Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Jul 10;66(Pt 8):o1978. doi: 10.1107/S160053681002653X

1-(4-Meth­oxy­phen­yl)-2-(1H-1,2,4-triazol-1-yl)ethanone

Victor Kesternich a, Iván Brito b,*, Michael Bolte c, Marcia Pérez-Fermann a, Ronald Nelson a
PMCID: PMC3007452  PMID: 21588295

Abstract

In the title compound, C11H11N3O2, the dihedral angle between the central ethanone fragment and the 4-meth­oxy­phenyl group is 2.9 (2)°, while that between the ethanone fragment and the triazole ring is 83.4 (2)°. The dihedral angle between the planes of the triazole and benzene rings is 81.7 (1)°. The 4-meth­oxy­phenyl group is cis with respect to the ethanone fragment O atom across the exocyclic C—C bond. In the crystal, mol­ecules are linked by C—H⋯N inter­actions into C(9) chains along [001].

Related literature

For the biological activity of fungal infections, see: Wingard & Leather (2004); Lamb et al. (1999). For the synthesis, see: Emami et al. (2008); Upadhayaya et al. (2009); Schiaffella et al. (2005); Dawood et al. (2006). For hydrogen-bond motifs, see: Bernstein et al. (1995).graphic file with name e-66-o1978-scheme1.jpg

Experimental

Crystal data

  • C11H11N3O2

  • M r = 217.23

  • Monoclinic, Inline graphic

  • a = 23.409 (3) Å

  • b = 4.8347 (7) Å

  • c = 20.607 (2) Å

  • β = 116.275 (8)°

  • V = 2091.2 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 173 K

  • 0.29 × 0.25 × 0.21 mm

Data collection

  • Stoe IPDS II two-circle diffractometer

  • 4675 measured reflections

  • 1944 independent reflections

  • 1260 reflections with I > 2σ(I)

  • R int = 0.053

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.101

  • S = 0.89

  • 1944 reflections

  • 147 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.16 e Å−3

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053681002653X/fl2306sup1.cif

e-66-o1978-sup1.cif (16.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053681002653X/fl2306Isup2.hkl

e-66-o1978-Isup2.hkl (95.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15⋯N4i 0.95 2.42 3.336 (3) 162

Symmetry code: (i) Inline graphic.

Acknowledgments

We thank the Spanish Research Council (CSIC) for providing us with a free-of-charge license for the CSD system. MP-F thanks the Universidad de Antofagasta for PhD fellowships.

supplementary crystallographic information

Comment

Fungal infections caused by pathogenic species, often characterized by high mortality rates, has been increasing over the past two decades. In the treatment of fungal infections the number of efficacious antifungal drugs is limited (Wingard & Leather, 2004). Many of the currently available drugs are toxic, produce recurrence because they are fungistatic and not fungicides or lead to the development of resistance due in part to the prolonged periods of administration of the available antifungal drugs (Lamb et al., 1999). In order to seek new antifungal agents we are preparing a series of substituted triazoles, fluconazole analogues (Emami et al., 2008).

In this article we report the synthesis and crystal structure of the titl compound, (I). In (I), Fig. 1, the dihedral angle between the central OCC ethanone fragment and the o-methoxyphenyl group is 2.9 (2)°, while that with group triazole is 83.4 (2)°. The dihedral angle between the plane of triazole and benzene ring is 81.7 (1)°. The o-methoxyphenyl group is cis with respect to the ethanone fragment O atom across the C11—C1 bond. In the crystal molecules are linked by C—H···N interactions into chains with graph-set notation C(9) along [001] (Bernstein et al., 1995), Table 1, Fig. 2.

Experimental

Compound (II), was synthesized as described by Upadhayaya, et al., (2009). Compound (I) was synthesized from (II) as described by Schiaffella et al., (2005) and Dawood et al., (2006) as shown in scheme 1. Recrystallization of (I) from methanol/chloroform (9/1) at room temperature afforded colourless crystals suitable for X-ray diffraction analysis.

Refinement

All H atoms could be located by difference Fourier synthesis but were ultimately placed in calculated positions using a riding model with C—H(aromatic) = 0.95 Å, CH(methylene) = 0.99 Å and CH(methyl) = 0.98 Å with fixed individual displacement parameters [Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(Cmethyl)].

Figures

Fig. 1.

Fig. 1.

Perspective view of (I) with the atom numbering; displacement ellipsoids are at the 50% probability level (arbitrary spheres for the H atoms).

Fig. 2.

Fig. 2.

Packing diagram for (I) showing the formation of a C(9) chain along [001]. Hydrogen bond shown as dashed lines.

Fig. 3.

Fig. 3.

The formation of the title compound.

Crystal data

C11H11N3O2 F(000) = 912
Mr = 217.23 Dx = 1.380 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 3087 reflections
a = 23.409 (3) Å θ = 3.6–25.9°
b = 4.8347 (7) Å µ = 0.10 mm1
c = 20.607 (2) Å T = 173 K
β = 116.275 (8)° Block, colourless
V = 2091.2 (5) Å3 0.29 × 0.25 × 0.21 mm
Z = 8

Data collection

Stoe IPDS II two-circle diffractometer 1260 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.053
graphite θmax = 25.6°, θmin = 3.5°
ω scans h = −27→28
4675 measured reflections k = −5→5
1944 independent reflections l = −24→24

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041 H-atom parameters constrained
wR(F2) = 0.101 w = 1/[σ2(Fo2) + (0.0547P)2] where P = (Fo2 + 2Fc2)/3
S = 0.89 (Δ/σ)max < 0.001
1944 reflections Δρmax = 0.16 e Å3
147 parameters Δρmin = −0.16 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0060 (8)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.34820 (7) 0.4726 (3) 0.43819 (7) 0.0493 (4)
C1 0.37507 (9) 0.6336 (4) 0.41489 (9) 0.0347 (4)
C2 0.42565 (9) 0.8304 (4) 0.46522 (9) 0.0358 (4)
H2A 0.4651 0.8043 0.4595 0.043*
H2B 0.4110 1.0230 0.4512 0.043*
N1 0.43985 (8) 0.7900 (3) 0.54036 (8) 0.0355 (4)
N2 0.47973 (9) 0.5846 (4) 0.57991 (8) 0.0521 (5)
C3 0.47828 (12) 0.6132 (5) 0.64287 (10) 0.0512 (6)
H3 0.5022 0.4971 0.6830 0.061*
N4 0.44080 (9) 0.8176 (4) 0.64643 (8) 0.0486 (5)
C5 0.41747 (10) 0.9240 (4) 0.58069 (10) 0.0428 (5)
H5 0.3887 1.0753 0.5644 0.051*
C11 0.36082 (8) 0.6444 (4) 0.33756 (9) 0.0307 (4)
C12 0.31663 (9) 0.4624 (4) 0.28896 (9) 0.0344 (4)
H12 0.2954 0.3354 0.3060 0.041*
C13 0.30274 (9) 0.4612 (4) 0.21646 (9) 0.0353 (4)
H13 0.2724 0.3351 0.1841 0.042*
C14 0.33387 (9) 0.6477 (4) 0.19143 (8) 0.0335 (4)
C15 0.37810 (9) 0.8315 (4) 0.23879 (9) 0.0366 (4)
H15 0.3993 0.9581 0.2215 0.044*
C16 0.39130 (9) 0.8305 (4) 0.31086 (9) 0.0354 (4)
H16 0.4215 0.9577 0.3430 0.042*
O17 0.32364 (7) 0.6657 (3) 0.12113 (6) 0.0433 (4)
C17 0.28122 (11) 0.4693 (5) 0.07117 (10) 0.0513 (6)
H17A 0.2951 0.2817 0.0893 0.077*
H17B 0.2815 0.4918 0.0240 0.077*
H17C 0.2380 0.4998 0.0659 0.077*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0624 (10) 0.0507 (9) 0.0465 (8) −0.0140 (8) 0.0348 (7) −0.0002 (6)
C1 0.0380 (10) 0.0301 (9) 0.0422 (9) 0.0052 (9) 0.0235 (8) 0.0035 (8)
C2 0.0422 (11) 0.0346 (10) 0.0345 (9) 0.0008 (9) 0.0205 (8) 0.0003 (7)
N1 0.0396 (9) 0.0362 (9) 0.0349 (7) 0.0056 (7) 0.0202 (7) 0.0004 (6)
N2 0.0676 (13) 0.0570 (11) 0.0409 (8) 0.0258 (10) 0.0325 (9) 0.0113 (8)
C3 0.0627 (14) 0.0583 (13) 0.0397 (10) 0.0182 (12) 0.0290 (10) 0.0059 (10)
N4 0.0523 (11) 0.0584 (11) 0.0425 (9) 0.0069 (9) 0.0278 (8) −0.0072 (8)
C5 0.0439 (12) 0.0443 (12) 0.0424 (10) 0.0044 (10) 0.0210 (9) −0.0097 (9)
C11 0.0313 (10) 0.0272 (9) 0.0374 (8) 0.0038 (8) 0.0187 (8) 0.0020 (7)
C12 0.0342 (10) 0.0297 (9) 0.0434 (9) −0.0003 (8) 0.0209 (8) 0.0033 (8)
C13 0.0334 (10) 0.0331 (10) 0.0385 (9) −0.0021 (8) 0.0151 (8) −0.0028 (7)
C14 0.0352 (10) 0.0330 (10) 0.0343 (9) 0.0061 (8) 0.0172 (8) 0.0030 (7)
C15 0.0419 (11) 0.0330 (10) 0.0390 (9) −0.0042 (9) 0.0214 (8) 0.0035 (7)
C16 0.0380 (11) 0.0308 (10) 0.0391 (9) −0.0040 (8) 0.0187 (8) −0.0010 (7)
O17 0.0515 (9) 0.0453 (8) 0.0334 (6) −0.0071 (7) 0.0192 (6) −0.0014 (6)
C17 0.0568 (14) 0.0580 (13) 0.0361 (9) −0.0122 (11) 0.0178 (10) −0.0087 (9)

Geometric parameters (Å, °)

O1—C1 1.225 (2) C11—C16 1.403 (2)
C1—C11 1.477 (2) C12—C13 1.381 (2)
C1—C2 1.515 (3) C12—H12 0.9500
C2—N1 1.446 (2) C13—C14 1.394 (2)
C2—H2A 0.9900 C13—H13 0.9500
C2—H2B 0.9900 C14—O17 1.3624 (19)
N1—C5 1.330 (2) C14—C15 1.386 (3)
N1—N2 1.360 (2) C15—C16 1.377 (2)
N2—C3 1.320 (2) C15—H15 0.9500
C3—N4 1.345 (3) C16—H16 0.9500
C3—H3 0.9500 O17—C17 1.429 (2)
N4—C5 1.320 (2) C17—H17A 0.9800
C5—H5 0.9500 C17—H17B 0.9800
C11—C12 1.389 (3) C17—H17C 0.9800
O1—C1—C11 122.36 (18) C13—C12—C11 121.74 (16)
O1—C1—C2 120.80 (15) C13—C12—H12 119.1
C11—C1—C2 116.83 (14) C11—C12—H12 119.1
N1—C2—C1 112.82 (14) C12—C13—C14 119.11 (17)
N1—C2—H2A 109.0 C12—C13—H13 120.4
C1—C2—H2A 109.0 C14—C13—H13 120.4
N1—C2—H2B 109.0 O17—C14—C15 115.64 (15)
C1—C2—H2B 109.0 O17—C14—C13 124.08 (17)
H2A—C2—H2B 107.8 C15—C14—C13 120.28 (15)
C5—N1—N2 109.70 (14) C16—C15—C14 119.90 (16)
C5—N1—C2 129.47 (17) C16—C15—H15 120.0
N2—N1—C2 120.79 (14) C14—C15—H15 120.0
C3—N2—N1 101.70 (15) C15—C16—C11 121.00 (18)
N2—C3—N4 115.60 (18) C15—C16—H16 119.5
N2—C3—H3 122.2 C11—C16—H16 119.5
N4—C3—H3 122.2 C14—O17—C17 117.55 (14)
C5—N4—C3 102.33 (15) O17—C17—H17A 109.5
N4—C5—N1 110.67 (18) O17—C17—H17B 109.5
N4—C5—H5 124.7 H17A—C17—H17B 109.5
N1—C5—H5 124.7 O17—C17—H17C 109.5
C12—C11—C16 117.97 (15) H17A—C17—H17C 109.5
C12—C11—C1 119.73 (15) H17B—C17—H17C 109.5
C16—C11—C1 122.29 (17)
O1—C1—C2—N1 3.8 (2) C2—C1—C11—C16 −1.2 (3)
C11—C1—C2—N1 −175.44 (15) C16—C11—C12—C13 0.2 (3)
C1—C2—N1—C5 −96.6 (2) C1—C11—C12—C13 −178.68 (17)
C1—C2—N1—N2 80.8 (2) C11—C12—C13—C14 0.0 (3)
C5—N1—N2—C3 −0.3 (2) C12—C13—C14—O17 −179.61 (17)
C2—N1—N2—C3 −178.21 (18) C12—C13—C14—C15 0.0 (3)
N1—N2—C3—N4 0.3 (3) O17—C14—C15—C16 179.50 (17)
N2—C3—N4—C5 −0.2 (3) C13—C14—C15—C16 −0.1 (3)
C3—N4—C5—N1 0.0 (2) C14—C15—C16—C11 0.3 (3)
N2—N1—C5—N4 0.1 (2) C12—C11—C16—C15 −0.4 (3)
C2—N1—C5—N4 177.86 (19) C1—C11—C16—C15 178.51 (17)
O1—C1—C11—C12 −1.6 (3) C15—C14—O17—C17 176.40 (18)
C2—C1—C11—C12 177.64 (16) C13—C14—O17—C17 −4.0 (3)
O1—C1—C11—C16 179.50 (18)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C15—H15···N4i 0.95 2.42 3.336 (3) 162

Symmetry codes: (i) x, −y+2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FL2306).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  2. Dawood, K. M., Abdel-Gawad, H., Rageb, E. A., Ellitheyc, M. & Mohamed, H. A. (2006). Bioorg. Med. Chem.14, 3672–3680. [DOI] [PubMed]
  3. Emami, S., Foroumadi, A., Falahati, M., Lotfali, E. S., Rajabalian, S., Ebrahimi, S. A., Farahyarc, S. & Shafieeb, A. (2008). Bioorg. Med. Chem. Lett. 18, 141–146. [DOI] [PubMed]
  4. Lamb, D., Kelly, D. & Kelly, S. (1999). Drug Resit. Updat.2, 390–402. [DOI] [PubMed]
  5. Schiaffella, F., Macchiarulo, A., Milanese, L., Vecchiarelli, A. & Fringuelli, R. (2005). J. Med. Chem.48 7658–7666. [DOI] [PubMed]
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Stoe & Cie (2001). X-AREA Stoe & Cie, Darmstadt, Germany.
  8. Upadhayaya, R. S., Kulkarni, G. M., Vasireddy, N. R., Vandavasi, J. K., Dixit, S. S., Sharma, V. & Chattopadhyaya, J. (2009). Bioorg. Med. Chem.17, 4681–4692 [DOI] [PubMed]
  9. Wingard, J. R. & Leather, H. (2004). Biol. Blood Marrow Transplant.10, 73–90. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053681002653X/fl2306sup1.cif

e-66-o1978-sup1.cif (16.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053681002653X/fl2306Isup2.hkl

e-66-o1978-Isup2.hkl (95.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES