Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Aug 28;66(Pt 9):o2467. doi: 10.1107/S1600536810033283

4-Meth­oxy­benzaldehyde (5-bromo­pyrimidin-2-yl)hydrazone monohydrate

Hoong-Kun Fun a,*,, Wan-Sin Loh a,§, Suresh P Nayak b
PMCID: PMC3007892  PMID: 21588785

Abstract

In the title Schiff base compound, C12H11BrN4O·H2O, the organic mol­ecule exists in an E configuration with respect to the C=N double bond. The pyrimidine ring is approximately planar, with a maximum deviation of 0.011 (2) Å, and forms a dihedral angle of 10.68 (8)° with the benzene ring. In the crystal, inter­molecular O—H⋯N, N—H⋯O and C—H⋯O hydrogen bonds link the mol­ecules into a two-dimensional network parallel to the ac plane.

Related literature

For the preparation of hydrazones, see: Pasha & Nanjundaswamy (2004). For the importance and biological activity of hydrazones, see: Sridhar & Perumal (2003); Rollas et al. (2002); Terzioglu & Gürsoy (2003). For the biological activity of pyrimidines and their derivatives, see: Ghorab et al. (2004). For a related structure, see: Zhang et al. (2009). For reference bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).graphic file with name e-66-o2467-scheme1.jpg

Experimental

Crystal data

  • C12H11BrN4O·H2O

  • M r = 325.17

  • Orthorhombic, Inline graphic

  • a = 13.0606 (3) Å

  • b = 60.5887 (10) Å

  • c = 6.5618 (1) Å

  • V = 5192.52 (17) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 3.17 mm−1

  • T = 100 K

  • 0.40 × 0.34 × 0.21 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.365, T max = 0.558

  • 12616 measured reflections

  • 4593 independent reflections

  • 4107 reflections with I > 2σ(I)

  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.026

  • wR(F 2) = 0.052

  • S = 0.92

  • 4593 reflections

  • 225 parameters

  • 1 restraint

  • All H-atom parameters refined

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.40 e Å−3

  • Absolute structure: Flack (1983), 2037 Friedel pairs

  • Flack parameter: 0.012 (5)

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810033283/wn2404sup1.cif

e-66-o2467-sup1.cif (18.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810033283/wn2404Isup2.hkl

e-66-o2467-Isup2.hkl (225.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W1⋯N2 0.84 (3) 2.55 (3) 3.153 (2) 131 (2)
O1W—H1W1⋯N4 0.84 (3) 2.30 (3) 3.0511 (19) 151 (2)
O1W—H2W1⋯N2i 0.84 (3) 2.01 (3) 2.8341 (19) 169 (2)
N3—H1N3⋯O1Wii 0.81 (3) 1.99 (3) 2.7773 (19) 165.1 (19)
C5—H5A⋯O1Wii 0.99 (2) 2.43 (2) 3.257 (2) 140.7 (13)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank Universiti Sains Malaysia (USM) for the Research University Golden Goose Grant (1001/PFIZIK/811012). WSL thanks the Malaysian Government and USM for the award of a research fellowship.

supplementary crystallographic information

Comment

Hydrazones have been prepared by treating aryl hydrazines with carbonyl compounds using a variety of solvents in the presence or absence of an acidic catalyst (Pasha & Nanjundaswamy, 2004). Aryl hydrazones are important building blocks for the synthesis of a variety of heterocyclic compounds such as pyrazolines and pyrazoles (Sridhar & Perumal, 2003). Hydrazones have been demonstrated to possess a variety of pharmacological activities (Rollas et al., 2002; Terzioglu & Gürsoy, 2003). These observations have provided the guidelines for the development of new hydrazones that possess a variety of biological activities. Pyrimidines and their derivatives possess biological and pharmacological activities such as antibacterial, antimicrobial, anti-inflammatory, analgesic, anticonvulsant and anti-aggressive properties (Ghorab et al., 2004). This prompted us to synthesize compounds containing the pyrimidine unit.

The asymmetric unit of the title Schiff base compound (Fig. 1) consists of one molecule of p-anisyl-(5-bromopyrimidin-2-yl)hydrazone and one water molecule. The p-anisyl-(5-bromopyrimidin-2-yl)hydrazone molecule exists in an E configuration with respect to the C5═N4 double bond. The pyrimidine ring (C1–C3/N2/C4/N1) is approximately planar, with a maximum deviation of 0.011 (2) Å at atom C3 and it forms a dihedral angle of 10.68 (8)° with the benzene ring (C6–C11). Bond lengths (Allen et al., 1987) and angles are within the normal ranges and are comparable to those in the related crystal structure (Zhang et al., 2009).

In the crystal packing (Fig. 2) intermolecular O1W—H1W1···N2, O1W—H1W1···N4 O1W—H2W1···N2, N3—H1N3···O1W and C5—H5A···O1W hydrogen bonds (Table 1) link the molecules into two-dimensional networks parallel to the ac plane.

Experimental

The title compound was obtained by refluxing 5-bromo-2-hydrazinopyrimidine (0.01 mol) and 4-methoxybenzaldehyde (0.01 mol) in ethanol (30 ml), with the addition of 3 drops of concentrated sulfuric acid over a period of 1 h. Excess ethanol was removed from the reaction mixture under reduced pressure. The resulting solid product was filtered, washed with ethanol and dried. Colourless single crystals suitable for X-ray analysis were obtained from the ethanol solution by slow evaporation.

Refinement

All H atoms were located in a difference Fourier map and were refined freely [C—H = 0.89 (2) to 1.03 (2) Å; N—H = 0.81 (3) Å; O—H = 0.83 (3) and 0.84 (3) Å].

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme. Hydrogen atoms are shown as spheres of arbitrary radius.

Fig. 2.

Fig. 2.

The crystal packing of the title compound, viewed along the b axis, showing the two-dimensional network parallel to the ac plane. H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.

Crystal data

C12H11BrN4O·H2O F(000) = 2624
Mr = 325.17 Dx = 1.664 Mg m3
Orthorhombic, Fdd2 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: F 2 -2d Cell parameters from 5163 reflections
a = 13.0606 (3) Å θ = 3.7–32.2°
b = 60.5887 (10) Å µ = 3.17 mm1
c = 6.5618 (1) Å T = 100 K
V = 5192.52 (17) Å3 Block, colourless
Z = 16 0.40 × 0.34 × 0.21 mm

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 4593 independent reflections
Radiation source: fine-focus sealed tube 4107 reflections with I > 2σ(I)
graphite Rint = 0.029
φ and ω scans θmax = 32.8°, θmin = 2.7°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −18→19
Tmin = 0.365, Tmax = 0.558 k = −92→91
12616 measured reflections l = −9→9

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026 All H-atom parameters refined
wR(F2) = 0.052 w = 1/[σ2(Fo2) + (0.P)2] where P = (Fo2 + 2Fc2)/3
S = 0.92 (Δ/σ)max < 0.001
4593 reflections Δρmax = 0.43 e Å3
225 parameters Δρmin = −0.40 e Å3
1 restraint Absolute structure: Flack (1983), 2037 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.012 (5)

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.088547 (13) 0.026408 (2) 0.69853 (3) 0.02305 (5)
O1 0.08828 (10) 0.235769 (16) 0.7073 (2) 0.0206 (2)
N1 0.04426 (12) 0.07710 (2) 1.1084 (2) 0.0181 (3)
N2 0.05839 (12) 0.09353 (2) 0.7759 (2) 0.0168 (3)
N3 0.03392 (13) 0.11442 (2) 1.0691 (2) 0.0175 (3)
N4 0.04759 (10) 0.133332 (18) 0.9574 (2) 0.0156 (2)
C1 0.05708 (15) 0.05747 (3) 1.0215 (3) 0.0194 (3)
C2 0.07009 (14) 0.05472 (3) 0.8133 (3) 0.0182 (3)
C3 0.06893 (12) 0.07344 (2) 0.6943 (3) 0.0176 (3)
C4 0.04600 (12) 0.09446 (2) 0.9789 (2) 0.0149 (3)
C5 0.03372 (14) 0.15154 (3) 1.0534 (3) 0.0165 (3)
C6 0.04819 (11) 0.17289 (2) 0.9545 (3) 0.0147 (3)
C7 0.03424 (14) 0.19218 (3) 1.0688 (2) 0.0183 (3)
C8 0.04797 (14) 0.21285 (2) 0.9828 (2) 0.0186 (3)
C9 0.07649 (14) 0.21461 (3) 0.7790 (2) 0.0167 (3)
C10 0.09188 (14) 0.19569 (3) 0.6627 (2) 0.0167 (3)
C11 0.07730 (14) 0.17500 (3) 0.7492 (2) 0.0167 (3)
C12 0.11941 (17) 0.23826 (3) 0.5009 (3) 0.0242 (4)
O1W 0.24687 (11) 0.12558 (2) 0.72556 (19) 0.0203 (3)
H1W1 0.184 (2) 0.1255 (4) 0.749 (4) 0.037 (7)*
H2W1 0.2655 (18) 0.1332 (4) 0.826 (4) 0.027 (6)*
H1N3 0.0212 (17) 0.1149 (3) 1.189 (5) 0.030 (6)*
H1A 0.0590 (17) 0.0449 (4) 1.110 (3) 0.023 (5)*
H3A 0.0769 (19) 0.0728 (4) 0.546 (4) 0.035 (7)*
H5A 0.0120 (15) 0.1507 (3) 1.198 (4) 0.022 (5)*
H7A 0.0149 (15) 0.1910 (3) 1.218 (4) 0.020 (5)*
H8A 0.041 (2) 0.2255 (4) 1.052 (4) 0.036 (7)*
H10A 0.1133 (19) 0.1960 (4) 0.522 (4) 0.036 (6)*
H11A 0.0919 (16) 0.1621 (3) 0.667 (4) 0.023 (5)*
H12A 0.1909 (19) 0.2312 (3) 0.491 (4) 0.033 (6)*
H12B 0.1262 (15) 0.2538 (3) 0.476 (4) 0.023 (5)*
H12C 0.0727 (17) 0.2324 (4) 0.415 (4) 0.031 (6)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.02252 (8) 0.01183 (6) 0.03480 (9) 0.00168 (6) −0.00211 (8) −0.00497 (7)
O1 0.0280 (6) 0.0115 (4) 0.0223 (5) −0.0010 (5) −0.0027 (5) 0.0006 (6)
N1 0.0205 (8) 0.0142 (6) 0.0195 (7) 0.0001 (5) 0.0023 (6) 0.0035 (5)
N2 0.0206 (7) 0.0128 (6) 0.0171 (6) 0.0004 (5) 0.0013 (5) −0.0002 (5)
N3 0.0270 (8) 0.0122 (6) 0.0133 (6) 0.0003 (6) 0.0036 (6) 0.0007 (5)
N4 0.0195 (6) 0.0118 (5) 0.0156 (6) −0.0014 (5) 0.0001 (6) 0.0011 (5)
C1 0.0193 (9) 0.0127 (7) 0.0261 (8) −0.0008 (6) 0.0026 (7) 0.0035 (6)
C2 0.0152 (8) 0.0123 (7) 0.0273 (9) −0.0005 (6) 0.0001 (6) −0.0020 (6)
C3 0.0165 (8) 0.0152 (6) 0.0211 (7) 0.0015 (5) 0.0001 (8) −0.0020 (7)
C4 0.0149 (7) 0.0123 (6) 0.0176 (8) −0.0002 (5) 0.0011 (6) 0.0006 (5)
C5 0.0194 (9) 0.0138 (7) 0.0164 (7) 0.0013 (6) 0.0009 (6) −0.0002 (5)
C6 0.0147 (7) 0.0125 (6) 0.0168 (6) 0.0011 (5) −0.0007 (7) −0.0007 (6)
C7 0.0226 (9) 0.0159 (7) 0.0164 (7) 0.0017 (6) −0.0009 (6) −0.0017 (6)
C8 0.0236 (8) 0.0127 (7) 0.0195 (8) 0.0020 (6) −0.0029 (7) −0.0040 (6)
C9 0.0180 (8) 0.0106 (7) 0.0216 (7) −0.0002 (6) −0.0041 (6) 0.0006 (5)
C10 0.0195 (8) 0.0152 (6) 0.0154 (8) −0.0006 (6) 0.0004 (6) −0.0011 (5)
C11 0.0210 (9) 0.0127 (6) 0.0164 (8) 0.0019 (6) −0.0006 (6) −0.0021 (5)
C12 0.0258 (10) 0.0161 (7) 0.0307 (10) −0.0008 (7) 0.0068 (8) 0.0045 (6)
O1W 0.0256 (7) 0.0202 (5) 0.0152 (6) −0.0051 (5) 0.0025 (6) −0.0026 (5)

Geometric parameters (Å, °)

Br1—C2 1.8886 (17) C5—H5A 0.99 (2)
O1—C9 1.3745 (19) C6—C7 1.401 (2)
O1—C12 1.422 (2) C6—C11 1.406 (2)
N1—C1 1.329 (2) C7—C8 1.386 (2)
N1—C4 1.352 (2) C7—H7A 1.01 (2)
N2—C3 1.337 (2) C8—C9 1.392 (2)
N2—C4 1.343 (2) C8—H8A 0.89 (2)
N3—C4 1.356 (2) C9—C10 1.392 (2)
N3—N4 1.3719 (18) C10—C11 1.389 (2)
N3—H1N3 0.81 (3) C10—H10A 0.96 (2)
N4—C5 1.284 (2) C11—H11A 0.97 (2)
C1—C2 1.387 (3) C12—H12A 1.03 (2)
C1—H1A 0.95 (2) C12—H12B 0.957 (19)
C2—C3 1.377 (2) C12—H12C 0.90 (3)
C3—H3A 0.98 (3) O1W—H1W1 0.83 (3)
C5—C6 1.459 (2) O1W—H2W1 0.84 (3)
C9—O1—C12 117.21 (13) C11—C6—C5 122.81 (14)
C1—N1—C4 115.10 (14) C8—C7—C6 121.30 (15)
C3—N2—C4 116.63 (14) C8—C7—H7A 119.3 (9)
C4—N3—N4 119.77 (14) C6—C7—H7A 119.4 (9)
C4—N3—H1N3 118.9 (14) C7—C8—C9 119.66 (14)
N4—N3—H1N3 121.3 (14) C7—C8—H8A 123.6 (17)
C5—N4—N3 115.91 (15) C9—C8—H8A 116.8 (17)
N1—C1—C2 123.06 (16) O1—C9—C10 124.35 (15)
N1—C1—H1A 117.1 (13) O1—C9—C8 115.47 (14)
C2—C1—H1A 119.8 (13) C10—C9—C8 120.17 (14)
C3—C2—C1 117.26 (16) C11—C10—C9 119.95 (14)
C3—C2—Br1 121.57 (14) C11—C10—H10A 116.7 (14)
C1—C2—Br1 121.17 (14) C9—C10—H10A 123.3 (14)
N2—C3—C2 121.59 (19) C10—C11—C6 120.72 (14)
N2—C3—H3A 116.5 (15) C10—C11—H11A 118.3 (13)
C2—C3—H3A 121.9 (15) C6—C11—H11A 120.9 (13)
N2—C4—N1 126.34 (14) O1—C12—H12A 105.9 (13)
N2—C4—N3 118.98 (13) O1—C12—H12B 106.9 (14)
N1—C4—N3 114.68 (14) H12A—C12—H12B 108.1 (17)
N4—C5—C6 121.68 (15) O1—C12—H12C 111.1 (15)
N4—C5—H5A 117.8 (10) H12A—C12—H12C 114 (2)
C6—C5—H5A 120.5 (10) H12B—C12—H12C 110 (2)
C7—C6—C11 118.19 (14) H1W1—O1W—H2W1 98 (2)
C7—C6—C5 118.99 (16)
C4—N3—N4—C5 179.31 (15) N4—C5—C6—C7 −178.50 (16)
C4—N1—C1—C2 −0.8 (3) N4—C5—C6—C11 0.4 (3)
N1—C1—C2—C3 −0.3 (3) C11—C6—C7—C8 0.4 (3)
N1—C1—C2—Br1 179.74 (14) C5—C6—C7—C8 179.38 (16)
C4—N2—C3—C2 −1.9 (2) C6—C7—C8—C9 −0.2 (3)
C1—C2—C3—N2 1.7 (3) C12—O1—C9—C10 −0.7 (2)
Br1—C2—C3—N2 −178.33 (12) C12—O1—C9—C8 178.75 (17)
C3—N2—C4—N1 0.8 (3) C7—C8—C9—O1 180.00 (15)
C3—N2—C4—N3 −179.34 (15) C7—C8—C9—C10 −0.5 (3)
C1—N1—C4—N2 0.6 (3) O1—C9—C10—C11 −179.58 (15)
C1—N1—C4—N3 −179.35 (16) C8—C9—C10—C11 0.9 (3)
N4—N3—C4—N2 −8.4 (2) C9—C10—C11—C6 −0.7 (3)
N4—N3—C4—N1 171.56 (15) C7—C6—C11—C10 0.1 (2)
N3—N4—C5—C6 178.45 (14) C5—C6—C11—C10 −178.87 (16)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1W—H1W1···N2 0.84 (3) 2.55 (3) 3.153 (2) 131 (2)
O1W—H1W1···N4 0.84 (3) 2.30 (3) 3.0511 (19) 151 (2)
O1W—H2W1···N2i 0.84 (3) 2.01 (3) 2.8341 (19) 169 (2)
N3—H1N3···O1Wii 0.81 (3) 1.99 (3) 2.7773 (19) 165.1 (19)
C5—H5A···O1Wii 0.99 (2) 2.43 (2) 3.257 (2) 140.7 (13)

Symmetry codes: (i) x+1/4, −y+1/4, z+1/4; (ii) x−1/4, −y+1/4, z+3/4.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WN2404).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  4. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  5. Ghorab, M. M., Ismail, Z. H., Abdel-Gawad, S. M. & Aziem, A. A. (2004). Heteroat. Chem.15, 57–62.
  6. Pasha, M. A. & Nanjundaswamy, H. M. (2004). Synth. Commun.34, 3827–3831.
  7. Rollas, S., Gülerman, N. & Erdeniz, H. (2002). Farmaco, 57, 171–174. [DOI] [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  10. Sridhar, R. & Perumal, P. T. (2003). Synth. Commun.33, 1483–1488.
  11. Terzioglu, N. & Gürsoy, A. (2003). Eur. J. Med. Chem.38, 781–786. [DOI] [PubMed]
  12. Zhang, M.-J., Yin, L.-Z., Wang, D.-C., Deng, X.-M. & Liu, J.-B. (2009). Acta Cryst. E65, o508. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810033283/wn2404sup1.cif

e-66-o2467-sup1.cif (18.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810033283/wn2404Isup2.hkl

e-66-o2467-Isup2.hkl (225.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES