Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Jul 17;66(Pt 8):m964. doi: 10.1107/S1600536810027765

Bis(μ-quinolin-8-olato)-κ3 N,O:O3 O:N,O-bis­[chloridomethyl­phenyl­tin(IV)]

Maryam Vafaee a, Mostafa M Amini a, Seik Weng Ng b,*
PMCID: PMC3007587  PMID: 21588189

Abstract

The SnIV atom in the centrosymmetric dinculear title compound, [Sn2(CH3)2(C6H5)2(C9H6NO)2Cl2], shows a trans-C2SnNO2Cl distorted octa­hedral coordination [C–Sn–C = 157.83 (8)°]. The quinolin-8-olate anion chelates to the Sn atom; its O atom also binds to the inversion-related Sn atom, forming the dinuclear compound. In the crystal structure, weak inter­molecular C—H⋯Cl hydrogen bonding links the mol­ecules, forming supra­molecular chains running along [100].

Related literature

For related structures, see: Ng et al. (1989); Shi & Hu (1987).graphic file with name e-66-0m964-scheme1.jpg

Experimental

Crystal data

  • [Sn2(CH3)2(C6H5)2(C9H6NO)2Cl2]

  • M r = 780.84

  • Monoclinic, Inline graphic

  • a = 7.9967 (5) Å

  • b = 17.8081 (10) Å

  • c = 10.1623 (6) Å

  • β = 95.232 (1)°

  • V = 1441.14 (15) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.95 mm−1

  • T = 100 K

  • 0.30 × 0.20 × 0.10 mm

Data collection

  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.592, T max = 0.829

  • 9127 measured reflections

  • 3245 independent reflections

  • 3088 reflections with I > 2σ(I)

  • R int = 0.017

Refinement

  • R[F 2 > 2σ(F 2)] = 0.018

  • wR(F 2) = 0.047

  • S = 1.09

  • 3245 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.52 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810027765/xu2799sup1.cif

e-66-0m964-sup1.cif (18.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810027765/xu2799Isup2.hkl

e-66-0m964-Isup2.hkl (159.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯Cl1i 0.95 2.76 3.710 (2) 174

Symmetry code: (i) Inline graphic.

Acknowledgments

We thank Shahid Beheshti University and the University of Malaya for supporting this study.

supplementary crystallographic information

Comment

The anion of 8-hydroxyquinoline is known to chelate to tin in organotin(IV) quinolinolates; however, for the chloroorganotin quinolinates, the chlorine atom sometimes participates in weak intermolecular bridging. In chloridoodiethyl(quinolin-8-olato)tin, the carbon–tin–carbon angle is opened to 140.9 (3) ° owing to a tin···chlorine contact of 3.690 (2) Å (Shi & Hu, 1987). With the bis(2-carbomethoxyethyl) analog, the tin atom is six-coordinate owing to an intramolecular bond with the oxygen atom of the organo radical (Ng et al., 1989). The chloridomethylphenyltin analog exists as a centrosymmetric dimer in which the quinolin-8-olate anion N,O-chelates to the tin atom (Fig. 1). However, its oxygen atom also binds to the inversion-related tin atom so that bridging by the chlorine atom is precluded for the trans-C2SnNO2Cl octahedral dinuclear molecule. Intermolecular weak C—H···Cl hydrogen bonding links the molecules to form the one dimensional supra-molecular chain in the crystal structure (Table 1).

Experimental

Methylphenyltin dichloride (0.35 g, 1 mmol) and 8-hydroxyquinoline (0.15 g, 1 mmol) were dissolved in methanol (10 ml) to give a faint yellow solution. The solution was set aside for the growth of crystals over a few days. Slow evaporation of methanol furnished crystals.

Refinement

Hydrogen atoms were placed in calculated positions (C–H 0.95–0.98 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2–1.5Ueq(C).

The final difference Fourier map had a peak in the vicinity of Sn1.

Figures

Fig. 1.

Fig. 1.

Thermal ellipsoid plot (Barbour, 2001) of [SnCl(CH3)(C6H5)(C9H6NO)]2 at the 70% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius.

Crystal data

[Sn2(CH3)2(C6H5)2(C9H6NO)2Cl2] F(000) = 768
Mr = 780.84 Dx = 1.799 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 6739 reflections
a = 7.9967 (5) Å θ = 2.3–28.3°
b = 17.8081 (10) Å µ = 1.95 mm1
c = 10.1623 (6) Å T = 100 K
β = 95.232 (1)° Block, yellow
V = 1441.14 (15) Å3 0.30 × 0.20 × 0.10 mm
Z = 2

Data collection

Bruker SMART APEX diffractometer 3245 independent reflections
Radiation source: fine-focus sealed tube 3088 reflections with I > 2σ(I)
graphite Rint = 0.017
ω scans θmax = 27.5°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −10→6
Tmin = 0.592, Tmax = 0.829 k = −23→23
9127 measured reflections l = −12→12

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.018 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.047 H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.021P)2 + 1.1915P] where P = (Fo2 + 2Fc2)/3
3245 reflections (Δ/σ)max = 0.001
182 parameters Δρmax = 0.43 e Å3
0 restraints Δρmin = −0.52 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Sn1 0.569331 (15) 0.585876 (6) 0.601796 (12) 0.01090 (5)
Cl1 0.70000 (6) 0.71504 (2) 0.65698 (5) 0.01757 (10)
O1 0.42527 (16) 0.48265 (7) 0.60854 (13) 0.0135 (3)
N1 0.4714 (2) 0.58459 (8) 0.80183 (16) 0.0121 (3)
C1 0.8095 (2) 0.53633 (10) 0.6389 (2) 0.0167 (4)
H1A 0.7981 0.4816 0.6403 0.025*
H1B 0.8618 0.5536 0.7245 0.025*
H1C 0.8800 0.5508 0.5691 0.025*
C2 0.3678 (2) 0.64342 (9) 0.49452 (19) 0.0130 (4)
C3 0.3885 (3) 0.67691 (11) 0.3733 (2) 0.0169 (4)
H3 0.4928 0.6723 0.3361 0.020*
C4 0.2584 (3) 0.71696 (11) 0.3060 (2) 0.0195 (4)
H4 0.2734 0.7388 0.2226 0.023*
C5 0.1060 (3) 0.72510 (11) 0.3607 (2) 0.0207 (4)
H5 0.0176 0.7533 0.3156 0.025*
C6 0.0837 (3) 0.69195 (11) 0.4814 (2) 0.0206 (4)
H6 −0.0198 0.6975 0.5194 0.025*
C7 0.2136 (2) 0.65061 (10) 0.5464 (2) 0.0164 (4)
H7 0.1967 0.6268 0.6279 0.020*
C8 0.3633 (2) 0.52614 (10) 0.81865 (18) 0.0119 (3)
C9 0.3396 (2) 0.47262 (10) 0.71380 (18) 0.0124 (3)
C10 0.2317 (2) 0.41329 (10) 0.7296 (2) 0.0147 (4)
H10 0.2124 0.3772 0.6611 0.018*
C11 0.1502 (2) 0.40557 (10) 0.8459 (2) 0.0173 (4)
H11 0.0772 0.3641 0.8544 0.021*
C12 0.1735 (2) 0.45627 (10) 0.9470 (2) 0.0162 (4)
H12 0.1177 0.4497 1.0248 0.019*
C13 0.2812 (2) 0.51873 (10) 0.93531 (19) 0.0133 (4)
C14 0.3148 (3) 0.57403 (11) 1.0345 (2) 0.0160 (4)
H14 0.2616 0.5713 1.1142 0.019*
C15 0.4242 (2) 0.63159 (10) 1.0154 (2) 0.0165 (4)
H15 0.4471 0.6688 1.0816 0.020*
C16 0.5016 (2) 0.63503 (10) 0.89730 (19) 0.0146 (4)
H16 0.5781 0.6747 0.8851 0.018*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Sn1 0.01182 (7) 0.01028 (7) 0.01071 (8) 0.00014 (4) 0.00166 (5) 0.00028 (4)
Cl1 0.0161 (2) 0.01251 (19) 0.0241 (3) −0.00307 (15) 0.00144 (18) −0.00177 (16)
O1 0.0167 (6) 0.0120 (6) 0.0123 (7) −0.0016 (5) 0.0041 (5) −0.0008 (5)
N1 0.0147 (8) 0.0107 (7) 0.0110 (8) 0.0009 (5) 0.0018 (6) 0.0001 (5)
C1 0.0155 (9) 0.0161 (8) 0.0185 (10) 0.0022 (7) 0.0006 (7) −0.0006 (7)
C2 0.0149 (9) 0.0093 (7) 0.0144 (9) −0.0004 (6) −0.0006 (7) −0.0027 (6)
C3 0.0181 (9) 0.0157 (8) 0.0170 (10) 0.0016 (7) 0.0027 (8) −0.0005 (7)
C4 0.0269 (11) 0.0179 (9) 0.0133 (10) 0.0027 (8) −0.0012 (8) 0.0020 (7)
C5 0.0206 (10) 0.0178 (9) 0.0221 (11) 0.0035 (7) −0.0064 (8) −0.0015 (8)
C6 0.0146 (9) 0.0228 (10) 0.0242 (11) 0.0002 (7) 0.0009 (8) −0.0043 (8)
C7 0.0179 (9) 0.0182 (9) 0.0131 (10) −0.0013 (7) 0.0014 (7) −0.0010 (7)
C8 0.0128 (8) 0.0120 (8) 0.0107 (9) 0.0014 (6) 0.0005 (7) 0.0015 (6)
C9 0.0125 (8) 0.0125 (8) 0.0121 (9) 0.0027 (6) 0.0007 (7) 0.0012 (7)
C10 0.0154 (9) 0.0127 (8) 0.0159 (10) −0.0003 (6) 0.0006 (7) −0.0013 (7)
C11 0.0147 (9) 0.0143 (8) 0.0232 (11) −0.0018 (7) 0.0030 (8) 0.0026 (7)
C12 0.0149 (9) 0.0178 (9) 0.0169 (10) 0.0018 (7) 0.0057 (7) 0.0032 (7)
C13 0.0135 (9) 0.0145 (8) 0.0122 (9) 0.0030 (6) 0.0019 (7) 0.0002 (7)
C14 0.0207 (10) 0.0196 (9) 0.0084 (9) 0.0042 (7) 0.0045 (7) −0.0001 (7)
C15 0.0208 (10) 0.0157 (8) 0.0128 (10) 0.0035 (7) −0.0001 (8) −0.0033 (7)
C16 0.0155 (9) 0.0132 (8) 0.0148 (10) 0.0007 (7) −0.0003 (7) −0.0010 (7)

Geometric parameters (Å, °)

Sn1—C1 2.1162 (19) C5—H5 0.9500
Sn1—C2 2.1248 (18) C6—C7 1.390 (3)
Sn1—O1 2.1739 (13) C6—H6 0.9500
Sn1—O1i 2.4651 (13) C7—H7 0.9500
Sn1—N1 2.2442 (16) C8—C13 1.413 (3)
Sn1—Cl1 2.5672 (5) C8—C9 1.429 (2)
O1—C9 1.334 (2) C9—C10 1.383 (3)
O1—Sn1i 2.4651 (13) C10—C11 1.408 (3)
N1—C16 1.328 (2) C10—H10 0.9500
N1—C8 1.373 (2) C11—C12 1.367 (3)
C1—H1A 0.9800 C11—H11 0.9500
C1—H1B 0.9800 C12—C13 1.419 (3)
C1—H1C 0.9800 C12—H12 0.9500
C2—C3 1.392 (3) C13—C14 1.417 (3)
C2—C7 1.391 (3) C14—C15 1.373 (3)
C3—C4 1.388 (3) C14—H14 0.9500
C3—H3 0.9500 C15—C16 1.401 (3)
C4—C5 1.393 (3) C15—H15 0.9500
C4—H4 0.9500 C16—H16 0.9500
C5—C6 1.387 (3)
C1—Sn1—C2 157.83 (8) C6—C5—C4 119.75 (19)
C1—Sn1—O1 96.71 (6) C6—C5—H5 120.1
C2—Sn1—O1 92.56 (6) C4—C5—H5 120.1
C1—Sn1—N1 102.73 (7) C5—C6—C7 119.69 (19)
C2—Sn1—N1 99.13 (7) C5—C6—H6 120.2
O1—Sn1—N1 74.52 (5) C7—C6—H6 120.2
C1—Sn1—O1i 81.99 (6) C2—C7—C6 121.21 (19)
C2—Sn1—O1i 82.31 (6) C2—C7—H7 119.4
O1—Sn1—O1i 70.12 (5) C6—C7—H7 119.4
N1—Sn1—O1i 144.64 (5) N1—C8—C13 121.40 (16)
C1—Sn1—Cl1 89.42 (5) N1—C8—C9 117.06 (16)
C2—Sn1—Cl1 87.39 (5) C13—C8—C9 121.54 (16)
O1—Sn1—Cl1 163.16 (4) O1—C9—C10 124.56 (17)
N1—Sn1—Cl1 88.85 (4) O1—C9—C8 117.74 (16)
O1i—Sn1—Cl1 126.44 (3) C10—C9—C8 117.69 (17)
C9—O1—Sn1 116.80 (11) C9—C10—C11 120.93 (18)
C9—O1—Sn1i 132.84 (11) C9—C10—H10 119.5
Sn1—O1—Sn1i 109.88 (5) C11—C10—H10 119.5
C16—N1—C8 119.75 (17) C12—C11—C10 121.63 (18)
C16—N1—Sn1 126.85 (13) C12—C11—H11 119.2
C8—N1—Sn1 113.33 (12) C10—C11—H11 119.2
Sn1—C1—H1A 109.5 C11—C12—C13 119.79 (18)
Sn1—C1—H1B 109.5 C11—C12—H12 120.1
H1A—C1—H1B 109.5 C13—C12—H12 120.1
Sn1—C1—H1C 109.5 C14—C13—C8 117.37 (17)
H1A—C1—H1C 109.5 C14—C13—C12 124.21 (18)
H1B—C1—H1C 109.5 C8—C13—C12 118.41 (17)
C3—C2—C7 118.50 (18) C15—C14—C13 119.99 (18)
C3—C2—Sn1 121.01 (14) C15—C14—H14 120.0
C7—C2—Sn1 120.46 (14) C13—C14—H14 120.0
C2—C3—C4 120.78 (19) C14—C15—C16 119.41 (18)
C2—C3—H3 119.6 C14—C15—H15 120.3
C4—C3—H3 119.6 C16—C15—H15 120.3
C5—C4—C3 120.03 (19) N1—C16—C15 122.08 (17)
C5—C4—H4 120.0 N1—C16—H16 119.0
C3—C4—H4 120.0 C15—C16—H16 119.0
C1—Sn1—O1—C9 107.94 (13) C3—C4—C5—C6 −1.1 (3)
C2—Sn1—O1—C9 −92.24 (13) C4—C5—C6—C7 −0.2 (3)
N1—Sn1—O1—C9 6.53 (12) C3—C2—C7—C6 −1.8 (3)
O1i—Sn1—O1—C9 −173.12 (15) Sn1—C2—C7—C6 176.04 (14)
Cl1—Sn1—O1—C9 −2.8 (2) C5—C6—C7—C2 1.7 (3)
C1—Sn1—O1—Sn1i −78.95 (7) C16—N1—C8—C13 0.7 (3)
C2—Sn1—O1—Sn1i 80.88 (7) Sn1—N1—C8—C13 −176.16 (13)
N1—Sn1—O1—Sn1i 179.65 (7) C16—N1—C8—C9 −178.36 (16)
O1i—Sn1—O1—Sn1i 0.0 Sn1—N1—C8—C9 4.7 (2)
Cl1—Sn1—O1—Sn1i 170.35 (8) Sn1—O1—C9—C10 174.90 (14)
C1—Sn1—N1—C16 83.99 (16) Sn1i—O1—C9—C10 3.7 (3)
C2—Sn1—N1—C16 −92.33 (16) Sn1—O1—C9—C8 −6.4 (2)
O1—Sn1—N1—C16 177.53 (16) Sn1i—O1—C9—C8 −177.52 (11)
O1i—Sn1—N1—C16 178.10 (13) N1—C8—C9—O1 0.9 (2)
Cl1—Sn1—N1—C16 −5.16 (15) C13—C8—C9—O1 −178.23 (16)
C1—Sn1—N1—C8 −99.37 (13) N1—C8—C9—C10 179.70 (16)
C2—Sn1—N1—C8 84.31 (13) C13—C8—C9—C10 0.6 (3)
O1—Sn1—N1—C8 −5.84 (12) O1—C9—C10—C11 177.91 (17)
O1i—Sn1—N1—C8 −5.27 (17) C8—C9—C10—C11 −0.8 (3)
Cl1—Sn1—N1—C8 171.48 (12) C9—C10—C11—C12 0.3 (3)
C1—Sn1—C2—C3 −8.7 (3) C10—C11—C12—C13 0.4 (3)
O1—Sn1—C2—C3 −123.54 (15) N1—C8—C13—C14 0.0 (3)
N1—Sn1—C2—C3 161.73 (14) C9—C8—C13—C14 179.06 (17)
O1i—Sn1—C2—C3 −53.99 (15) N1—C8—C13—C12 −178.93 (16)
Cl1—Sn1—C2—C3 73.32 (14) C9—C8—C13—C12 0.1 (3)
C1—Sn1—C2—C7 173.51 (16) C11—C12—C13—C14 −179.50 (19)
O1—Sn1—C2—C7 58.69 (15) C11—C12—C13—C8 −0.6 (3)
N1—Sn1—C2—C7 −16.04 (15) C8—C13—C14—C15 −0.4 (3)
O1i—Sn1—C2—C7 128.23 (15) C12—C13—C14—C15 178.46 (18)
Cl1—Sn1—C2—C7 −104.46 (14) C13—C14—C15—C16 0.1 (3)
C7—C2—C3—C4 0.4 (3) C8—N1—C16—C15 −1.1 (3)
Sn1—C2—C3—C4 −177.45 (14) Sn1—N1—C16—C15 175.35 (13)
C2—C3—C4—C5 1.1 (3) C14—C15—C16—N1 0.7 (3)

Symmetry codes: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C6—H6···Cl1ii 0.95 2.76 3.710 (2) 174

Symmetry codes: (ii) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2799).

References

  1. Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  2. Bruker (2009). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Ng, S. W., Chen, W., Charland, J.-P. & Smith, F. E. (1989). J. Organomet. Chem.364, 343–351.
  4. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Shi, D.-H. & Hu, S.-Z. (1987). Chin. J. Struct. Chem.6, 193–197.
  7. Westrip, S. P. (2010). J. Appl. Cryst.43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810027765/xu2799sup1.cif

e-66-0m964-sup1.cif (18.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810027765/xu2799Isup2.hkl

e-66-0m964-Isup2.hkl (159.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES