Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Aug 28;66(Pt 9):o2463. doi: 10.1107/S1600536810034070

(1S,2S,4R)-3,3-Dichloro-4,8,12,12-tetra­methyl­tricyclo­[5.5.0.02,4]dodeca-6,8-diene

Ahmed Benharref a,*, Lahcen El Ammari b, Moha Berraho a, Esaadia Lassaba a
PMCID: PMC3007900  PMID: 21588782

Abstract

The title compound, C16H22Cl2, a derivative of β-himachalene, was semi-synthesized from natural essential oils of Cedrus atlantica. The mol­ecule is built up from two fused six- and seven-membered rings. The six-membered ring has a perfect chair conformation, whereas the seven-membered ring displays a screw boat conformation; the dihedral angle between the rings is 46.48 (9)°.

Related literature

For background to himachalene derivatives, see: Plattier & Teiseire (1974); Sbai et al. (2002). For ring puckering analysis, see: Cremer & Pople (1975). For the synthesis of the title compound, see: Lassaba et al. (1997). For the reactivity of this sesquiterpene, see: El Jamili et al. (2002; Sbai et al. (2002). For the olfactive properties of β-himachalene, see: Benharref et al. (1991); Bisarya & Dev (1968); Chekroun et al. (2000).graphic file with name e-66-o2463-scheme1.jpg

Experimental

Crystal data

  • C16H22Cl2

  • M r = 285.24

  • Orthorhombic, Inline graphic

  • a = 7.4356 (17) Å

  • b = 8.3124 (18) Å

  • c = 24.108 (6) Å

  • V = 1490.1 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.42 mm−1

  • T = 298 K

  • 0.27 × 0.18 × 0.12 mm

Data collection

  • Bruker X8 APEXII CCD area-detector diffractometer

  • 10992 measured reflections

  • 3691 independent reflections

  • 3282 reflections with I > 2σ(I)

  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032

  • wR(F 2) = 0.096

  • S = 1.11

  • 3691 reflections

  • 175 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.29 e Å−3

  • Absolute structure: Flack (1985), 1535 Friedel pairs

  • Flack parameter: −0.06 (6)

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT-Plus (Bruker, 2009); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810034070/er2079sup1.cif

e-66-o2463-sup1.cif (16.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810034070/er2079Isup2.hkl

e-66-o2463-Isup2.hkl (177.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

supplementary crystallographic information

Comment

Our work lies within the framework of the valorization of the most abundant essential oils in Morocco, such as Cedrus atlantica. This oil is made up mainly (75%) of bicyclic sesquiterpenes hydrocarbons, among which is found the compound, β-himachalene (Bisarya & Dev, 1968; Plattier & Teiseire, 1974). The reactivity of this sesquiterpene has been studied extensively by our team (El Jamili et al., 2002; Sbai et al., 2002) in order to prepare new products having olfactive proprieties suitable for the perfume or cosmetics industry. Thus, the action of one equivalent of meta-chloroperbenzoïc acide (m-CPBA) on, β- himachalène gives in quantitative yields the monoepoxyde (Benharref et al., 1991; Chekroun et al., 2000). The treatement of this monoepoxyde with dichlorocarbene, generated in situ from chloroform and in the presence of sodium hydroxide as base and n-benzyltriethylammonium chloride as catalyst, give a mixtrure of two diastereoisomers: (1S,2R,7S,8S,10R) -9,9-dichloro-1,2- epoxy-2,6,6,10-tetramethyl-tricyclo[5,5,0,08,10]dodecane and (1S,2R,7S,8R,10S) -9,9-dichloro-1,2-epoxy-2,6,6,10-tetramethyl- tricyclo[5,5,0,08,10] dodecane (Lassaba et al., 1997). Also in order to prepare products with high added value, we have treated the isomer (1S,2R,7S,8S,10R) -9,9-dichloro-1,2- epoxy-2,6,6,10-tetramethyl-tricyclo[5,5,0,08,10] dodecane (I) by hydrochloric acid gas and we got one sesquiterpene dichloro-hydrocarbure (II) in yield 75%. The molecule is built up from two fused six-and seven-membered rings(Fig.1). The six-membered ring has a perfect chair conformation, with as indicated by the total puckering amplitude QT = 0.2385 (2)Å and spherical polar angle θ= 99.60 (2)° with φ -117.07 (2)°, whereas the seven-membered ring display a screw boat conformation with QT = 0.9566 (2) Å, θ = 68.84 (2)°, φ2 = -112.42 (1)° and φ3 = 142.26 (3)° (Cremer & Pople, 1975). Owing to the presence of the Cl atoms, the absolute configuration could be fully confirmed to be C7(S), C8(S) and C10(R) (Flack & Bernardinelli, 2000).

Experimental

100 mg (0,33 mm l) of the isomer, (1S,2R,7S,8S,10R)-9,9-dichloro- 1,2-epoxy-2,6,6,10- tetramethyl-tricyclo[5,5,0,08,10]dodecane, dissolved in 20 ml of dichloromethane and then treated with a stream of gaseous hydrochloric acid at 0° for 5 minutes. After concentration of solvent, the residue obtained was chromatgraphed on silica gel impregnated with silver nitrate (10%) with hexane as eluent.

Refinement

Except H3 and H12, all H atoms were fixed geometrically and treated as riding with C—H = 0.96 Å (methyl),0.97 Å (methylene), 0.98Å (methine) with Uiso(H) = 1.2Ueq(methylene, methine) or Uiso(H) = 1.5Ueq(methyl).

Figures

Fig. 1.

Fig. 1.

: Molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability. level. H atoms are represented as small spheres of arbitrary radii.

Fig. 2.

Fig. 2.

The formation of the title compound.

Crystal data

C16H22Cl2 F(000) = 608
Mr = 285.24 Dx = 1.271 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 10992 reflections
a = 7.4356 (17) Å θ = 1.7–28.4°
b = 8.3124 (18) Å µ = 0.42 mm1
c = 24.108 (6) Å T = 298 K
V = 1490.1 (6) Å3 Prism, colourless
Z = 4 0.27 × 0.18 × 0.12 mm

Data collection

Bruker X8 APEXII CCD area-detector diffractometer 3282 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.026
graphite θmax = 28.4°, θmin = 1.7°
φ and ω scans h = −7→9
10992 measured reflections k = −8→11
3691 independent reflections l = −32→28

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.096 w = 1/[σ2(Fo2) + (0.0579P)2] where P = (Fo2 + 2Fc2)/3
S = 1.11 (Δ/σ)max = 0.001
3691 reflections Δρmax = 0.34 e Å3
175 parameters Δρmin = −0.29 e Å3
0 restraints Absolute structure: Flack (1985), 1535 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: −0.06 (6)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.6213 (2) 0.33418 (19) 0.89982 (6) 0.0375 (3)
C2 0.4484 (2) 0.3173 (2) 0.92944 (6) 0.0476 (4)
C3 0.3427 (3) 0.4400 (3) 0.94246 (7) 0.0551 (5)
C4 0.3834 (3) 0.6154 (3) 0.93795 (8) 0.0588 (5)
H4A 0.3146 0.6730 0.9658 0.071*
H4B 0.3451 0.6535 0.9018 0.071*
C5 0.5809 (2) 0.6534 (2) 0.94551 (7) 0.0514 (4)
H5A 0.6290 0.5834 0.9741 0.062*
H5B 0.5919 0.7633 0.9587 0.062*
C6 0.6957 (2) 0.63474 (18) 0.89326 (6) 0.0405 (3)
C7 0.6413 (2) 0.47755 (17) 0.86197 (6) 0.0341 (3)
H7 0.5234 0.4970 0.8451 0.041*
C8 0.7727 (2) 0.44941 (18) 0.81513 (6) 0.0384 (3)
H8 0.8138 0.5487 0.7973 0.046*
C9 0.7663 (2) 0.30866 (19) 0.77693 (7) 0.0427 (3)
C10 0.9167 (2) 0.3203 (2) 0.81854 (7) 0.0438 (3)
C11 0.9108 (2) 0.2114 (2) 0.86840 (8) 0.0497 (4)
H11A 0.9257 0.1014 0.8558 0.060*
H11B 1.0127 0.2368 0.8920 0.060*
C12 0.7456 (3) 0.2200 (2) 0.90240 (7) 0.0457 (4)
C13 1.1028 (3) 0.3568 (3) 0.79848 (9) 0.0628 (5)
H13A 1.1600 0.2590 0.7867 0.094*
H13B 1.1712 0.4044 0.8280 0.094*
H13C 1.0966 0.4304 0.7679 0.094*
C14 0.8912 (3) 0.6291 (2) 0.91128 (8) 0.0546 (4)
H14A 0.9119 0.5336 0.9328 0.082*
H14B 0.9181 0.7221 0.9334 0.082*
H14C 0.9673 0.6280 0.8791 0.082*
C15 0.6651 (3) 0.7795 (2) 0.85566 (8) 0.0573 (5)
H15A 0.7378 0.7690 0.8229 0.086*
H15B 0.6978 0.8761 0.8750 0.086*
H15C 0.5406 0.7847 0.8453 0.086*
C16 0.3883 (3) 0.1489 (3) 0.94230 (11) 0.0727 (6)
H16A 0.4725 0.0996 0.9673 0.109*
H16B 0.3825 0.0876 0.9086 0.109*
H16C 0.2716 0.1518 0.9593 0.109*
Cl1 0.59995 (6) 0.16140 (5) 0.781164 (18) 0.05350 (13)
Cl2 0.81596 (8) 0.34714 (7) 0.706600 (17) 0.06577 (16)
H3 0.223 (3) 0.414 (3) 0.9587 (9) 0.074 (6)*
H12 0.732 (3) 0.127 (3) 0.9270 (9) 0.064 (6)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0388 (7) 0.0457 (7) 0.0281 (6) −0.0004 (7) 0.0008 (5) −0.0004 (6)
C2 0.0430 (9) 0.0676 (11) 0.0323 (7) −0.0041 (8) 0.0017 (6) 0.0061 (7)
C3 0.0393 (9) 0.0868 (13) 0.0391 (9) −0.0009 (9) 0.0065 (7) −0.0031 (9)
C4 0.0457 (10) 0.0781 (12) 0.0526 (10) 0.0142 (9) 0.0084 (8) −0.0187 (9)
C5 0.0500 (9) 0.0632 (10) 0.0411 (8) 0.0055 (9) −0.0002 (7) −0.0196 (8)
C6 0.0404 (8) 0.0440 (8) 0.0370 (7) 0.0023 (7) −0.0012 (6) −0.0080 (6)
C7 0.0324 (7) 0.0403 (7) 0.0297 (6) 0.0027 (6) −0.0007 (5) −0.0020 (5)
C8 0.0422 (8) 0.0404 (7) 0.0326 (7) −0.0017 (6) 0.0054 (6) −0.0022 (6)
C9 0.0434 (8) 0.0512 (8) 0.0334 (7) −0.0048 (6) 0.0071 (6) −0.0074 (6)
C10 0.0374 (8) 0.0520 (8) 0.0420 (8) 0.0002 (7) 0.0066 (6) −0.0116 (7)
C11 0.0441 (9) 0.0517 (9) 0.0532 (10) 0.0111 (7) −0.0005 (8) −0.0033 (7)
C12 0.0526 (10) 0.0458 (8) 0.0388 (8) 0.0016 (7) −0.0013 (7) 0.0033 (7)
C13 0.0432 (9) 0.0831 (13) 0.0621 (11) −0.0044 (10) 0.0113 (8) −0.0171 (11)
C14 0.0431 (9) 0.0663 (11) 0.0545 (10) −0.0054 (9) −0.0050 (8) −0.0144 (8)
C15 0.0744 (14) 0.0392 (8) 0.0583 (11) 0.0027 (9) −0.0033 (10) −0.0024 (8)
C16 0.0590 (12) 0.0815 (13) 0.0776 (14) −0.0113 (12) 0.0084 (11) 0.0310 (12)
Cl1 0.0529 (2) 0.0574 (2) 0.0502 (2) −0.0120 (2) −0.00032 (18) −0.00975 (19)
Cl2 0.0750 (3) 0.0874 (3) 0.0349 (2) −0.0115 (3) 0.0142 (2) −0.0107 (2)

Geometric parameters (Å, °)

C1—C12 1.326 (2) C9—C10 1.505 (2)
C1—C2 1.477 (2) C9—Cl1 1.7433 (16)
C1—C7 1.508 (2) C9—Cl2 1.7645 (17)
C2—C3 1.326 (3) C10—C13 1.497 (2)
C2—C16 1.502 (3) C10—C11 1.505 (3)
C3—C4 1.493 (3) C11—C12 1.479 (3)
C3—H3 1.00 (3) C11—H11A 0.9700
C4—C5 1.513 (3) C11—H11B 0.9700
C4—H4A 0.9700 C12—H12 0.98 (2)
C4—H4B 0.9700 C13—H13A 0.9600
C5—C6 1.530 (2) C13—H13B 0.9600
C5—H5A 0.9700 C13—H13C 0.9600
C5—H5B 0.9700 C14—H14A 0.9600
C6—C14 1.519 (2) C14—H14B 0.9600
C6—C15 1.524 (2) C14—H14C 0.9600
C6—C7 1.562 (2) C15—H15A 0.9600
C7—C8 1.511 (2) C15—H15B 0.9600
C7—H7 0.9800 C15—H15C 0.9600
C8—C9 1.490 (2) C16—H16A 0.9600
C8—C10 1.518 (2) C16—H16B 0.9600
C8—H8 0.9800 C16—H16C 0.9600
C12—C1—C2 121.04 (16) C8—C9—Cl2 116.42 (12)
C12—C1—C7 121.66 (14) C10—C9—Cl2 118.25 (11)
C2—C1—C7 116.97 (14) Cl1—C9—Cl2 109.39 (9)
C3—C2—C1 123.86 (17) C13—C10—C11 114.00 (16)
C3—C2—C16 119.48 (18) C13—C10—C9 118.97 (15)
C1—C2—C16 116.59 (17) C11—C10—C9 118.17 (15)
C2—C3—C4 127.88 (17) C13—C10—C8 119.41 (16)
C2—C3—H3 117.2 (14) C11—C10—C8 116.60 (13)
C4—C3—H3 114.8 (13) C9—C10—C8 59.03 (10)
C3—C4—C5 113.09 (17) C12—C11—C10 115.96 (15)
C3—C4—H4A 109.0 C12—C11—H11A 108.3
C5—C4—H4A 109.0 C10—C11—H11A 108.3
C3—C4—H4B 109.0 C12—C11—H11B 108.3
C5—C4—H4B 109.0 C10—C11—H11B 108.3
H4A—C4—H4B 107.8 H11A—C11—H11B 107.4
C4—C5—C6 114.91 (14) C1—C12—C11 126.00 (17)
C4—C5—H5A 108.5 C1—C12—H12 121.5 (13)
C6—C5—H5A 108.5 C11—C12—H12 112.4 (13)
C4—C5—H5B 108.5 C10—C13—H13A 109.5
C6—C5—H5B 108.5 C10—C13—H13B 109.5
H5A—C5—H5B 107.5 H13A—C13—H13B 109.5
C14—C6—C15 109.72 (16) C10—C13—H13C 109.5
C14—C6—C5 107.57 (14) H13A—C13—H13C 109.5
C15—C6—C5 109.07 (14) H13B—C13—H13C 109.5
C14—C6—C7 111.10 (13) C6—C14—H14A 109.5
C15—C6—C7 109.56 (13) C6—C14—H14B 109.5
C5—C6—C7 109.78 (13) H14A—C14—H14B 109.5
C1—C7—C8 113.17 (12) C6—C14—H14C 109.5
C1—C7—C6 113.22 (12) H14A—C14—H14C 109.5
C8—C7—C6 108.85 (12) H14B—C14—H14C 109.5
C1—C7—H7 107.1 C6—C15—H15A 109.5
C8—C7—H7 107.1 C6—C15—H15B 109.5
C6—C7—H7 107.1 H15A—C15—H15B 109.5
C9—C8—C7 124.25 (13) C6—C15—H15C 109.5
C9—C8—C10 60.05 (10) H15A—C15—H15C 109.5
C7—C8—C10 121.66 (13) H15B—C15—H15C 109.5
C9—C8—H8 113.6 C2—C16—H16A 109.5
C7—C8—H8 113.6 C2—C16—H16B 109.5
C10—C8—H8 113.6 H16A—C16—H16B 109.5
C8—C9—C10 60.92 (11) C2—C16—H16C 109.5
C8—C9—Cl1 122.54 (11) H16A—C16—H16C 109.5
C10—C9—Cl1 122.22 (12) H16B—C16—H16C 109.5

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ER2079).

References

  1. Benharref, A., Chekroun, A. & Lavergne, J. P. (1991). Bull. Soc. Chim. Fr.128, 738–741.
  2. Bisarya, S. C. & Dev, S. (1968). Tetrahedron, 24, 3861–3867.
  3. Bruker (2009). APEX2 and SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Chekroun, A., Jarid, A., Benharref, A. & Boutalib, A. (2000). J. Org. Chem.65, 4431–4434. [DOI] [PubMed]
  5. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  6. El Jamili, H., Auhmani, A., Dakir, M., Lassaba, E., Benharref, A., Pierrot, M., Chiaroni, A. & Riche, C. (2002). Tetrahedron Lett.43, 6645–6648.
  7. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  8. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  9. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  10. Lassaba, E., Chekroun, A., Benharref, A., Chiaroni, A., Riche, C. & Lavergne, J.-P. (1997). Bull. Soc. Chim. Belg.106, 281–288.
  11. Plattier, M. & Teiseire, P. (1974). Recherche, 19, 131–144.
  12. Sbai, F., Dakir, M., Auhmani, A., El Jamili, H., Akssira, M., Benharref, A., Kenz, A. & Pierrot, M. (2002). Acta Cryst. C58, o518–o520. [DOI] [PubMed]
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810034070/er2079sup1.cif

e-66-o2463-sup1.cif (16.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810034070/er2079Isup2.hkl

e-66-o2463-Isup2.hkl (177.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES