Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Aug 25;66(Pt 9):m1162. doi: 10.1107/S1600536810033350

Poly[(μ3-4-carb­oxy­pyridine-3-carboxyl­ato-κ3 N:O 3:O 4)(triphenyl­phosphine-κP)silver(I)]

Omid Sadeghi a, Mostafa M Amini a, Seik Weng Ng b,*
PMCID: PMC3007833  PMID: 21588554

Abstract

In the title 1:1 silver(I) 4-carb­oxy­pyridine-3-carboxyl­ate adduct with triphenyl­phosphine, [Ag(C7H4NO4)(C18H15P)]n, the carboxyl­ate anion bridges the phosphine-coordinated Ag atoms through its N and O atoms, generating a coordination polymer forming layers in the bc plane. The Ag atom exists in a distorted tetra­hedral geometry. The H atom of the carboxyl­ate is midway between two O atoms of the two carboxyl groups, thus forming a strong intra­molecular hydrogen bond.

Related literature

For the synthesis of the silver reactant used in the synthesis, see: Hanna & Ng (1999); Ng & Othman (1997). For a related structure, see: Drew et al. (1971).graphic file with name e-66-m1162-scheme1.jpg

Experimental

Crystal data

  • [Ag(C7H4NO4)(C18H15P)]

  • M r = 536.25

  • Monoclinic, Inline graphic

  • a = 14.2472 (7) Å

  • b = 10.2431 (5) Å

  • c = 16.3146 (8) Å

  • β = 115.206 (1)°

  • V = 2154.18 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.04 mm−1

  • T = 100 K

  • 0.35 × 0.30 × 0.15 mm

Data collection

  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.712, T max = 0.859

  • 13432 measured reflections

  • 4942 independent reflections

  • 4587 reflections with I > 2σ(I)

  • R int = 0.019

Refinement

  • R[F 2 > 2σ(F 2)] = 0.020

  • wR(F 2) = 0.055

  • S = 1.05

  • 4942 reflections

  • 293 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.48 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810033350/bt5322sup1.cif

e-66-m1162-sup1.cif (22.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810033350/bt5322Isup2.hkl

e-66-m1162-Isup2.hkl (242.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank Shahid Beheshti University and the University of Malaya for supporting this study.

supplementary crystallographic information

Comment

We have used bis(silver acetate.2triphenylphosphine) monohydrate sesquiethanol (Hanna & Ng, 1999; Ng & Othman, 1997) as a template in the synthesis of triphenylphosphine adducts of other silver carboxylates; the silver carboxylates themselves cannot be synthesized directly by the reaction of a silver salt with the carboxylate anion as the reaction invariably leads to the formation of some insoluble gray material.

The crystal structure of the silver(II) derivative of the monobasic 3-carboxypyridyl-4-carboxylate anion was reported a long time ago (Drew et al., 1971); the silver atom is N,O-chelated by two anions in an approximate square-planar enviroment.

The silver(I) 3-carboxypyridyl-4-carboxylate–triphenylphosphine adduct (Scheme I) exists as a polymeric compound (Fig. 1) in which the anion bridges adjacent silver atoms through one carboxyl group and the pyridyl N atom (Fig. 2). The diffraction measurements are of a sufficiently high quality for the acid H atom to be refined; the refinement places this atom mid-way between the O atoms of the two carboxyl O atoms, at a distance of 1.20 (4) Å. The O···H···O interaction is an intramolecular hydrogen bond. The pyridyl ring and the carboxyl –CO2 unit that is engaged in Ag coordination enclose a dihedral angle of 14.3 (2) ° whereas the free carboxyl group encloses a dihedral angle of 15.2 (3) ° with the pyridyl ring; such minimal twist probably locks the acid H atom in its place.

Experimental

Silver acetate (1 mmol, 0.17 g) and triphenylphosphine (2 mmol, 0.53 g) were heated in ethanol (50 ml) until the reactants dissolved completely. Gray insoluble material was removed by filtration and the solvent removed to yield bis(silver acetate.2triphenylphosphine) monohydrate sesquiethanol (Hanna & Ng, 1999; Ng & Othman, 1997).

The adduct (0.5 mmol, 0.69 g) and 3,4-pyridinedicarboxylic acid (1 mmol, 0.17 g) were placed in a convection tube; the tube was filled with a 1:1 methanol/ethanol mixture and kept at 333 K. Colorless crystals were collected after 3 days (m.p. > 550 K).

Refinement

Hydrogen atoms bonded to C were placed in calculated positions (C–H 0.95 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C). The carboxylic H-atom was freely refined.

Figures

Fig. 1.

Fig. 1.

Anisotropic displacement ellipsoid plot (Barbour, 2001) of a portion of the title polymer; ellipsoids are drawn at the 70% probability level and H atoms are of arbitrary radius. Symmetry transformations are given in Table 1.: i = 1 - x, 1 - y, 1 - z; ii = 3/2 - x, y - 1/2, 3/2 - z.

Crystal data

[Ag(C7H4NO4)(C18H15P)] F(000) = 1080
Mr = 536.25 Dx = 1.653 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 9293 reflections
a = 14.2472 (7) Å θ = 2.4–28.3°
b = 10.2431 (5) Å µ = 1.04 mm1
c = 16.3146 (8) Å T = 100 K
β = 115.206 (1)° Block, colorless
V = 2154.18 (18) Å3 0.35 × 0.30 × 0.15 mm
Z = 4

Data collection

Bruker SMART APEX diffractometer 4942 independent reflections
Radiation source: fine-focus sealed tube 4587 reflections with I > 2σ(I)
graphite Rint = 0.019
ω scans θmax = 27.5°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −18→18
Tmin = 0.712, Tmax = 0.859 k = −10→13
13432 measured reflections l = −21→20

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.020 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.055 H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0292P)2 + 1.0816P] where P = (Fo2 + 2Fc2)/3
4942 reflections (Δ/σ)max = 0.001
293 parameters Δρmax = 0.43 e Å3
0 restraints Δρmin = −0.48 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ag1 0.618798 (9) 0.207715 (12) 0.474714 (8) 0.01345 (5)
P1 0.76750 (3) 0.10818 (4) 0.47440 (3) 0.01115 (8)
O1 0.62846 (9) 0.44669 (12) 0.47885 (7) 0.0165 (2)
O2 0.69543 (9) 0.48204 (12) 0.38079 (8) 0.0166 (2)
O3 0.53857 (9) 0.75596 (13) 0.16600 (8) 0.0193 (2)
O4 0.66107 (9) 0.61847 (12) 0.25149 (8) 0.0178 (2)
H4 0.679 (3) 0.554 (4) 0.318 (2) 0.095 (12)*
N1 0.46880 (10) 0.77905 (13) 0.43864 (10) 0.0148 (3)
C1 0.78294 (12) −0.06194 (15) 0.50936 (10) 0.0127 (3)
C2 0.73968 (12) −0.10399 (16) 0.56721 (11) 0.0146 (3)
H2 0.6994 −0.0453 0.5842 0.018*
C3 0.75513 (13) −0.23085 (17) 0.60006 (11) 0.0160 (3)
H3 0.7260 −0.2587 0.6398 0.019*
C4 0.81319 (13) −0.31702 (16) 0.57480 (11) 0.0158 (3)
H4A 0.8246 −0.4036 0.5979 0.019*
C5 0.85461 (14) −0.27720 (17) 0.51589 (12) 0.0175 (3)
H5 0.8930 −0.3372 0.4977 0.021*
C6 0.84020 (13) −0.14963 (17) 0.48331 (11) 0.0166 (3)
H6 0.8693 −0.1223 0.4434 0.020*
C7 0.77577 (12) 0.10772 (15) 0.36598 (10) 0.0122 (3)
C8 0.69787 (12) 0.04132 (16) 0.29445 (11) 0.0159 (3)
H8 0.6462 −0.0053 0.3047 0.019*
C9 0.69546 (13) 0.04295 (17) 0.20850 (11) 0.0176 (3)
H9 0.6430 −0.0036 0.1604 0.021*
C10 0.76977 (13) 0.11260 (17) 0.19307 (11) 0.0189 (3)
H10 0.7670 0.1157 0.1339 0.023*
C11 0.84788 (14) 0.17757 (18) 0.26345 (12) 0.0211 (4)
H11 0.8992 0.2241 0.2527 0.025*
C12 0.85148 (13) 0.17507 (17) 0.35027 (11) 0.0173 (3)
H12 0.9055 0.2193 0.3986 0.021*
C13 0.88689 (12) 0.18607 (16) 0.55374 (11) 0.0132 (3)
C14 0.89652 (13) 0.32173 (17) 0.54761 (11) 0.0155 (3)
H14 0.8419 0.3704 0.5029 0.019*
C15 0.98636 (13) 0.38491 (17) 0.60728 (11) 0.0185 (3)
H15 0.9934 0.4765 0.6024 0.022*
C16 1.06569 (13) 0.31447 (18) 0.67385 (12) 0.0191 (3)
H16 1.1267 0.3578 0.7145 0.023*
C17 1.05556 (13) 0.18084 (18) 0.68081 (11) 0.0186 (3)
H17 1.1096 0.1328 0.7266 0.022*
C18 0.96635 (12) 0.11650 (17) 0.62095 (11) 0.0158 (3)
H18 0.9598 0.0249 0.6261 0.019*
C19 0.63603 (11) 0.51340 (15) 0.41887 (10) 0.0127 (3)
C20 0.57237 (11) 0.63798 (15) 0.39057 (10) 0.0119 (3)
C21 0.52976 (12) 0.67522 (16) 0.44994 (11) 0.0130 (3)
H21 0.5453 0.6228 0.5022 0.016*
C22 0.44636 (13) 0.85140 (18) 0.36360 (12) 0.0191 (3)
H22 0.4028 0.9256 0.3536 0.023*
C23 0.48410 (13) 0.82197 (17) 0.30104 (12) 0.0177 (3)
H23 0.4657 0.8755 0.2489 0.021*
C24 0.54897 (12) 0.71481 (15) 0.31276 (11) 0.0124 (3)
C25 0.58450 (12) 0.69438 (16) 0.23706 (11) 0.0140 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ag1 0.01300 (7) 0.01372 (7) 0.01545 (7) 0.00322 (4) 0.00782 (5) 0.00133 (4)
P1 0.01137 (17) 0.01234 (19) 0.01010 (18) 0.00181 (14) 0.00492 (15) 0.00062 (14)
O1 0.0218 (6) 0.0127 (6) 0.0151 (6) 0.0016 (4) 0.0081 (5) 0.0017 (4)
O2 0.0175 (5) 0.0186 (6) 0.0147 (5) 0.0052 (5) 0.0077 (5) 0.0007 (5)
O3 0.0168 (6) 0.0290 (7) 0.0106 (5) −0.0030 (5) 0.0043 (5) 0.0032 (5)
O4 0.0212 (6) 0.0192 (6) 0.0168 (6) 0.0025 (5) 0.0118 (5) 0.0012 (5)
N1 0.0136 (6) 0.0163 (7) 0.0156 (7) 0.0025 (5) 0.0074 (5) 0.0031 (5)
C1 0.0123 (7) 0.0135 (7) 0.0110 (7) 0.0007 (6) 0.0037 (6) 0.0004 (6)
C2 0.0143 (7) 0.0170 (8) 0.0134 (7) 0.0018 (6) 0.0067 (6) −0.0013 (6)
C3 0.0154 (7) 0.0197 (8) 0.0124 (7) −0.0016 (6) 0.0056 (6) 0.0011 (6)
C4 0.0160 (7) 0.0136 (8) 0.0139 (7) −0.0004 (6) 0.0026 (6) 0.0007 (6)
C5 0.0184 (8) 0.0162 (8) 0.0188 (8) 0.0035 (6) 0.0088 (7) −0.0010 (6)
C6 0.0182 (8) 0.0166 (8) 0.0175 (8) 0.0024 (6) 0.0101 (7) 0.0019 (6)
C7 0.0133 (7) 0.0138 (8) 0.0103 (7) 0.0041 (6) 0.0057 (6) 0.0021 (6)
C8 0.0131 (7) 0.0181 (8) 0.0155 (8) 0.0009 (6) 0.0053 (6) 0.0005 (6)
C9 0.0172 (7) 0.0191 (8) 0.0123 (7) 0.0038 (6) 0.0023 (6) −0.0025 (6)
C10 0.0262 (8) 0.0205 (9) 0.0119 (7) 0.0066 (7) 0.0097 (7) 0.0016 (6)
C11 0.0255 (9) 0.0229 (9) 0.0202 (9) −0.0037 (7) 0.0148 (7) −0.0001 (7)
C12 0.0178 (8) 0.0188 (8) 0.0153 (8) −0.0036 (6) 0.0070 (6) −0.0026 (6)
C13 0.0127 (7) 0.0176 (8) 0.0101 (7) 0.0018 (6) 0.0056 (6) −0.0011 (6)
C14 0.0152 (7) 0.0158 (8) 0.0141 (7) 0.0027 (6) 0.0047 (6) 0.0004 (6)
C15 0.0186 (8) 0.0180 (8) 0.0188 (8) −0.0004 (6) 0.0078 (7) −0.0018 (7)
C16 0.0158 (8) 0.0246 (9) 0.0146 (8) −0.0008 (7) 0.0041 (6) −0.0043 (7)
C17 0.0161 (8) 0.0245 (9) 0.0128 (8) 0.0057 (7) 0.0037 (6) 0.0006 (6)
C18 0.0161 (7) 0.0177 (8) 0.0139 (7) 0.0044 (6) 0.0066 (6) 0.0011 (6)
C19 0.0109 (7) 0.0133 (8) 0.0098 (7) −0.0009 (6) 0.0007 (6) −0.0026 (6)
C20 0.0092 (6) 0.0132 (7) 0.0114 (7) −0.0010 (6) 0.0027 (6) −0.0005 (6)
C21 0.0117 (7) 0.0143 (7) 0.0119 (7) −0.0008 (6) 0.0041 (6) 0.0016 (6)
C22 0.0178 (8) 0.0194 (9) 0.0227 (8) 0.0071 (7) 0.0113 (7) 0.0076 (7)
C23 0.0161 (8) 0.0213 (9) 0.0165 (8) 0.0038 (6) 0.0078 (6) 0.0083 (7)
C24 0.0098 (7) 0.0156 (8) 0.0108 (7) −0.0023 (6) 0.0035 (6) −0.0005 (6)
C25 0.0133 (7) 0.0179 (8) 0.0110 (7) −0.0063 (6) 0.0054 (6) −0.0031 (6)

Geometric parameters (Å, °)

Ag1—P1 2.3531 (4) C8—C9 1.388 (2)
Ag1—O1 2.451 (1) C8—H8 0.9500
Ag1—O3i 2.481 (1) C9—C10 1.386 (2)
Ag1—N1ii 2.253 (1) C9—H9 0.9500
P1—C1 1.8175 (16) C10—C11 1.383 (3)
P1—C7 1.8222 (15) C10—H10 0.9500
P1—C13 1.8248 (17) C11—C12 1.396 (2)
O1—C19 1.2353 (19) C11—H11 0.9500
O2—C19 1.2858 (18) C12—H12 0.9500
O3—C25 1.235 (2) C13—C18 1.391 (2)
O3—Ag1iii 2.4814 (12) C13—C14 1.404 (2)
O4—C25 1.277 (2) C14—C15 1.394 (2)
O4—H4 1.20 (4) C14—H14 0.9500
N1—C21 1.335 (2) C15—C16 1.390 (2)
N1—C22 1.348 (2) C15—H15 0.9500
N1—Ag1ii 2.2531 (13) C16—C17 1.386 (2)
C1—C6 1.396 (2) C16—H16 0.9500
C1—C2 1.397 (2) C17—C18 1.395 (2)
C2—C3 1.387 (2) C17—H17 0.9500
C2—H2 0.9500 C18—H18 0.9500
C3—C4 1.387 (2) C19—C20 1.519 (2)
C3—H3 0.9500 C20—C21 1.397 (2)
C4—C5 1.386 (2) C20—C24 1.408 (2)
C4—H4A 0.9500 C21—H21 0.9500
C5—C6 1.392 (2) C22—C23 1.374 (2)
C5—H5 0.9500 C22—H22 0.9500
C6—H6 0.9500 C23—C24 1.395 (2)
C7—C12 1.393 (2) C23—H23 0.9500
C7—C8 1.398 (2) C24—C25 1.536 (2)
P1—Ag1—O1 113.12 (3) C9—C10—H10 119.9
P1—Ag1—O3i 122.95 (3) C10—C11—C12 120.18 (16)
P1—Ag1—N1ii 140.10 (4) C10—C11—H11 119.9
O1—Ag1—O3i 81.06 (4) C12—C11—H11 119.9
O1—Ag1—N1ii 87.84 (4) C7—C12—C11 119.94 (16)
O3i—Ag1—N1ii 92.57 (4) C7—C12—H12 120.0
C1—P1—C7 104.65 (7) C11—C12—H12 120.0
C1—P1—C13 104.18 (7) C18—C13—C14 119.46 (15)
C7—P1—C13 105.28 (7) C18—C13—P1 122.35 (13)
C1—P1—Ag1 113.79 (5) C14—C13—P1 118.16 (12)
C7—P1—Ag1 115.70 (5) C15—C14—C13 119.88 (15)
C13—P1—Ag1 112.16 (5) C15—C14—H14 120.1
C19—O1—Ag1 123.60 (10) C13—C14—H14 120.1
C25—O3—Ag1iii 132.51 (11) C16—C15—C14 120.26 (16)
C25—O4—H4 110.1 (17) C16—C15—H15 119.9
C21—N1—C22 116.87 (14) C14—C15—H15 119.9
C21—N1—Ag1ii 117.57 (10) C17—C16—C15 119.88 (16)
C22—N1—Ag1ii 123.80 (11) C17—C16—H16 120.1
C6—C1—C2 119.38 (15) C15—C16—H16 120.1
C6—C1—P1 121.99 (12) C16—C17—C18 120.31 (16)
C2—C1—P1 118.58 (12) C16—C17—H17 119.8
C3—C2—C1 120.45 (14) C18—C17—H17 119.8
C3—C2—H2 119.8 C13—C18—C17 120.19 (16)
C1—C2—H2 119.8 C13—C18—H18 119.9
C2—C3—C4 119.87 (15) C17—C18—H18 119.9
C2—C3—H3 120.1 O1—C19—O2 122.82 (15)
C4—C3—H3 120.1 O1—C19—C20 117.60 (13)
C5—C4—C3 120.17 (16) O2—C19—C20 119.58 (14)
C5—C4—H4A 119.9 C21—C20—C24 117.80 (14)
C3—C4—H4A 119.9 C21—C20—C19 113.46 (13)
C4—C5—C6 120.25 (15) C24—C20—C19 128.70 (14)
C4—C5—H5 119.9 N1—C21—C20 124.81 (14)
C6—C5—H5 119.9 N1—C21—H21 117.6
C5—C6—C1 119.86 (15) C20—C21—H21 117.6
C5—C6—H6 120.1 N1—C22—C23 122.51 (15)
C1—C6—H6 120.1 N1—C22—H22 118.7
C12—C7—C8 119.29 (14) C23—C22—H22 118.7
C12—C7—P1 123.54 (12) C22—C23—C24 121.11 (15)
C8—C7—P1 117.08 (11) C22—C23—H23 119.4
C9—C8—C7 120.46 (15) C24—C23—H23 119.4
C9—C8—H8 119.8 C23—C24—C20 116.89 (14)
C7—C8—H8 119.8 C23—C24—C25 115.03 (14)
C10—C9—C8 119.84 (15) C20—C24—C25 128.06 (14)
C10—C9—H9 120.1 O3—C25—O4 123.62 (15)
C8—C9—H9 120.1 O3—C25—C24 117.47 (14)
C11—C10—C9 120.26 (15) O4—C25—C24 118.88 (14)
C11—C10—H10 119.9
N1ii—Ag1—P1—C1 43.84 (8) C1—P1—C13—C18 1.57 (15)
O1—Ag1—P1—C1 160.37 (6) C7—P1—C13—C18 −108.28 (14)
O3i—Ag1—P1—C1 −105.31 (7) Ag1—P1—C13—C18 125.08 (12)
N1ii—Ag1—P1—C7 165.10 (8) C1—P1—C13—C14 −176.52 (12)
O1—Ag1—P1—C7 −78.37 (7) C7—P1—C13—C14 73.64 (14)
O3i—Ag1—P1—C7 15.96 (7) Ag1—P1—C13—C14 −53.00 (13)
N1ii—Ag1—P1—C13 −74.11 (8) C18—C13—C14—C15 1.6 (2)
O1—Ag1—P1—C13 42.42 (6) P1—C13—C14—C15 179.71 (12)
O3i—Ag1—P1—C13 136.75 (7) C13—C14—C15—C16 −1.1 (2)
N1ii—Ag1—O1—C19 −153.23 (12) C14—C15—C16—C17 0.1 (3)
P1—Ag1—O1—C19 61.82 (12) C15—C16—C17—C18 0.4 (3)
O3i—Ag1—O1—C19 −60.29 (12) C14—C13—C18—C17 −1.0 (2)
C7—P1—C1—C6 28.81 (15) P1—C13—C18—C17 −179.09 (12)
C13—P1—C1—C6 −81.49 (14) C16—C17—C18—C13 0.1 (2)
Ag1—P1—C1—C6 156.05 (12) Ag1—O1—C19—O2 −41.8 (2)
C7—P1—C1—C2 −153.99 (12) Ag1—O1—C19—C20 138.75 (11)
C13—P1—C1—C2 95.70 (13) O1—C19—C20—C21 12.9 (2)
Ag1—P1—C1—C2 −26.75 (14) O2—C19—C20—C21 −166.63 (14)
C6—C1—C2—C3 1.3 (2) O1—C19—C20—C24 −164.64 (15)
P1—C1—C2—C3 −175.96 (12) O2—C19—C20—C24 15.9 (2)
C1—C2—C3—C4 −0.5 (2) C22—N1—C21—C20 0.8 (2)
C2—C3—C4—C5 −0.9 (2) Ag1ii—N1—C21—C20 166.32 (12)
C3—C4—C5—C6 1.5 (3) C24—C20—C21—N1 −0.4 (2)
C4—C5—C6—C1 −0.7 (3) C19—C20—C21—N1 −178.22 (14)
C2—C1—C6—C5 −0.7 (2) C21—N1—C22—C23 −0.4 (3)
P1—C1—C6—C5 176.45 (13) Ag1ii—N1—C22—C23 −164.87 (13)
C1—P1—C7—C12 −119.18 (14) N1—C22—C23—C24 −0.5 (3)
C13—P1—C7—C12 −9.67 (16) C22—C23—C24—C20 0.9 (2)
Ag1—P1—C7—C12 114.76 (13) C22—C23—C24—C25 179.83 (15)
C1—P1—C7—C8 64.36 (13) C21—C20—C24—C23 −0.4 (2)
C13—P1—C7—C8 173.86 (12) C19—C20—C24—C23 176.96 (15)
Ag1—P1—C7—C8 −61.70 (13) C21—C20—C24—C25 −179.24 (14)
C12—C7—C8—C9 −0.4 (2) C19—C20—C24—C25 −1.8 (3)
P1—C7—C8—C9 176.25 (12) Ag1iii—O3—C25—O4 93.68 (18)
C7—C8—C9—C10 −1.0 (2) Ag1iii—O3—C25—C24 −88.43 (17)
C8—C9—C10—C11 1.7 (3) C23—C24—C25—O3 −13.6 (2)
C9—C10—C11—C12 −1.0 (3) C20—C24—C25—O3 165.22 (15)
C8—C7—C12—C11 1.1 (2) C23—C24—C25—O4 164.40 (15)
P1—C7—C12—C11 −175.27 (13) C20—C24—C25—O4 −16.8 (2)
C10—C11—C12—C7 −0.5 (3)

Symmetry codes: (i) −x+1, y−1/2, −z+1/2; (ii) −x+1, −y+1, −z+1; (iii) −x+1, y+1/2, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O4—H4···O2 1.20 (4) 1.20 (4) 2.401 (2) 176 (4)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5322).

References

  1. Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  2. Bruker (2009). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Drew, M. G. B., Matthews, R. W. & Walton, R. A. (1971). J. Chem. Soc. A, pp. 2959–2962.
  4. Hanna, J. V. & Ng, S. W. (1999). Acta Cryst. C55, IUC9900031.
  5. Ng, S. W. & Othman, A. H. (1997). Acta Cryst. C53, 1396–1400.
  6. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Westrip, S. P. (2010). J. Appl. Cryst.43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810033350/bt5322sup1.cif

e-66-m1162-sup1.cif (22.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810033350/bt5322Isup2.hkl

e-66-m1162-Isup2.hkl (242.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES