Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Jul 31;66(Pt 8):o2162–o2163. doi: 10.1107/S160053681002982X

3-Phenyl-4-{3-[(p-tol­yloxy)meth­yl]-7H-1,2,4-triazolo[3,4-b][1,3,4]thia­diazin-6-yl}sydnone

Jia Hao Goh a,, Hoong-Kun Fun a,*,§, Nithinchandra b, B Kalluraya b
PMCID: PMC3007576  PMID: 21588446

Abstract

In the title compound (systematic name: 3-phenyl-4-{3-[(p-tol­yloxy)meth­yl]-7H-1,2,4-triazolo[3,4-b][1,3,4]thia­diazin-6-yl}-1,2,3-oxadiazol-3-ium-5-olate), C20H16N6O3S, an intra­molecular C—H⋯O hydrogen bond generates an S(6) ring motif. The 3,6-dihydro-1,3,4-thia­diazine ring adopts a twist-boat conformation. The 1,2,3-oxadiazole and 1,2,4-triazole rings are inclined to each other at an inter­planar angle of 44.13 (13)°. The phenyl ring makes an inter­planar angle of 67.40 (13)° with the attached 1,2,3-oxadiazole ring. In the crystal structure, adjacent mol­ecules are inter­connected into two-mol­ecule-thick arrays parallel to (100) via C—H⋯O and C—H⋯N hydrogen bonds. A short S⋯O contact [2.9512 (18) Å] is observed.

Related literature

For general background to, and applications of materials related to the title compound, see: Hedge et al. (2008), Kalluraya & Rahiman (1997); Kalluraya et al. (2003). For graph-set descriptions of hydrogen-bond ring motifs, see: Bernstein et al. (1995). For related structures, see: Goh et al. (2010a,b,c ). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). For puckering parameters, see: Cremer & Pople (1975).graphic file with name e-66-o2162-scheme1.jpg

Experimental

Crystal data

  • C20H16N6O3S

  • M r = 420.45

  • Monoclinic, Inline graphic

  • a = 42.0781 (12) Å

  • b = 8.2304 (2) Å

  • c = 11.1488 (3) Å

  • β = 101.630 (2)°

  • V = 3781.78 (17) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 100 K

  • 0.29 × 0.13 × 0.05 mm

Data collection

  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.942, T max = 0.989

  • 11383 measured reflections

  • 3486 independent reflections

  • 2496 reflections with I > 2σ(I)

  • R int = 0.059

Refinement

  • R[F 2 > 2σ(F 2)] = 0.051

  • wR(F 2) = 0.101

  • S = 1.03

  • 3486 reflections

  • 272 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.40 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053681002982X/hb5565sup1.cif

e-66-o2162-sup1.cif (22.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053681002982X/hb5565Isup2.hkl

e-66-o2162-Isup2.hkl (171.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10A⋯O3 0.97 2.27 3.041 (3) 135
C10—H10A⋯O3i 0.97 2.54 3.162 (3) 122
C10—H10B⋯O3ii 0.97 2.46 3.292 (3) 144
C19—H19A⋯N5iii 0.93 2.57 3.386 (3) 147

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors thank Universiti Sains Malaysia (USM) for the Research University Golden Goose grant (No. 1001/PFIZIK/811012). JHG also thanks USM for the award of a USM fellowship.

supplementary crystallographic information

Comment

Triazolothiadiazines have shown to possess significant biological and pharmacological activities such as anthelmintic, analgesic and anti-inflammatory (Kalluraya & Rahiman, 1997) properties. Encouraged by these literatures, we have synthesized triazolothiadiazines containing the sydnone moiety. The introduction of sydnone moiety into an heterocyclic compound will increase the biological and pharmacological activities of heterocyclic system (Hedge et al., 2008). Triazolothiadiazines were synthesized by the condensation of 4-bromoacetyl-3-arylsydnones with 3-aryloxymethyl-4-amino-5-mercapto-1,2,4-triazoles. 4-Bromoacetyl-3-arylsydnones were in turn obtained by the photochemical bromination of 4-acetyl-3-arylsydnones (Kalluraya et al., 2003).

In the title compound, (I), an intramolecular C10—H10A···O3 hydrogen bond (Table 1) generates a six-membered ring, producing an S(6) hydrogen bond ring motif (Fig. 1, Bernstein et al., 1995). The 3,6-dihydro-1,3,4-thiadiazine ring (C9-C11/N3/N4/S1) adopts twist-boat conformation, with puckering parameters of Q = 0.630 (2) Å, θ = 67.03 (18)° and φ = 323.0 (2)° (Cremer & Pople, 1975). The essentially planar 1,2,3-oxadiazole (C12/C13/O2/N5/N6) and 1,2,4-triazole (C8/N1/N2/C9/N3) rings are inclined to each other at interplanar angle of 44.13 (13)°. The C14-C19 phenyl ring is inclined at interplanar angle of 67.40 (13)° with respect to the attached 1,2,3-oxadiazole ring. The geometric parameters are comparable to those reported in closely related structures (Goh et al., 2010a,b,c).

In the crystal structure, intermolecular C10—H10A···O3, C10—H10B···O3 and C19—H19A···N5 hydrogen bonds (Table 1) link adjacent molecules into two-molecule-thick arrays parallel to (100) plane (Fig. 2). Interestingly, further stabilization of the crystal structure is provided by intermolecular short S1···O3 interaction [2.9512 (18) Å; symmetry code: -x+1/2, -y+1/2, -z] which is significantly shorter than the sum of Van der Waals radii of the relevant atoms.

Experimental

A solution of triazole (0.01 mol) and 4-bromoacetyl-3-phenylsydnone (0.01 mol) in absolute ethanol (20 ml) was heated under reflux for 10–12 h. The solution was concentrated, cooled to room temperature and neutrallized with 10 % sodium bicarbonate solution. The separated solid was filtered, washed with water, dried and recrystallized from ethanol. Colourless blocks of (I) were obtained from a 1:2 mixture of DMF and ethanol by slow evaporation.

Refinement

All hydrogen atoms were placed in their calculated positions, with C—H = 0.93–0.97 Å, and refined using a riding model, with Uiso = 1.2 or 1.5 Ueq(C). The rotating group model was used for the methyl group.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), showing 50% probability displacement ellipsoids for non-H atoms. An intramolecular hydrogen bond is shown as dashed line.

Fig. 2.

Fig. 2.

The crystal structure of (I), viewed along the b axis, showing two-molecule-thick arrays parallel to the (100) plane. Hydrogen atoms not involved in intermolecular interactions (dashed lines) have been omitted for clarity.

Crystal data

C20H16N6O3S F(000) = 1744
Mr = 420.45 Dx = 1.477 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 2771 reflections
a = 42.0781 (12) Å θ = 2.5–30.0°
b = 8.2304 (2) Å µ = 0.21 mm1
c = 11.1488 (3) Å T = 100 K
β = 101.630 (2)° Block, colourless
V = 3781.78 (17) Å3 0.29 × 0.13 × 0.05 mm
Z = 8

Data collection

Bruker SMART APEXII CCD diffractometer 3486 independent reflections
Radiation source: fine-focus sealed tube 2496 reflections with I > 2σ(I)
graphite Rint = 0.059
φ and ω scans θmax = 25.5°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −50→48
Tmin = 0.942, Tmax = 0.989 k = −9→9
11383 measured reflections l = −13→13

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0388P)2 + 2.5537P] where P = (Fo2 + 2Fc2)/3
3486 reflections (Δ/σ)max < 0.001
272 parameters Δρmax = 0.38 e Å3
0 restraints Δρmin = −0.40 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.220066 (15) 0.57970 (8) 0.11452 (6) 0.01457 (18)
O1 0.10960 (4) 0.4996 (2) 0.35734 (14) 0.0177 (4)
O2 0.19581 (4) −0.0842 (2) −0.00307 (14) 0.0172 (4)
O3 0.24309 (4) 0.0525 (2) 0.06238 (15) 0.0184 (4)
N1 0.16869 (5) 0.7388 (3) 0.34427 (18) 0.0153 (5)
N2 0.19003 (5) 0.7681 (3) 0.26397 (18) 0.0152 (5)
N3 0.17980 (5) 0.5056 (3) 0.26683 (17) 0.0129 (5)
N4 0.17428 (5) 0.3462 (3) 0.22624 (17) 0.0129 (5)
N5 0.16398 (5) −0.0737 (3) 0.00868 (18) 0.0167 (5)
N6 0.16286 (5) 0.0537 (3) 0.07725 (18) 0.0132 (5)
C1 0.05562 (6) 0.4348 (4) 0.3630 (2) 0.0206 (7)
H1A 0.0495 0.4827 0.2862 0.025*
C2 0.03244 (6) 0.3680 (4) 0.4195 (2) 0.0245 (7)
H2A 0.0108 0.3711 0.3796 0.029*
C3 0.04051 (6) 0.2958 (4) 0.5348 (2) 0.0204 (7)
C4 0.07298 (6) 0.2943 (3) 0.5906 (2) 0.0211 (7)
H4A 0.0790 0.2479 0.6679 0.025*
C5 0.09682 (6) 0.3592 (3) 0.5357 (2) 0.0187 (6)
H5A 0.1185 0.3552 0.5753 0.022*
C6 0.08808 (6) 0.4304 (3) 0.4209 (2) 0.0159 (6)
C7 0.14297 (6) 0.4960 (4) 0.4192 (2) 0.0163 (6)
H7A 0.1503 0.3844 0.4318 0.020*
H7B 0.1454 0.5481 0.4986 0.020*
C8 0.16269 (6) 0.5830 (3) 0.3431 (2) 0.0135 (6)
C9 0.19615 (6) 0.6265 (3) 0.2203 (2) 0.0129 (6)
C10 0.22834 (6) 0.3743 (3) 0.1735 (2) 0.0139 (6)
H10A 0.2405 0.3153 0.1223 0.017*
H10B 0.2414 0.3788 0.2558 0.017*
C11 0.19694 (6) 0.2875 (3) 0.1751 (2) 0.0111 (6)
C12 0.19158 (6) 0.1326 (3) 0.1140 (2) 0.0117 (6)
C13 0.21431 (6) 0.0430 (3) 0.0616 (2) 0.0138 (6)
C14 0.13078 (6) 0.0942 (3) 0.0973 (2) 0.0145 (6)
C15 0.10783 (6) 0.1424 (3) −0.0032 (2) 0.0178 (6)
H15A 0.1131 0.1511 −0.0802 0.021*
C16 0.07679 (6) 0.1774 (4) 0.0136 (2) 0.0230 (7)
H16A 0.0608 0.2094 −0.0526 0.028*
C17 0.06952 (6) 0.1648 (3) 0.1288 (2) 0.0225 (7)
H17A 0.0487 0.1896 0.1399 0.027*
C18 0.09303 (6) 0.1153 (3) 0.2280 (2) 0.0210 (7)
H18A 0.0879 0.1066 0.3050 0.025*
C19 0.12400 (6) 0.0791 (3) 0.2130 (2) 0.0173 (6)
H19A 0.1399 0.0453 0.2789 0.021*
C20 0.01502 (7) 0.2227 (4) 0.5972 (3) 0.0314 (8)
H20D 0.0252 0.1820 0.6764 0.047*
H20A 0.0043 0.1352 0.5483 0.047*
H20B −0.0006 0.3044 0.6066 0.047*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0188 (3) 0.0096 (4) 0.0166 (3) 0.0008 (3) 0.0066 (2) −0.0007 (3)
O1 0.0168 (9) 0.0222 (12) 0.0141 (9) −0.0022 (9) 0.0028 (7) 0.0017 (9)
O2 0.0226 (10) 0.0125 (11) 0.0172 (9) 0.0016 (9) 0.0059 (7) −0.0051 (9)
O3 0.0185 (10) 0.0192 (12) 0.0184 (9) 0.0015 (9) 0.0057 (7) −0.0013 (9)
N1 0.0197 (12) 0.0147 (14) 0.0119 (11) 0.0013 (11) 0.0039 (9) −0.0007 (11)
N2 0.0194 (12) 0.0124 (14) 0.0144 (11) 0.0007 (10) 0.0050 (9) −0.0002 (11)
N3 0.0160 (11) 0.0083 (13) 0.0140 (11) 0.0006 (10) 0.0026 (9) −0.0036 (11)
N4 0.0200 (11) 0.0073 (13) 0.0116 (10) 0.0006 (10) 0.0033 (9) 0.0009 (11)
N5 0.0208 (12) 0.0139 (14) 0.0156 (11) 0.0019 (11) 0.0044 (9) −0.0011 (12)
N6 0.0202 (12) 0.0088 (13) 0.0101 (10) 0.0031 (10) 0.0021 (8) 0.0001 (11)
C1 0.0234 (14) 0.0203 (18) 0.0171 (14) −0.0002 (14) 0.0020 (11) −0.0008 (14)
C2 0.0171 (14) 0.0258 (19) 0.0298 (16) −0.0009 (14) 0.0030 (11) −0.0038 (15)
C3 0.0232 (15) 0.0153 (17) 0.0245 (15) −0.0003 (13) 0.0093 (12) −0.0029 (14)
C4 0.0292 (16) 0.0193 (18) 0.0164 (14) 0.0005 (14) 0.0086 (12) 0.0016 (14)
C5 0.0179 (14) 0.0181 (17) 0.0202 (14) 0.0017 (13) 0.0036 (11) 0.0007 (14)
C6 0.0206 (14) 0.0108 (16) 0.0179 (13) 0.0008 (13) 0.0074 (10) −0.0028 (13)
C7 0.0163 (13) 0.0182 (17) 0.0141 (13) 0.0026 (13) 0.0024 (10) 0.0003 (13)
C8 0.0142 (13) 0.0140 (16) 0.0119 (12) 0.0023 (13) 0.0015 (10) −0.0012 (14)
C9 0.0162 (13) 0.0105 (16) 0.0112 (13) −0.0009 (12) 0.0004 (10) 0.0014 (13)
C10 0.0171 (13) 0.0079 (16) 0.0168 (13) 0.0030 (12) 0.0035 (10) 0.0011 (13)
C11 0.0171 (13) 0.0072 (15) 0.0078 (12) 0.0042 (12) −0.0003 (10) 0.0019 (12)
C12 0.0139 (13) 0.0099 (15) 0.0110 (12) 0.0008 (12) 0.0018 (10) 0.0013 (12)
C13 0.0263 (15) 0.0057 (16) 0.0086 (12) −0.0009 (13) 0.0016 (10) 0.0015 (12)
C14 0.0152 (13) 0.0099 (16) 0.0181 (13) −0.0043 (12) 0.0025 (10) −0.0021 (13)
C15 0.0222 (14) 0.0157 (17) 0.0149 (13) −0.0029 (13) 0.0026 (11) 0.0012 (13)
C16 0.0210 (15) 0.0209 (19) 0.0256 (15) −0.0005 (14) 0.0009 (11) 0.0035 (15)
C17 0.0207 (14) 0.0170 (18) 0.0316 (16) 0.0002 (13) 0.0094 (12) −0.0016 (15)
C18 0.0284 (15) 0.0171 (18) 0.0198 (14) −0.0048 (14) 0.0105 (12) −0.0033 (13)
C19 0.0253 (14) 0.0123 (16) 0.0131 (13) −0.0032 (13) 0.0010 (10) 0.0009 (13)
C20 0.0276 (16) 0.031 (2) 0.0377 (18) −0.0037 (15) 0.0126 (13) −0.0001 (17)

Geometric parameters (Å, °)

S1—C9 1.741 (2) C4—H4A 0.9300
S1—C10 1.822 (3) C5—C6 1.387 (3)
O1—C6 1.381 (3) C5—H5A 0.9300
O1—C7 1.435 (3) C7—C8 1.485 (3)
O2—N5 1.375 (2) C7—H7A 0.9700
O2—C13 1.413 (3) C7—H7B 0.9700
O3—C13 1.212 (3) C10—C11 1.505 (3)
N1—C8 1.306 (3) C10—H10A 0.9700
N1—N2 1.411 (3) C10—H10B 0.9700
N2—C9 1.309 (3) C11—C12 1.442 (4)
N3—C9 1.369 (3) C12—C13 1.423 (3)
N3—C8 1.376 (3) C14—C19 1.382 (3)
N3—N4 1.392 (3) C14—C15 1.382 (3)
N4—C11 1.299 (3) C15—C16 1.387 (3)
N5—N6 1.304 (3) C15—H15A 0.9300
N6—C12 1.360 (3) C16—C17 1.382 (4)
N6—C14 1.451 (3) C16—H16A 0.9300
C1—C2 1.378 (4) C17—C18 1.388 (4)
C1—C6 1.389 (3) C17—H17A 0.9300
C1—H1A 0.9300 C18—C19 1.380 (3)
C2—C3 1.395 (4) C18—H18A 0.9300
C2—H2A 0.9300 C19—H19A 0.9300
C3—C4 1.382 (3) C20—H20D 0.9600
C3—C20 1.516 (4) C20—H20A 0.9600
C4—C5 1.384 (3) C20—H20B 0.9600
C9—S1—C10 93.16 (12) N2—C9—S1 129.3 (2)
C6—O1—C7 115.08 (18) N3—C9—S1 119.9 (2)
N5—O2—C13 110.62 (18) C11—C10—S1 109.88 (17)
C8—N1—N2 107.9 (2) C11—C10—H10A 109.7
C9—N2—N1 106.4 (2) S1—C10—H10A 109.7
C9—N3—C8 105.3 (2) C11—C10—H10B 109.7
C9—N3—N4 128.70 (19) S1—C10—H10B 109.7
C8—N3—N4 124.3 (2) H10A—C10—H10B 108.2
C11—N4—N3 113.8 (2) N4—C11—C12 118.5 (2)
N6—N5—O2 104.90 (18) N4—C11—C10 123.5 (2)
N5—N6—C12 115.2 (2) C12—C11—C10 117.9 (2)
N5—N6—C14 114.8 (2) N6—C12—C13 105.0 (2)
C12—N6—C14 129.9 (2) N6—C12—C11 127.6 (2)
C2—C1—C6 119.8 (2) C13—C12—C11 126.7 (2)
C2—C1—H1A 120.1 O3—C13—O2 119.9 (2)
C6—C1—H1A 120.1 O3—C13—C12 135.8 (2)
C1—C2—C3 121.9 (2) O2—C13—C12 104.3 (2)
C1—C2—H2A 119.1 C19—C14—C15 122.7 (2)
C3—C2—H2A 119.1 C19—C14—N6 119.8 (2)
C4—C3—C2 117.0 (2) C15—C14—N6 117.5 (2)
C4—C3—C20 121.1 (2) C14—C15—C16 118.2 (2)
C2—C3—C20 121.9 (2) C14—C15—H15A 120.9
C3—C4—C5 122.4 (3) C16—C15—H15A 120.9
C3—C4—H4A 118.8 C17—C16—C15 120.1 (2)
C5—C4—H4A 118.8 C17—C16—H16A 120.0
C4—C5—C6 119.3 (2) C15—C16—H16A 120.0
C4—C5—H5A 120.3 C16—C17—C18 120.4 (2)
C6—C5—H5A 120.3 C16—C17—H17A 119.8
O1—C6—C5 124.7 (2) C18—C17—H17A 119.8
O1—C6—C1 115.8 (2) C19—C18—C17 120.4 (2)
C5—C6—C1 119.5 (2) C19—C18—H18A 119.8
O1—C7—C8 108.69 (19) C17—C18—H18A 119.8
O1—C7—H7A 110.0 C18—C19—C14 118.1 (2)
C8—C7—H7A 110.0 C18—C19—H19A 120.9
O1—C7—H7B 110.0 C14—C19—H19A 120.9
C8—C7—H7B 110.0 C3—C20—H20D 109.5
H7A—C7—H7B 108.3 C3—C20—H20A 109.5
N1—C8—N3 109.7 (2) H20D—C20—H20A 109.5
N1—C8—C7 126.6 (2) C3—C20—H20B 109.5
N3—C8—C7 123.5 (2) H20D—C20—H20B 109.5
N2—C9—N3 110.8 (2) H20A—C20—H20B 109.5
C8—N1—N2—C9 −1.1 (3) C10—S1—C9—N2 154.0 (2)
C9—N3—N4—C11 30.0 (3) C10—S1—C9—N3 −28.0 (2)
C8—N3—N4—C11 −167.4 (2) C9—S1—C10—C11 54.13 (18)
C13—O2—N5—N6 0.0 (2) N3—N4—C11—C12 −171.17 (19)
O2—N5—N6—C12 0.0 (3) N3—N4—C11—C10 7.4 (3)
O2—N5—N6—C14 176.97 (18) S1—C10—C11—N4 −52.4 (3)
C6—C1—C2—C3 0.4 (4) S1—C10—C11—C12 126.2 (2)
C1—C2—C3—C4 0.1 (4) N5—N6—C12—C13 0.0 (3)
C1—C2—C3—C20 179.9 (3) C14—N6—C12—C13 −176.4 (2)
C2—C3—C4—C5 −0.6 (4) N5—N6—C12—C11 170.7 (2)
C20—C3—C4—C5 179.6 (3) C14—N6—C12—C11 −5.7 (4)
C3—C4—C5—C6 0.7 (4) N4—C11—C12—N6 16.6 (4)
C7—O1—C6—C5 −0.8 (4) C10—C11—C12—N6 −162.0 (2)
C7—O1—C6—C1 179.2 (2) N4—C11—C12—C13 −174.6 (2)
C4—C5—C6—O1 179.7 (3) C10—C11—C12—C13 6.8 (4)
C4—C5—C6—C1 −0.2 (4) N5—O2—C13—O3 179.4 (2)
C2—C1—C6—O1 179.8 (2) N5—O2—C13—C12 0.0 (2)
C2—C1—C6—C5 −0.3 (4) N6—C12—C13—O3 −179.3 (3)
C6—O1—C7—C8 −176.7 (2) C11—C12—C13—O3 9.9 (5)
N2—N1—C8—N3 1.3 (3) N6—C12—C13—O2 0.0 (2)
N2—N1—C8—C7 176.2 (2) C11—C12—C13—O2 −170.8 (2)
C9—N3—C8—N1 −1.1 (3) N5—N6—C14—C19 112.8 (3)
N4—N3—C8—N1 −167.0 (2) C12—N6—C14—C19 −70.9 (4)
C9—N3—C8—C7 −176.1 (2) N5—N6—C14—C15 −65.3 (3)
N4—N3—C8—C7 18.0 (3) C12—N6—C14—C15 111.1 (3)
O1—C7—C8—N1 87.1 (3) C19—C14—C15—C16 0.3 (4)
O1—C7—C8—N3 −98.7 (3) N6—C14—C15—C16 178.3 (2)
N1—N2—C9—N3 0.5 (3) C14—C15—C16—C17 0.4 (4)
N1—N2—C9—S1 178.59 (18) C15—C16—C17—C18 −0.7 (4)
C8—N3—C9—N2 0.3 (3) C16—C17—C18—C19 0.4 (4)
N4—N3—C9—N2 165.4 (2) C17—C18—C19—C14 0.3 (4)
C8—N3—C9—S1 −178.00 (17) C15—C14—C19—C18 −0.7 (4)
N4—N3—C9—S1 −12.9 (3) N6—C14—C19—C18 −178.6 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C10—H10A···O3 0.97 2.27 3.041 (3) 135
C10—H10A···O3i 0.97 2.54 3.162 (3) 122
C10—H10B···O3ii 0.97 2.46 3.292 (3) 144
C19—H19A···N5iii 0.93 2.57 3.386 (3) 147

Symmetry codes: (i) −x+1/2, −y+1/2, −z; (ii) −x+1/2, y+1/2, −z+1/2; (iii) x, −y, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5565).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  2. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  4. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  5. Goh, J. H., Fun, H.-K., Nithinchandra, & Kalluraya, B. (2010a). Acta Cryst. E66, o1225–o1226. [DOI] [PMC free article] [PubMed]
  6. Goh, J. H., Fun, H.-K., Nithinchandra, & Kalluraya, B. (2010b). Acta Cryst. E66, o1303. [DOI] [PMC free article] [PubMed]
  7. Goh, J. H., Fun, H.-K., Nithinchandra, & Kalluraya, B. (2010c). Acta Cryst. E66, o1394–o1395. [DOI] [PMC free article] [PubMed]
  8. Hedge, J. C., Girisha, K. S., Adhikari, A. & Kalluraya, B. (2008). Eur. J. Med. Chem., 43, 2831–2834. [DOI] [PubMed]
  9. Kalluraya, B. & Rahiman, A. M. (1997). Pol. J. Chem.71, 1049–1052.
  10. Kalluraya, B., Vishwanatha, P., Hedge, J. C., Priya, V. F. & Rai, G. (2003). Indian J. Heterocycl. Chem.12, 355–356.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053681002982X/hb5565sup1.cif

e-66-o2162-sup1.cif (22.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053681002982X/hb5565Isup2.hkl

e-66-o2162-Isup2.hkl (171.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES