3B—H1B3 101.2 (14)
O3A—C1A—C2A 118.13 (14) O3B—C1B—C2B 117.87 (13)
O3A—C1A—C6A 121.82 (13) O3B—C1B—C6B 121.75 (13)
C2A—C1A—C6A 120.05 (14) C2B—C1B—C6B 120.38 (13)
C3A—C2A—C1A 119.90 (16) C3B—C2B—C1B 119.53 (13)
C3A—C2A—H2AA 120.0 C3B—C2B—H2BA 120.2
C1A—C2A—H2AA 120.0 C1B—C2B—H2BA 120.2
C2A—C3A—C4A 120.78 (16) C2B—C3B—C4B 121.15 (14)
C2A—C3A—H3AA 119.6 C2B—C3B—H3BA 119.4
C4A—C3A—H3AA 119.6 C4B—C3B—H3BA 119.4
C5A—C4A—C3A 119.30 (15) C5B—C4B—C3B 119.05 (14)
C5A—C4A—H4AA 120.4 C5B—C4B—H4BA 120.5
C3A—C4A—H4AA 120.4 C3B—C4B—H4BA 120.5
C4A—C5A—C6A 121.29 (16) C4B—C5B—C6B 121.54 (14)
C4A—C5A—H5AA 119.4 C4B—C5B—H5BA 119.2
C6A—C5A—H5AA 119.4 C6B—C5B—H5BA 119.2
C5A—C6A—C1A 118.66 (14) C5B—C6B—C1B 118.36 (13)
C5A—C6A—C7A 120.15 (14) C5B—C6B—C7B 121.13 (13)
C1A—C6A—C7A 121.18 (12) C1B—C6B—C7B 120.50 (13)
O1A—C7A—O2A 123.35 (14) O1B—C7B—O2B 123.09 (14)
O1A—C7A—C6A 119.44 (12) O1B—C7B—C6B 119.41 (13)
O2A—C7A—C6A 117.21 (13) O2B—C7B—C6B 117.49 (12)
C10A—N1A—C9A 122.06 (14) C9B—N1B—C10B 121.76 (13)
C10A—N1A—H1NA 118.1 (12) C9B—N1B—H1NB 117.6 (12)
C9A—N1A—H1NA 119.8 (12) C10B—N1B—H1NB 120.6 (12)
C9A—N2A—H2NA 119.0 (12) C9B—N2B—H2NB 120.4 (11)
C9A—N2A—H3NA 118.2 (12) C9B—N2B—H3NB 119.0 (11)
H2NA—N2A—H3NA 122.8 (17) H2NB—N2B—H3NB 119.2 (16)
C12A—C8A—C9A 120.89 (15) C12B—C8B—C9B 120.48 (13)
C12A—C8A—H8AA 119.6 C12B—C8B—H8BA 119.8
C9A—C8A—H8AA 119.6 C9B—C8B—H8BA 119.8
N2A—C9A—N1A 118.14 (14) N2B—C9B—N1B 117.99 (13)
N2A—C9A—C8A 124.06 (15) N2B—C9B—C8B 123.61 (13)
N1A—C9A—C8A 117.80 (14) N1B—C9B—C8B 118.39 (13)
C11A—C10A—N1A 121.14 (15) N1B—C10B—C11B 121.03 (14)
C11A—C10A—H10A 119.4 N1B—C10B—H10B 119.5
N1A—C10A—H10A 119.4 C11B—C10B—H10B 119.5
C10A—C11A—C12A 119.10 (15) C10B—C11B—C12B 119.38 (13)
C10A—C11A—H11A 120.4 C10B—C11B—H11B 120.3
C12A—C11A—H11A 120.4 C12B—C11B—H11B 120.3
C8A—C12A—C11A 119.01 (15) C8B—C12B—C11B 118.95 (13)
C8A—C12A—C13A 121.66 (16) C8B—C12B—C13B 121.20 (14)
C11A—C12A—C13A 119.33 (15) C11B—C12B—C13B 119.84 (13)
C12A—C13A—H13A 109.5 C12B—C13B—H13D 109.5
C12A—C13A—H13B 109.5 C12B—C13B—H13E 109.5
H13A—C13A—H13B 109.5 H13D—C13B—H13E 109.5
C12A—C13A—H13C 109.5 C12B—C13B—H13F 109.5
H13A—C13A—H13C 109.5 H13D—C13B—H13F 109.5
H13B—C13A—H13C 109.5 H13E—C13B—H13F 109.5
O3A—C1A—C2A—C3A 178.90 (15) O3B—C1B—C2B—C3B −179.74 (13)
C6A—C1A—C2A—C3A −0.7 (2) C6B—C1B—C2B—C3B 0.2 (2)
C1A—C2A—C3A—C4A 0.5 (3) C1B—C2B—C3B—C4B 0.0 (2)
C2A—C3A—C4A—C5A 0.3 (3) C2B—C3B—C4B—C5B −0.3 (2)
C3A—C4A—C5A—C6A −0.9 (3) C3B—C4B—C5B—C6B 0.4 (2)
C4A—C5A—C6A—C1A 0.6 (2) C4B—C5B—C6B—C1B −0.1 (2)
C4A—C5A—C6A—C7A −178.47 (15) C4B—C5B—C6B—C7B 179.23 (13)
O3A—C1A—C6A—C5A −179.39 (14) O3B—C1B—C6B—C5B 179.82 (13)
C2A—C1A—C6A—C5A 0.2 (2) C2B—C1B—C6B—C5B −0.1 (2)
O3A—C1A—C6A—C7A −0.4 (2) O3B—C1B—C6B—C7B 0.4 (2)
C2A—C1A—C6A—C7A 179.26 (14) C2B—C1B—C6B—C7B −179.52 (12)
C5A—C6A—C7A—O1A −1.0 (2) C5B—C6B—C7B—O1B −0.6 (2)
C1A—C6A—C7A—O1A −179.99 (14) C1B—C6B—C7B—O1B 178.75 (13)
C5A—C6A—C7A—O2A 178.56 (14) C5B—C6B—C7B—O2B −179.89 (13)
C1A—C6A—C7A—O2A −0.5 (2) C1B—C6B—C7B—O2B −0.52 (19)
C10A—N1A—C9A—N2A 179.75 (14) C10B—N1B—C9B—N2B −179.26 (13)
C10A—N1A—C9A—C8A −0.5 (2) C10B—N1B—C9B—C8B −0.3 (2)
C12A—C8A—C9A—N2A 179.56 (14) C12B—C8B—C9B—N2B 179.36 (14)
C12A—C8A—C9A—N1A −0.2 (2) C12B—C8B—C9B—N1B 0.4 (2)
C9A—N1A—C10A—C11A 0.8 (2) C9B—N1B—C10B—C11B 0.7 (2)
N1A—C10A—C11A—C12A −0.5 (2) N1B—C10B—C11B—C12B −1.2 (2)
C9A—C8A—C12A—C11A 0.5 (2) C9B—C8B—C12B—C11B −0.9 (2)
C9A—C8A—C12A—C13A −178.45 (14) C9B—C8B—C12B—C13B 177.87 (14)
C10A—C11A—C12A—C8A −0.2 (2) C10B—C11B—C12B—C8B 1.3 (2)
C10A—C11A—C12A—C13A 178.81 (14) C10B—C11B—C12B—C13B −177.53 (14)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O3A—H1A3···O2A 0.99 (2) 1.61 (2) 2.5310 (16) 154 (2)
N1A—H1NA···O1Bi 0.99 (2) 1.71 (2) 2.6965 (17) 174 (2)
N2A—H2NA···O1Aii 0.90 (2) 1.99 (2) 2.8645 (19) 164 (2)
O3B—H1B3···O2B 0.94 (3) 1.62 (3) 2.5179 (16) 158 (2)
N2A—H3NA···O2Bi 0.94 (2) 1.91 (2) 2.8468 (18) 178 (2)
N1B—H1NB···O2A 0.96 (2) 1.76 (2) 2.7186 (17) 172.7 (17)
N2B—H2NB···O1A 0.96 (2) 1.84 (2) 2.7976 (18) 177.0 (16)
N2B—H3NB···O1Biii 0.93 (2) 1.88 (2) 2.8097 (19) 174.3 (13)
C8B—H8BA···O2Biv 0.93 2.47 3.357 (2) 159
C10B—H10B···O3B 0.93 2.38 3.039 (2) 128

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x, y+1, z; (iii) x, y−1, z; (iv) −x, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5564).

References

  1. Albrecht, A. S., Landee, C. P. & Turnbull, M. M. (2003). J. Chem. Crystallogr.33, 269–276.
  2. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  3. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  4. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  6. Jin, Z. M., Pan, Y. J., Hu, M. L. & Shen, L. (2001). J. Chem. Crystallogr.31, 191–195.
  7. Kvick, Å. & Noordik, J. (1977). Acta Cryst. B33, 2862–2866.
  8. Luque, A., Sertucha, J., Lezama, L., Rojo, T. & Roman, P. (1997). J. Chem. Soc. Dalton Trans. pp. 847–854.
  9. Navarro Ranninger, M.-C., Martínez-Carrera, S. & García-Blanco, S. (1985). Acta Cryst. C41, 21–22.
  10. Qin, J. G., Su, N. B., Dai, C. Y., Yang, C. L., Liu, D. Y., Day, M. W., Wu, B. C. & Chen, C. T. (1999). Polyhedron, 18, 3461–3464.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053681002965X/hb5564sup1.cif

e-66-o2151-sup1.cif (24.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053681002965X/hb5564Isup2.hkl

e-66-o2151-Isup2.hkl (396.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES