Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Jul 7;66(Pt 8):o1937–o1938. doi: 10.1107/S1600536810025948

3-Ethyl-4-phen­oxy-1-(2,2,2-trifluoro­eth­yl)-1H-pyrazol-5-ol

Tara Shahani a, Hoong-Kun Fun a,*,, R Venkat Ragavan b, V Vijayakumar b, S Sarveswari b
PMCID: PMC3007551  PMID: 21588264

Abstract

The title compound, C13H13F3N2O2, crystallizes with two independent mol­ecules in the asymmetric unit, with different conformations of their ethyl side chains. The dihedral angles formed between the 1H-pyrazole and benzene rings in the two mol­ecules are 79.44 (6) and 77.81 (6)°. In the crystal, mol­ecules are linked by O⋯H—N hydrogen bonds into chains propagating along [001] and the packing is further stabilized by π–π inter­actions [centroid–centroid separations = 3.5409 (10) and 3.6335 (10) Å].

Related literature

For the synthesis, see: Ragavan et al. (2009, 2010). For background on the biological activity of 3-ethyl-4-phen­oxy-1-(2,2,2-trifluoro­eth­yl)-1H-pyrazol-5-ol, see: Brogden (1986); Gursoy et al. (2000); Watanabe et al. (1984); Kawai et al. (1997); Wu et al. (2002). For related structures, see: Shahani et al. (2009, 2010a ,b ,c ,d ). For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986). For related literature, see: Coersmeier et al. (1986).graphic file with name e-66-o1937-scheme1.jpg

Experimental

Crystal data

  • C13H13F3N2O2

  • M r = 286.25

  • Monoclinic, Inline graphic

  • a = 9.3490 (18) Å

  • b = 14.712 (3) Å

  • c = 20.319 (4) Å

  • β = 113.889 (8)°

  • V = 2555.3 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 100 K

  • 0.38 × 0.26 × 0.15 mm

Data collection

  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.952, T max = 0.981

  • 35406 measured reflections

  • 9653 independent reflections

  • 7544 reflections with I > 2σ(I)

  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046

  • wR(F 2) = 0.156

  • S = 1.07

  • 9653 reflections

  • 365 parameters

  • H-atom parameters constrained

  • Δρmax = 0.68 e Å−3

  • Δρmin = −0.55 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810025948/hb5540sup1.cif

e-66-o1937-sup1.cif (26.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810025948/hb5540Isup2.hkl

e-66-o1937-Isup2.hkl (472.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected torsion angles (°).

N1A—C8A—C12A—C13A 40.62 (16)
N1B—C8B—C12B—C13B 111.06 (16)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2A—H1OA⋯N1Bi 0.82 1.79 2.5996 (15) 169
O2B—H1OB⋯N1Aii 0.82 1.76 2.5781 (14) 177

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

TS and HKF thank Universiti Sains Malaysia (USM) for the Research University Golden Goose Grant (1001/PFIZIK/8111012). TS also thanks the Research University Grant (1001/PFIZIK/811151) for the position of Graduate Research Assistant. VV is grateful to DST-India for funding through the Young Scientist Scheme (Fast Track Proposal).

supplementary crystallographic information

Comment

Pyrazolone derivatives have a broad spectrum of biological activities being used as analgesic, antipyretic and anti-inflammatory therapeutical drugs (Brogden, 1986; Gursoy et al., 2000). A class of new compounds with pyrazolone moiety was synthesized and reported for their antibacterial and antifungal activities (Ragavan et al., 2009, 2010). A new pyrazolone derivative, edaravone (3-methyl-1-phenyl-2-pyrazoline-5-one), is being used as a drug in clinical practice for brain ischemia (Watanabe et al., 1984; Kawai et al., 1997) and the same has been found to be effective against myocardial ischemia (Wu et al., 2002).

There are two independent molecules (A and B) in the asymmetric unit (Fig. 1). The maximum deviations in 1H-pyrazole rings (N1/N2/C7–C9) are 0.002 (1) and 0.003 (1) Å, respectively, for atom C7A of molecule A and atoms N2B and C8B of molecule B. The dihedral angles formed between the 1H-pyrazole rings and benzene rings in molecules A and B are 79.44 (6) and 77.81 (6)°, respectively. The bond lengths (Allen et al.,1987) and angles are within normal ranges and comparable to those closely related structures (Shahani et al., 2009, 2010a,b,c,d).

In the crystal packing (Fig. 2), intermolecular O2A···H1OA—N1B, O2B···H1OB—N1A hydrogen bonds (Table 1) link the molecules into one-dimensional chains along [001] direction. The interesting feature of the crystal packing is provided by weak π–π interactions [Cg1···Cg4 = 3.5409 (10) Å, symmetry code, 1+x, 3/2-y, -1/2+z], [Cg2···Cg3 = 3.6335 (10) Å, symmetry code, -1 + x, y, z], Cg1 and Cg4 are the centroids of the benzene rings (C1A–C6A & C1B–C6B), Cg2 and Cg3 are the centroids of the 1H-pyrazole rings (N1A/N2A/C7A–C9A & N1B/N2B/C7B–C9B).

Experimental

The title compound has been synthesized according to the available procedure in the literature (Ragavan et al., 2009, 2010) and purified by column chromatography using ethyl acetate and methanol mixture (1:99). The obtained solid was recrystallized using absolute ethanol to yield colourless blocks of (I). Yield: 49%; Mp. 463–465 K.

Refinement

H atoms were positioned geometrically [range of C–H = 0.93–0.97 Å, O–H = 0.82 Å] and refined using a riding model, with Uiso(H) = 1.5 Ueq(O) and 1.2 or 1.5 Ueq(C). A rotating group model was used for the methyl groups.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), showing 45% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

The crystal packing of (I), viewed approximately along a axis, showing one-dimensional chains along the [001] direction. Intermolecular hydrogen bonds are shown as dashed lines.

Crystal data

C13H13F3N2O2 F(000) = 1184
Mr = 286.25 Dx = 1.488 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 9950 reflections
a = 9.3490 (18) Å θ = 2.5–33.1°
b = 14.712 (3) Å µ = 0.13 mm1
c = 20.319 (4) Å T = 100 K
β = 113.889 (8)° Block, colourless
V = 2555.3 (9) Å3 0.38 × 0.26 × 0.15 mm
Z = 8

Data collection

Bruker SMART APEXII CCD diffractometer 9653 independent reflections
Radiation source: fine-focus sealed tube 7544 reflections with I > 2σ(I)
graphite Rint = 0.034
φ and ω scans θmax = 33.1°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −14→13
Tmin = 0.952, Tmax = 0.981 k = −22→22
35406 measured reflections l = −30→31

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.156 H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0895P)2 + 0.5995P] where P = (Fo2 + 2Fc2)/3
9653 reflections (Δ/σ)max < 0.001
365 parameters Δρmax = 0.68 e Å3
0 restraints Δρmin = −0.55 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
F1A 0.31537 (13) 0.95145 (9) 0.55763 (5) 0.0481 (3)
F2A 0.30166 (11) 1.01373 (6) 0.45960 (6) 0.0391 (2)
F3A 0.39030 (10) 0.87810 (6) 0.48585 (6) 0.0382 (2)
O1A −0.02252 (9) 0.65761 (6) 0.57549 (4) 0.01824 (16)
O2A −0.02449 (11) 0.86757 (6) 0.54830 (5) 0.01993 (16)
H1OA −0.0368 0.8517 0.5843 0.030*
N1A 0.14431 (11) 0.73591 (6) 0.45565 (5) 0.01659 (17)
N2A 0.09635 (11) 0.81452 (6) 0.47642 (5) 0.01577 (17)
C1A 0.24276 (14) 0.64218 (8) 0.66821 (6) 0.0199 (2)
H1AA 0.2857 0.6722 0.6402 0.024*
C2A 0.33808 (16) 0.61131 (9) 0.73676 (7) 0.0260 (2)
H2AA 0.4452 0.6223 0.7551 0.031*
C3A 0.27568 (18) 0.56449 (9) 0.77815 (7) 0.0292 (3)
H3AA 0.3405 0.5438 0.8238 0.035*
C4A 0.11638 (18) 0.54869 (9) 0.75105 (7) 0.0267 (3)
H4AA 0.0744 0.5166 0.7785 0.032*
C5A 0.01825 (15) 0.58036 (8) 0.68319 (6) 0.0212 (2)
H5AA −0.0890 0.5702 0.6654 0.025*
C6A 0.08262 (13) 0.62747 (7) 0.64225 (6) 0.01685 (19)
C7A 0.03786 (12) 0.70534 (7) 0.53426 (6) 0.01559 (18)
C8A 0.10829 (12) 0.66915 (7) 0.49077 (6) 0.01611 (18)
C9A 0.03091 (12) 0.79864 (7) 0.52395 (5) 0.01559 (18)
C10A 0.11837 (13) 0.90055 (7) 0.44853 (6) 0.01736 (19)
H10A 0.0446 0.9442 0.4525 0.021*
H10B 0.0972 0.8940 0.3979 0.021*
C11A 0.28240 (15) 0.93581 (9) 0.48839 (7) 0.0248 (2)
C12A 0.13741 (14) 0.57127 (8) 0.48058 (6) 0.0201 (2)
H12A 0.0530 0.5494 0.4372 0.024*
H12B 0.1344 0.5368 0.5207 0.024*
C13A 0.29193 (16) 0.55208 (9) 0.47496 (9) 0.0284 (3)
H13A 0.3039 0.4877 0.4713 0.043*
H13B 0.3765 0.5749 0.5171 0.043*
H13C 0.2928 0.5816 0.4330 0.043*
F1B 1.40543 (10) 0.97140 (6) 0.72206 (5) 0.0347 (2)
F2B 1.29257 (11) 0.98298 (6) 0.79574 (5) 0.0353 (2)
F3B 1.15899 (10) 0.99932 (6) 0.68199 (5) 0.0337 (2)
O1B 0.86609 (10) 0.71693 (6) 0.80232 (5) 0.01864 (16)
O2B 1.21261 (10) 0.76971 (6) 0.84486 (4) 0.01944 (16)
H1OB 1.1880 0.7673 0.8792 0.029*
N1B 0.96106 (11) 0.83472 (7) 0.67117 (5) 0.01796 (18)
N2B 1.10254 (11) 0.82572 (7) 0.72879 (5) 0.01590 (17)
C1B 0.75881 (14) 0.85277 (8) 0.83482 (6) 0.0203 (2)
H1BA 0.8011 0.8909 0.8108 0.024*
C2B 0.67177 (15) 0.88829 (9) 0.87052 (7) 0.0243 (2)
H2BA 0.6560 0.9507 0.8703 0.029*
C3B 0.60848 (15) 0.83187 (10) 0.90634 (7) 0.0265 (2)
H3BA 0.5508 0.8563 0.9301 0.032*
C4B 0.63163 (15) 0.73870 (10) 0.90657 (7) 0.0250 (2)
H4BA 0.5890 0.7006 0.9304 0.030*
C5B 0.71822 (14) 0.70211 (8) 0.87132 (6) 0.0198 (2)
H5BA 0.7339 0.6397 0.8715 0.024*
C6B 0.78125 (12) 0.75984 (8) 0.83571 (6) 0.01636 (19)
C7B 0.92916 (13) 0.76861 (7) 0.76383 (6) 0.01631 (19)
C8B 0.85532 (13) 0.80022 (8) 0.69294 (6) 0.0185 (2)
C9B 1.08731 (13) 0.78561 (7) 0.78566 (6) 0.01529 (18)
C10B 1.24605 (13) 0.85110 (7) 0.72379 (6) 0.01700 (19)
H10C 1.2429 0.8313 0.6777 0.020*
H10D 1.3323 0.8200 0.7612 0.020*
C11B 1.27517 (14) 0.95189 (8) 0.73120 (7) 0.0229 (2)
C12B 0.68516 (15) 0.80124 (9) 0.64426 (7) 0.0249 (2)
H12C 0.6700 0.8390 0.6028 0.030*
H12D 0.6277 0.8288 0.6696 0.030*
C13B 0.6182 (2) 0.70828 (12) 0.61840 (12) 0.0492 (5)
H13D 0.5089 0.7137 0.5879 0.074*
H13E 0.6311 0.6707 0.6590 0.074*
H13F 0.6720 0.6813 0.5918 0.074*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
F1A 0.0471 (6) 0.0628 (7) 0.0289 (5) −0.0242 (5) 0.0099 (4) −0.0171 (5)
F2A 0.0398 (5) 0.0210 (4) 0.0647 (7) −0.0077 (3) 0.0296 (5) 0.0043 (4)
F3A 0.0216 (4) 0.0297 (4) 0.0623 (6) 0.0010 (3) 0.0160 (4) 0.0024 (4)
O1A 0.0181 (3) 0.0218 (4) 0.0161 (3) −0.0019 (3) 0.0082 (3) 0.0050 (3)
O2A 0.0276 (4) 0.0192 (4) 0.0184 (4) 0.0039 (3) 0.0149 (3) 0.0020 (3)
N1A 0.0206 (4) 0.0159 (4) 0.0158 (4) −0.0008 (3) 0.0100 (3) −0.0014 (3)
N2A 0.0199 (4) 0.0153 (4) 0.0150 (4) −0.0001 (3) 0.0101 (3) 0.0011 (3)
C1A 0.0217 (5) 0.0171 (5) 0.0202 (5) 0.0014 (4) 0.0077 (4) −0.0001 (4)
C2A 0.0282 (6) 0.0220 (5) 0.0226 (5) 0.0066 (4) 0.0051 (4) −0.0006 (4)
C3A 0.0440 (7) 0.0223 (5) 0.0177 (5) 0.0108 (5) 0.0089 (5) 0.0034 (4)
C4A 0.0456 (7) 0.0193 (5) 0.0206 (5) 0.0066 (5) 0.0188 (5) 0.0048 (4)
C5A 0.0309 (6) 0.0169 (5) 0.0200 (5) 0.0010 (4) 0.0148 (4) 0.0026 (4)
C6A 0.0230 (5) 0.0143 (4) 0.0141 (4) 0.0012 (4) 0.0084 (4) 0.0006 (3)
C7A 0.0175 (4) 0.0167 (4) 0.0142 (4) −0.0018 (3) 0.0081 (3) 0.0018 (3)
C8A 0.0170 (4) 0.0170 (4) 0.0152 (4) −0.0015 (3) 0.0074 (3) −0.0006 (3)
C9A 0.0175 (4) 0.0181 (5) 0.0128 (4) 0.0005 (3) 0.0077 (3) 0.0009 (3)
C10A 0.0202 (5) 0.0166 (4) 0.0173 (4) 0.0000 (4) 0.0098 (4) 0.0029 (3)
C11A 0.0253 (5) 0.0220 (5) 0.0289 (6) −0.0051 (4) 0.0127 (5) −0.0011 (4)
C12A 0.0226 (5) 0.0167 (5) 0.0232 (5) −0.0024 (4) 0.0116 (4) −0.0012 (4)
C13A 0.0291 (6) 0.0194 (5) 0.0423 (7) 0.0025 (4) 0.0202 (6) 0.0021 (5)
F1B 0.0263 (4) 0.0322 (4) 0.0462 (5) −0.0103 (3) 0.0154 (4) 0.0059 (4)
F2B 0.0439 (5) 0.0260 (4) 0.0346 (5) −0.0037 (4) 0.0145 (4) −0.0125 (3)
F3B 0.0298 (4) 0.0219 (4) 0.0432 (5) 0.0013 (3) 0.0084 (4) 0.0115 (3)
O1B 0.0237 (4) 0.0165 (3) 0.0220 (4) −0.0016 (3) 0.0158 (3) 0.0007 (3)
O2B 0.0189 (4) 0.0267 (4) 0.0143 (3) 0.0009 (3) 0.0083 (3) 0.0028 (3)
N1B 0.0187 (4) 0.0217 (4) 0.0146 (4) −0.0016 (3) 0.0078 (3) 0.0006 (3)
N2B 0.0175 (4) 0.0183 (4) 0.0141 (4) −0.0015 (3) 0.0086 (3) 0.0000 (3)
C1B 0.0225 (5) 0.0193 (5) 0.0210 (5) −0.0012 (4) 0.0107 (4) 0.0003 (4)
C2B 0.0240 (5) 0.0245 (6) 0.0252 (5) 0.0026 (4) 0.0108 (4) −0.0031 (4)
C3B 0.0221 (5) 0.0351 (7) 0.0264 (6) 0.0010 (5) 0.0141 (5) −0.0052 (5)
C4B 0.0229 (5) 0.0321 (6) 0.0257 (6) −0.0047 (5) 0.0158 (5) −0.0004 (5)
C5B 0.0198 (5) 0.0214 (5) 0.0208 (5) −0.0032 (4) 0.0109 (4) 0.0007 (4)
C6B 0.0155 (4) 0.0196 (5) 0.0154 (4) −0.0018 (3) 0.0078 (3) −0.0009 (3)
C7B 0.0187 (4) 0.0171 (4) 0.0163 (4) −0.0014 (4) 0.0104 (4) 0.0004 (3)
C8B 0.0191 (5) 0.0207 (5) 0.0169 (4) −0.0022 (4) 0.0085 (4) 0.0001 (4)
C9B 0.0191 (4) 0.0153 (4) 0.0146 (4) −0.0001 (3) 0.0101 (4) −0.0006 (3)
C10B 0.0187 (4) 0.0171 (4) 0.0189 (4) −0.0010 (4) 0.0114 (4) −0.0004 (4)
C11B 0.0225 (5) 0.0189 (5) 0.0269 (6) −0.0023 (4) 0.0098 (4) 0.0009 (4)
C12B 0.0214 (5) 0.0276 (6) 0.0238 (5) −0.0013 (4) 0.0072 (4) 0.0018 (4)
C13B 0.0315 (8) 0.0303 (8) 0.0669 (12) −0.0082 (6) 0.0004 (8) −0.0036 (8)

Geometric parameters (Å, °)

F1A—C11A 1.3326 (17) F1B—C11B 1.3354 (15)
F2A—C11A 1.3319 (16) F2B—C11B 1.3351 (16)
F3A—C11A 1.3354 (16) F3B—C11B 1.3367 (15)
O1A—C7A 1.3773 (13) O1B—C7B 1.3822 (13)
O1A—C6A 1.3866 (13) O1B—C6B 1.3871 (13)
O2A—C9A 1.3224 (13) O2B—C9B 1.3162 (13)
O2A—H1OA 0.8200 O2B—H1OB 0.8200
N1A—C8A 1.3349 (14) N1B—C8B 1.3360 (14)
N1A—N2A 1.3675 (13) N1B—N2B 1.3725 (13)
N2A—C9A 1.3566 (13) N2B—C9B 1.3554 (13)
N2A—C10A 1.4352 (14) N2B—C10B 1.4354 (14)
C1A—C6A 1.3881 (16) C1B—C6B 1.3822 (16)
C1A—C2A 1.3910 (17) C1B—C2B 1.3928 (17)
C1A—H1AA 0.9300 C1B—H1BA 0.9300
C2A—C3A 1.386 (2) C2B—C3B 1.3848 (19)
C2A—H2AA 0.9300 C2B—H2BA 0.9300
C3A—C4A 1.382 (2) C3B—C4B 1.387 (2)
C3A—H3AA 0.9300 C3B—H3BA 0.9300
C4A—C5A 1.3911 (17) C4B—C5B 1.3884 (17)
C4A—H4AA 0.9300 C4B—H4BA 0.9300
C5A—C6A 1.3929 (15) C5B—C6B 1.3919 (15)
C5A—H5AA 0.9300 C5B—H5BA 0.9300
C7A—C9A 1.3861 (15) C7B—C9B 1.3836 (15)
C7A—C8A 1.4032 (15) C7B—C8B 1.4009 (15)
C8A—C12A 1.4954 (16) C8B—C12B 1.4949 (17)
C10A—C11A 1.5070 (17) C10B—C11B 1.5042 (16)
C10A—H10A 0.9700 C10B—H10C 0.9700
C10A—H10B 0.9700 C10B—H10D 0.9700
C12A—C13A 1.5209 (18) C12B—C13B 1.507 (2)
C12A—H12A 0.9700 C12B—H12C 0.9700
C12A—H12B 0.9700 C12B—H12D 0.9700
C13A—H13A 0.9600 C13B—H13D 0.9600
C13A—H13B 0.9600 C13B—H13E 0.9600
C13A—H13C 0.9600 C13B—H13F 0.9600
C7A—O1A—C6A 117.08 (9) C7B—O1B—C6B 119.07 (9)
C9A—O2A—H1OA 109.5 C9B—O2B—H1OB 109.5
C8A—N1A—N2A 105.79 (9) C8B—N1B—N2B 105.52 (9)
C9A—N2A—N1A 111.89 (9) C9B—N2B—N1B 111.82 (9)
C9A—N2A—C10A 127.67 (9) C9B—N2B—C10B 126.69 (9)
N1A—N2A—C10A 120.44 (9) N1B—N2B—C10B 121.34 (9)
C6A—C1A—C2A 119.00 (11) C6B—C1B—C2B 118.81 (11)
C6A—C1A—H1AA 120.5 C6B—C1B—H1BA 120.6
C2A—C1A—H1AA 120.5 C2B—C1B—H1BA 120.6
C3A—C2A—C1A 120.90 (13) C3B—C2B—C1B 120.87 (12)
C3A—C2A—H2AA 119.5 C3B—C2B—H2BA 119.6
C1A—C2A—H2AA 119.5 C1B—C2B—H2BA 119.6
C4A—C3A—C2A 119.49 (12) C2B—C3B—C4B 119.64 (11)
C4A—C3A—H3AA 120.3 C2B—C3B—H3BA 120.2
C2A—C3A—H3AA 120.3 C4B—C3B—H3BA 120.2
C3A—C4A—C5A 120.68 (12) C3B—C4B—C5B 120.27 (11)
C3A—C4A—H4AA 119.7 C3B—C4B—H4BA 119.9
C5A—C4A—H4AA 119.7 C5B—C4B—H4BA 119.9
C4A—C5A—C6A 119.18 (12) C4B—C5B—C6B 119.31 (11)
C4A—C5A—H5AA 120.4 C4B—C5B—H5BA 120.3
C6A—C5A—H5AA 120.4 C6B—C5B—H5BA 120.3
O1A—C6A—C1A 123.38 (10) C1B—C6B—O1B 123.89 (10)
O1A—C6A—C5A 115.90 (10) C1B—C6B—C5B 121.09 (10)
C1A—C6A—C5A 120.72 (11) O1B—C6B—C5B 115.02 (10)
O1A—C7A—C9A 126.23 (10) O1B—C7B—C9B 124.29 (10)
O1A—C7A—C8A 127.02 (10) O1B—C7B—C8B 128.23 (10)
C9A—C7A—C8A 106.62 (9) C9B—C7B—C8B 106.69 (9)
N1A—C8A—C7A 109.98 (10) N1B—C8B—C7B 110.12 (10)
N1A—C8A—C12A 122.34 (10) N1B—C8B—C12B 120.60 (10)
C7A—C8A—C12A 127.65 (10) C7B—C8B—C12B 129.26 (10)
O2A—C9A—N2A 119.48 (10) O2B—C9B—N2B 119.65 (10)
O2A—C9A—C7A 134.79 (10) O2B—C9B—C7B 134.49 (10)
N2A—C9A—C7A 105.72 (9) N2B—C9B—C7B 105.84 (9)
N2A—C10A—C11A 111.64 (10) N2B—C10B—C11B 112.69 (9)
N2A—C10A—H10A 109.3 N2B—C10B—H10C 109.1
C11A—C10A—H10A 109.3 C11B—C10B—H10C 109.1
N2A—C10A—H10B 109.3 N2B—C10B—H10D 109.1
C11A—C10A—H10B 109.3 C11B—C10B—H10D 109.1
H10A—C10A—H10B 108.0 H10C—C10B—H10D 107.8
F2A—C11A—F1A 107.48 (11) F2B—C11B—F1B 107.93 (11)
F2A—C11A—F3A 106.96 (11) F2B—C11B—F3B 107.15 (11)
F1A—C11A—F3A 107.17 (12) F1B—C11B—F3B 107.11 (10)
F2A—C11A—C10A 110.45 (11) F2B—C11B—C10B 112.41 (10)
F1A—C11A—C10A 112.14 (11) F1B—C11B—C10B 109.64 (10)
F3A—C11A—C10A 112.37 (11) F3B—C11B—C10B 112.36 (10)
C8A—C12A—C13A 114.89 (10) C8B—C12B—C13B 113.70 (12)
C8A—C12A—H12A 108.5 C8B—C12B—H12C 108.8
C13A—C12A—H12A 108.5 C13B—C12B—H12C 108.8
C8A—C12A—H12B 108.5 C8B—C12B—H12D 108.8
C13A—C12A—H12B 108.5 C13B—C12B—H12D 108.8
H12A—C12A—H12B 107.5 H12C—C12B—H12D 107.7
C12A—C13A—H13A 109.5 C12B—C13B—H13D 109.5
C12A—C13A—H13B 109.5 C12B—C13B—H13E 109.5
H13A—C13A—H13B 109.5 H13D—C13B—H13E 109.5
C12A—C13A—H13C 109.5 C12B—C13B—H13F 109.5
H13A—C13A—H13C 109.5 H13D—C13B—H13F 109.5
H13B—C13A—H13C 109.5 H13E—C13B—H13F 109.5
C8A—N1A—N2A—C9A 0.04 (12) C8B—N1B—N2B—C9B 0.58 (12)
C8A—N1A—N2A—C10A 179.76 (10) C8B—N1B—N2B—C10B 176.38 (10)
C6A—C1A—C2A—C3A 1.65 (18) C6B—C1B—C2B—C3B −0.03 (18)
C1A—C2A—C3A—C4A −0.35 (19) C1B—C2B—C3B—C4B −0.16 (19)
C2A—C3A—C4A—C5A −0.87 (19) C2B—C3B—C4B—C5B 0.2 (2)
C3A—C4A—C5A—C6A 0.75 (18) C3B—C4B—C5B—C6B −0.10 (19)
C7A—O1A—C6A—C1A −0.79 (15) C2B—C1B—C6B—O1B −179.77 (11)
C7A—O1A—C6A—C5A 179.25 (10) C2B—C1B—C6B—C5B 0.16 (17)
C2A—C1A—C6A—O1A 178.28 (10) C7B—O1B—C6B—C1B −1.95 (16)
C2A—C1A—C6A—C5A −1.76 (17) C7B—O1B—C6B—C5B 178.11 (10)
C4A—C5A—C6A—O1A −179.46 (10) C4B—C5B—C6B—C1B −0.10 (17)
C4A—C5A—C6A—C1A 0.58 (17) C4B—C5B—C6B—O1B 179.84 (10)
C6A—O1A—C7A—C9A −103.42 (13) C6B—O1B—C7B—C9B 109.05 (12)
C6A—O1A—C7A—C8A 81.34 (14) C6B—O1B—C7B—C8B −82.47 (14)
N2A—N1A—C8A—C7A −0.27 (12) N2B—N1B—C8B—C7B −0.54 (13)
N2A—N1A—C8A—C12A 177.87 (10) N2B—N1B—C8B—C12B 178.04 (10)
O1A—C7A—C8A—N1A 176.39 (10) O1B—C7B—C8B—N1B −169.75 (10)
C9A—C7A—C8A—N1A 0.39 (12) C9B—C7B—C8B—N1B 0.33 (13)
O1A—C7A—C8A—C12A −1.62 (18) O1B—C7B—C8B—C12B 11.8 (2)
C9A—C7A—C8A—C12A −177.61 (11) C9B—C7B—C8B—C12B −178.10 (12)
N1A—N2A—C9A—O2A −178.67 (9) N1B—N2B—C9B—O2B 178.28 (9)
C10A—N2A—C9A—O2A 1.64 (17) C10B—N2B—C9B—O2B 2.75 (16)
N1A—N2A—C9A—C7A 0.20 (12) N1B—N2B—C9B—C7B −0.37 (12)
C10A—N2A—C9A—C7A −179.49 (10) C10B—N2B—C9B—C7B −175.90 (10)
O1A—C7A—C9A—O2A 2.2 (2) O1B—C7B—C9B—O2B −7.8 (2)
C8A—C7A—C9A—O2A 178.26 (12) C8B—C7B—C9B—O2B −178.33 (12)
O1A—C7A—C9A—N2A −176.39 (10) O1B—C7B—C9B—N2B 170.60 (10)
C8A—C7A—C9A—N2A −0.35 (12) C8B—C7B—C9B—N2B 0.03 (12)
C9A—N2A—C10A—C11A 98.24 (13) C9B—N2B—C10B—C11B −104.92 (13)
N1A—N2A—C10A—C11A −81.44 (12) N1B—N2B—C10B—C11B 79.95 (13)
N2A—C10A—C11A—F2A 177.43 (10) N2B—C10B—C11B—F2B 63.40 (13)
N2A—C10A—C11A—F1A −62.72 (14) N2B—C10B—C11B—F1B −176.55 (10)
N2A—C10A—C11A—F3A 58.09 (14) N2B—C10B—C11B—F3B −57.56 (14)
N1A—C8A—C12A—C13A 40.62 (16) N1B—C8B—C12B—C13B 111.06 (16)
C7A—C8A—C12A—C13A −141.59 (12) C7B—C8B—C12B—C13B −70.65 (19)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O2A—H1OA···N1Bi 0.82 1.79 2.5996 (15) 169
O2B—H1OB···N1Aii 0.82 1.76 2.5781 (14) 177

Symmetry codes: (i) x−1, y, z; (ii) x+1, −y+3/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5540).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  3. Brogden, R. N. (1986). Pyrazolone Derivatives Drugs, 32, 60–70. [DOI] [PubMed]
  4. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Coersmeier, C., Wittenberg, H. R., Aehringhaus, U., Dreyling, K. W., Peskar, B. M., Brune, K. & Pesker, B. A. (1986). Agents Actions Suppl.19, 137–153. [PubMed]
  6. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  7. Gursoy, A., Demirayak, S., Capan, G., Erol, K. & Vural, K. (2000). Eur. J. Med. Chem.35, 359–364. [DOI] [PubMed]
  8. Kawai, H., Nakai, H., Suga, M., Yuki, S., Watanabe, T. & Saito, K. I. (1997). J. Pharmcol. Exp. Ther.281, 921–927. [PubMed]
  9. Ragavan, R. V., Vijayakumar, V. & Kumari, N. S. (2009). Eur. J. Med. Chem.44, 3852–3857.
  10. Ragavan, R. V., Vijayakumar, V. & Kumari, N. S. (2010). Eur. J. Med. Chem.45, 1173–1180. [DOI] [PubMed]
  11. Shahani, T., Fun, H.-K., Ragavan, R. V., Vijayakumar, V. & Sarveswari, S. (2009). Acta Cryst. E65, o3249–o3250. [DOI] [PMC free article] [PubMed]
  12. Shahani, T., Fun, H.-K., Ragavan, R. V., Vijayakumar, V. & Sarveswari, S. (2010a). Acta Cryst. E66, o142–o143. [DOI] [PMC free article] [PubMed]
  13. Shahani, T., Fun, H.-K., Ragavan, R. V., Vijayakumar, V. & Sarveswari, S. (2010b). Acta Cryst. E66, o1357–o1358. [DOI] [PMC free article] [PubMed]
  14. Shahani, T., Fun, H.-K., Ragavan, R. V., Vijayakumar, V. & Sarveswari, S. (2010c). Acta Cryst. E66, o1482–o1483. [DOI] [PMC free article] [PubMed]
  15. Shahani, T., Fun, H.-K., Ragavan, R. V., Vijayakumar, V. & Sarveswari, S. (2010d). Acta Cryst. E66, o1697–o1698. [DOI] [PMC free article] [PubMed]
  16. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  17. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  18. Watanabe, T., Yuki, S., Egawa, M. & Nishi, H. (1984). J. Pharmacol. Exp. Ther.268, 1597–1604. [PubMed]
  19. Wu, T. W., Zeng, L. H., Wu, J. & Fung, K. P. (2002). Life Sci.71, 2249–2255. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810025948/hb5540sup1.cif

e-66-o1937-sup1.cif (26.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810025948/hb5540Isup2.hkl

e-66-o1937-Isup2.hkl (472.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES