Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Aug 18;66(Pt 9):o2338. doi: 10.1107/S1600536810032307

2-Amino-5-chloro­pyridinium 6-oxo-1,6-dihydro­pyridine-2-carboxyl­ate 0.85-hydrate

Madhukar Hemamalini a, Hoong-Kun Fun a,*,
PMCID: PMC3007856  PMID: 21588683

Abstract

In the title salt, C5H6ClN2 +·C6H4NO3 ·0.85H2O, the pyridin­ium ring is planar, with a maximum deviation of 0.010 (2) Å. In the crystal structure, the cations, anions and water mol­ecules are linked via N—H⋯O, O—H⋯O and C—H⋯O hydrogen bonds, forming a three-dimensional network.

Related literature

For applications of inter­molecular inter­actions, see: Braga et al. (2002); Lam & Mak (2000). For related structures, see: Hemamalini & Fun (2010a ,b ,c ,d ,e ,f ); Sawada & Ohashi (1998). For hydrogen-bond motifs, see: Bernstein et al. (1995).graphic file with name e-66-o2338-scheme1.jpg

Experimental

Crystal data

  • C5H6ClN2 +·C6H4NO3 ·0.85H2O

  • M r = 282.98

  • Orthorhombic, Inline graphic

  • a = 3.8096 (1) Å

  • b = 15.6046 (3) Å

  • c = 20.9370 (3) Å

  • V = 1244.65 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 296 K

  • 0.52 × 0.22 × 0.11 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.851, T max = 0.966

  • 15196 measured reflections

  • 3632 independent reflections

  • 3129 reflections with I > 2σ(I)

  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036

  • wR(F 2) = 0.113

  • S = 1.10

  • 3632 reflections

  • 215 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.17 e Å−3

  • Absolute structure: Flack (1983), with 1458 Fridel pairs

  • Flack parameter: −0.04 (6)

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810032307/ci5153sup1.cif

e-66-o2338-sup1.cif (17.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810032307/ci5153Isup2.hkl

e-66-o2338-Isup2.hkl (174.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W1⋯O3i 0.85 1.85 2.696 (3) 174
O1W—H2W1⋯O1Wii 0.85 1.99 2.732 (5) 145
N1—H1N1⋯O3iii 0.98 (2) 1.67 (2) 2.637 (2) 170 (2)
N2—H1N2⋯O1iv 0.87 (2) 1.97 (2) 2.823 (2) 168 (2)
N2—H2N2⋯O2iii 0.84 (3) 2.04 (3) 2.882 (2) 179 (3)
C4—H4⋯O1v 0.93 (2) 2.39 (2) 3.296 (2) 166 (2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

The authors thank the Malaysian Government and Universiti Sains Malaysia for Research University Golden Goose grant No. 1001/PFIZIK/811012. MH also thanks Universiti Sains Malaysia for a postdoctoral research fellowship.

supplementary crystallographic information

Comment

Intermolecular interaction analyses in crystalline systems are very important in supramolecular chemistry (Braga et al., 2002). These interactions are responsible for crystal packing, and through an understanding of such interactions we can comprehend collective properties and design new crystals with specific physical and chemical properties (Lam & Mak, 2000). We have been interested in hydrogen-bonded systems formed by 2-amino pyridines and carboxylic acids that generate molecular assemblies (Hemamalini & Fun, 2010a,b,c,d,e,f). In continuation of our studies of pyridinium derivatives, the crystal structure determination of the title compound has been undertaken.

The asymmetric unit, (Fig. 1), contains one 2-amino-5-chloropyridinium cation, one 6-oxo-1,6-dihydropyridine-2-carboxylate anion and one water molecule with a refined site occupany of 0.85. The pyridinium ring is essentially planar, with a maximum deviation of 0.010 (2) Å for atom C5. In the 2-amino-5-chloropyridinium cation, a wider than normal angle [C1—N1—C2 = 122.55 (14)°] is subtended at the protonated N1 atom. The anion exists in the keto–enol tautomerism of the -CONH moiety. Similar tautomerism is also observed in the crystal structure of 2-oxo-1,2-dihydropyridine-6-carboxylic acid (Sawada & Ohashi, 1998).

In the crystal packing (Fig. 2), the protonated N1 atom and the 2-amino group (N2) are hydrogen-bonded to the carboxylate oxygen atoms (O2 and O3) via a pair of intermolecular N1—H1N1···O3 and N2—H2N2···O2 hydrogen bonds, forming an R22(8) ring motif (Bernstein et al., 1995). The ion pairs are further connected via O1W—H1W1···O3, O1W—H2W1···O1W, N2—H1N2···O1 and C4—H4···O1 (Table 1) hydrogen bonds, forming a three-dimensional network. The crystal of title compound is isomorphous with that of 2-amino-5-bromopyridinium 6-oxo-1,6-dihydropyridine-2-carboxylate monohydrate (Hemamalini & Fun, 2010f).

Experimental

A hot methanol solution (20 ml) of 2-amino-5-chloropyridine (64 mg, Aldrich) and 6-hydroxypicolinic acid (69 mg, Merck) were mixed and warmed over a heating magnetic stirrer hotplate for a few minutes. The resulting solution was allowed to cool slowly at room temperature and crystals of the title compound appeared after a few days.

Refinement

The site occupancy of the water molecule was initially refined and then fixed at 0.85 in the final refinement. The H-atoms were located in a difference Fourier map and refined freely [ranges of C—H = 0.89 (2)–0.95 (2) Å and N—H = 0.82 (3)–0.97 (2) Å]. The water H atoms were allowed to ride on the parent O atom.

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

The crystal packing of the title compound, showing part of a hydrogen-bonded network. H atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity.

Crystal data

C5H6ClN2+·C6H4NO3·0.85H2O F(000) = 586
Mr = 282.98 Dx = 1.510 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 6806 reflections
a = 3.8096 (1) Å θ = 2.3–29.0°
b = 15.6046 (3) Å µ = 0.32 mm1
c = 20.9370 (3) Å T = 296 K
V = 1244.65 (4) Å3 Needle, green
Z = 4 0.52 × 0.22 × 0.11 mm

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 3632 independent reflections
Radiation source: fine-focus sealed tube 3129 reflections with I > 2σ(I)
graphite Rint = 0.026
φ and ω scans θmax = 30.1°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −4→5
Tmin = 0.851, Tmax = 0.966 k = −21→21
15196 measured reflections l = −29→29

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.113 w = 1/[σ2(Fo2) + (0.0653P)2 + 0.0443P] where P = (Fo2 + 2Fc2)/3
S = 1.10 (Δ/σ)max = 0.001
3632 reflections Δρmax = 0.20 e Å3
215 parameters Δρmin = −0.17 e Å3
0 restraints Absolute structure: Flack (1983), with 1458 Fridel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: −0.04 (6)

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Cl1 0.29968 (15) 0.97559 (3) 1.16268 (2) 0.04826 (15)
N1 0.0504 (4) 0.98883 (9) 0.97983 (7) 0.0358 (3)
N2 0.1288 (6) 0.90253 (11) 0.89193 (7) 0.0473 (4)
C1 0.0873 (5) 1.00748 (10) 1.04320 (8) 0.0365 (4)
C2 0.1708 (5) 0.91546 (9) 0.95385 (8) 0.0339 (3)
C3 0.3321 (6) 0.85531 (10) 0.99503 (8) 0.0378 (4)
C4 0.3690 (5) 0.87223 (11) 1.05852 (9) 0.0389 (4)
C5 0.2467 (5) 0.95094 (10) 1.08254 (7) 0.0361 (4)
O1 0.8680 (5) 0.75705 (8) 0.15429 (5) 0.0483 (4)
O2 0.6524 (5) 0.96179 (8) 0.31378 (6) 0.0527 (4)
O3 0.8337 (5) 0.90935 (8) 0.40756 (6) 0.0516 (4)
N3 0.8628 (4) 0.82238 (9) 0.25126 (6) 0.0332 (3)
C6 0.9424 (5) 0.75403 (10) 0.21242 (8) 0.0363 (4)
C7 1.1066 (5) 0.68363 (11) 0.24435 (9) 0.0397 (4)
C8 1.1756 (6) 0.68705 (11) 0.30786 (9) 0.0414 (4)
C9 1.0842 (6) 0.75963 (12) 0.34448 (8) 0.0398 (4)
C10 0.9247 (5) 0.82601 (10) 0.31526 (8) 0.0321 (3)
C11 0.7932 (6) 0.90675 (10) 0.34770 (7) 0.0386 (4)
O1W 0.5775 (11) 0.18936 (16) 1.01198 (10) 0.1069 (12) 0.85
H1W1 0.5888 0.1576 0.9790 0.101 (14)* 0.85
H2W1 0.4401 0.2303 1.0216 0.109 (17)* 0.85
H1 −0.012 (6) 1.0566 (13) 1.0558 (9) 0.040 (5)*
H3 0.416 (6) 0.8069 (14) 0.9779 (9) 0.044 (6)*
H4 0.474 (6) 0.8348 (12) 1.0870 (8) 0.032 (5)*
H8 1.274 (6) 0.6427 (13) 0.3299 (9) 0.049 (6)*
H9 1.141 (9) 0.7623 (15) 0.3865 (11) 0.065 (7)*
H7 1.155 (7) 0.6344 (12) 0.2193 (9) 0.042 (5)*
H1N1 −0.068 (6) 1.0297 (13) 0.9520 (10) 0.046 (6)*
H1N2 0.222 (7) 0.8578 (14) 0.8740 (10) 0.048 (6)*
H2N2 0.050 (7) 0.9426 (17) 0.8691 (11) 0.057 (7)*
H1N3 0.771 (6) 0.8649 (13) 0.2351 (9) 0.043 (6)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0578 (3) 0.0516 (2) 0.0353 (2) −0.0024 (2) −0.0049 (2) −0.00042 (17)
N1 0.0431 (8) 0.0311 (6) 0.0331 (7) 0.0030 (6) 0.0011 (6) 0.0030 (5)
N2 0.0696 (13) 0.0352 (7) 0.0370 (7) 0.0118 (8) −0.0039 (8) −0.0020 (6)
C1 0.0429 (9) 0.0308 (7) 0.0358 (8) 0.0003 (7) 0.0029 (7) 0.0006 (6)
C2 0.0368 (8) 0.0298 (7) 0.0352 (7) −0.0011 (7) 0.0018 (8) 0.0024 (6)
C3 0.0400 (9) 0.0302 (7) 0.0432 (8) 0.0033 (7) −0.0002 (8) 0.0020 (6)
C4 0.0372 (9) 0.0358 (8) 0.0435 (9) 0.0001 (8) −0.0030 (8) 0.0099 (7)
C5 0.0370 (9) 0.0383 (8) 0.0329 (7) −0.0048 (7) −0.0002 (7) 0.0029 (6)
O1 0.0731 (10) 0.0412 (6) 0.0306 (5) 0.0021 (7) −0.0036 (7) −0.0059 (5)
O2 0.0771 (11) 0.0396 (6) 0.0414 (6) 0.0175 (7) −0.0040 (8) −0.0052 (5)
O3 0.0709 (10) 0.0500 (7) 0.0339 (6) 0.0190 (8) −0.0034 (8) −0.0099 (5)
N3 0.0434 (8) 0.0265 (6) 0.0297 (6) 0.0026 (6) −0.0020 (6) 0.0002 (5)
C6 0.0427 (9) 0.0324 (7) 0.0338 (7) −0.0044 (7) 0.0038 (8) −0.0036 (6)
C7 0.0440 (10) 0.0321 (7) 0.0429 (9) 0.0048 (8) 0.0060 (8) −0.0045 (7)
C8 0.0445 (10) 0.0368 (8) 0.0430 (9) 0.0099 (8) 0.0017 (9) 0.0057 (7)
C9 0.0447 (10) 0.0421 (8) 0.0325 (8) 0.0040 (8) −0.0020 (8) 0.0005 (7)
C10 0.0330 (8) 0.0334 (7) 0.0300 (7) −0.0012 (7) 0.0024 (7) −0.0026 (6)
C11 0.0466 (10) 0.0357 (7) 0.0335 (7) 0.0030 (8) −0.0001 (8) −0.0054 (6)
O1W 0.187 (4) 0.0767 (15) 0.0574 (12) 0.013 (2) −0.0226 (18) −0.0259 (11)

Geometric parameters (Å, °)

Cl1—C5 1.7331 (16) O2—C11 1.237 (2)
N1—C2 1.348 (2) O3—C11 1.2633 (18)
N1—C1 1.365 (2) N3—C10 1.362 (2)
N1—H1N1 0.97 (2) N3—C6 1.375 (2)
N2—C2 1.322 (2) N3—H1N3 0.82 (2)
N2—H1N2 0.87 (2) C6—C7 1.430 (3)
N2—H2N2 0.84 (3) C7—C8 1.356 (3)
C1—C5 1.351 (2) C7—H7 0.95 (2)
C1—H1 0.90 (2) C8—C9 1.411 (3)
C2—C3 1.415 (2) C8—H8 0.91 (2)
C3—C4 1.363 (3) C9—C10 1.348 (2)
C3—H3 0.89 (2) C9—H9 0.91 (2)
C4—C5 1.407 (2) C10—C11 1.516 (2)
C4—H4 0.925 (19) O1W—H1W1 0.85
O1—C6 1.2506 (19) O1W—H2W1 0.85
C2—N1—C1 122.55 (14) C10—N3—H1N3 116.4 (14)
C2—N1—H1N1 118.2 (12) C6—N3—H1N3 118.4 (14)
C1—N1—H1N1 119.3 (12) O1—C6—N3 119.75 (16)
C2—N2—H1N2 119.8 (15) O1—C6—C7 125.67 (15)
C2—N2—H2N2 119.1 (16) N3—C6—C7 114.58 (15)
H1N2—N2—H2N2 120 (2) C8—C7—C6 120.84 (16)
C5—C1—N1 119.97 (16) C8—C7—H7 122.4 (12)
C5—C1—H1 124.8 (12) C6—C7—H7 116.7 (12)
N1—C1—H1 115.1 (12) C7—C8—C9 121.09 (17)
N2—C2—N1 118.97 (15) C7—C8—H8 123.0 (13)
N2—C2—C3 123.30 (16) C9—C8—H8 115.8 (13)
N1—C2—C3 117.72 (15) C10—C9—C8 118.78 (15)
C4—C3—C2 120.72 (16) C10—C9—H9 120.8 (16)
C4—C3—H3 121.2 (13) C8—C9—H9 120.4 (17)
C2—C3—H3 118.0 (13) C9—C10—N3 119.51 (15)
C3—C4—C5 118.93 (16) C9—C10—C11 125.75 (15)
C3—C4—H4 123.4 (11) N3—C10—C11 114.73 (14)
C5—C4—H4 117.6 (11) O2—C11—O3 126.89 (15)
C1—C5—C4 120.07 (16) O2—C11—C10 117.57 (14)
C1—C5—Cl1 119.85 (13) O3—C11—C10 115.51 (15)
C4—C5—Cl1 120.09 (13) H1W1—O1W—H2W1 131.4
C10—N3—C6 125.17 (15)
C2—N1—C1—C5 −0.7 (3) O1—C6—C7—C8 −180.0 (2)
C1—N1—C2—N2 −179.18 (19) N3—C6—C7—C8 −0.4 (3)
C1—N1—C2—C3 1.8 (3) C6—C7—C8—C9 0.7 (3)
N2—C2—C3—C4 179.8 (2) C7—C8—C9—C10 0.3 (3)
N1—C2—C3—C4 −1.2 (3) C8—C9—C10—N3 −1.5 (3)
C2—C3—C4—C5 −0.5 (3) C8—C9—C10—C11 176.86 (19)
N1—C1—C5—C4 −1.1 (3) C6—N3—C10—C9 1.8 (3)
N1—C1—C5—Cl1 178.92 (14) C6—N3—C10—C11 −176.69 (18)
C3—C4—C5—C1 1.7 (3) C9—C10—C11—O2 179.9 (2)
C3—C4—C5—Cl1 −178.37 (16) N3—C10—C11—O2 −1.7 (3)
C10—N3—C6—O1 178.73 (18) C9—C10—C11—O3 −1.6 (3)
C10—N3—C6—C7 −0.8 (3) N3—C10—C11—O3 176.80 (17)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1W—H1W1···O3i 0.85 1.85 2.696 (3) 174
O1W—H2W1···O1Wii 0.85 1.99 2.732 (5) 145
N1—H1N1···O3iii 0.98 (2) 1.67 (2) 2.637 (2) 170 (2)
N2—H1N2···O1iv 0.87 (2) 1.97 (2) 2.823 (2) 168 (2)
N2—H2N2···O2iii 0.84 (3) 2.04 (3) 2.882 (2) 179 (3)
C4—H4···O1v 0.93 (2) 2.39 (2) 3.296 (2) 166 (2)

Symmetry codes: (i) −x+3/2, −y+1, z+1/2; (ii) x−1/2, −y+1/2, −z+2; (iii) −x+1/2, −y+2, z+1/2; (iv) x−1/2, −y+3/2, −z+1; (v) x, y, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI5153).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  2. Braga, D., Maini, L. & Grepioni, F. (2002). Chem. Eur. J.8, 1804–1812. [DOI] [PubMed]
  3. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  5. Hemamalini, M. & Fun, H.-K. (2010a). Acta Cryst. E66, o557. [DOI] [PMC free article] [PubMed]
  6. Hemamalini, M. & Fun, H.-K. (2010b). Acta Cryst. E66, o578. [DOI] [PMC free article] [PubMed]
  7. Hemamalini, M. & Fun, H.-K. (2010c). Acta Cryst. E66, o1416–o1417. [DOI] [PMC free article] [PubMed]
  8. Hemamalini, M. & Fun, H.-K. (2010d). Acta Cryst. E66, o1418–o1419. [DOI] [PMC free article] [PubMed]
  9. Hemamalini, M. & Fun, H.-K. (2010e). Acta Cryst. E66, o2008–o2009. [DOI] [PMC free article] [PubMed]
  10. Hemamalini, M. & Fun, H.-K. (2010f). Acta Cryst. E66, o2246–o2247. [DOI] [PMC free article] [PubMed]
  11. Lam, C. K. & Mak, T. C. W. (2000). Tetrahedron, 56, 6657–6665.
  12. Sawada, K. & Ohashi, Y. (1998). Acta Cryst. C54, 1491–1493.
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810032307/ci5153sup1.cif

e-66-o2338-sup1.cif (17.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810032307/ci5153Isup2.hkl

e-66-o2338-Isup2.hkl (174.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES