Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Aug 4;66(Pt 9):o2200–o2201. doi: 10.1107/S1600536810030059

2-Amino-5-bromo­pyridinium 3-carb­oxy­prop-2-enoate

Madhukar Hemamalini a, Hoong-Kun Fun a,*,
PMCID: PMC3007912  PMID: 21588574

Abstract

In the title salt, C5H6BrN2 +·C4H3O4 , the 2-amino-5-bromo­pyridinium cation and hydrogen maleate anion are planar, with maximum deviations from their mean planes of 0.016 (1) and 0.039 (1) Å, respectively. An intra­molecular O—H⋯O hydrogen bond generates an S(7) ring motif in the anion. In the crystal, the protonated N atom and the 2-amino group of the cation are hydrogen-bonded to the carboxyl­ate O atoms of the anion via a pair of N—H⋯O hydrogen bonds, forming an R 2 2(8) ring motif. The motifs are linked into a two-dimensional network parallel to (011) by N—H⋯O and C—H⋯O hydrogen bonds.

Related literature

For background to the chemistry of substituted pyridines, see: Pozharski et al. (1997); Katritzky et al. (1996). For details of maleic acid, see; Bowes et al. (2003); Jin et al. (2003); Lah & Leban (2003); Allen (2002). For bond-length data, see: Allen et al. (1987). For details of hydrogen bonding, see: Jeffrey & Saenger (1991); Jeffrey (1997); Scheiner (1997). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).graphic file with name e-66-o2200-scheme1.jpg

Experimental

Crystal data

  • C5H6BrN2 +·C4H3O4

  • M r = 289.09

  • Triclinic, Inline graphic

  • a = 5.7434 (1) Å

  • b = 9.5871 (1) Å

  • c = 10.3034 (2) Å

  • α = 80.455 (1)°

  • β = 74.175 (1)°

  • γ = 85.123 (1)°

  • V = 537.80 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.82 mm−1

  • T = 100 K

  • 0.55 × 0.26 × 0.17 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.226, T max = 0.554

  • 17591 measured reflections

  • 4705 independent reflections

  • 4235 reflections with I > 2σ(I)

  • R int = 0.020

Refinement

  • R[F 2 > 2σ(F 2)] = 0.024

  • wR(F 2) = 0.064

  • S = 1.06

  • 4705 reflections

  • 157 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.11 e Å−3

  • Δρmin = −0.70 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810030059/ci5141sup1.cif

e-66-o2200-sup1.cif (15.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810030059/ci5141Isup2.hkl

e-66-o2200-Isup2.hkl (225.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O1⋯O3 0.88 1.57 2.4380 (13) 171
N1—H1N1⋯O4i 0.87 (2) 1.88 (2) 2.7426 (13) 169 (2)
N2—H1N2⋯O3i 0.84 (2) 2.01 (2) 2.8495 (14) 174 (2)
N2—H2N2⋯O2ii 0.82 (2) 2.14 (2) 2.9534 (13) 176 (2)
C3—H3A⋯O2 0.93 2.37 3.2937 (14) 171
C5—H5A⋯O4iii 0.93 2.39 3.3051 (14) 167

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

MH and HKF thank the Malaysian Government and Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

supplementary crystallographic information

Comment

Pyridine and its derivatives play an important role in heterocyclic chemistry (Pozharski et al., 1997; Katritzky et al., 1996). They are often involved in hydrogen-bonding interactions (Jeffrey & Saenger, 1991; Jeffrey, 1997; Scheiner, 1997). Maleic acid, the Z isomer of butenedioic acid, has been used as a simple building block in supramolecular architectures in two and three dimensions (Bowes et al., 2003; Jin et al., 2003). The maleic acid anion can exist in the fully deprotonated form or as hydrogen maleate with one of the carboxyl groups protonated (Lah & Leban, 2003). Several singly dissociated maleate salts are reported in the Cambridge Structural Database (Version 5.29; Allen, 2002). Since our aim is to study some interesting hydrogen-bonding interactions, the crystal structure of the title salt is presented here.

The asymmetric unit (Fig. 1) contains one 2-amino-5-bromopyridinium cation and one hydrogen maleate anion, indicating that proton transfer has occurred during the co-crystallisation experiment. In the 2-amino-5-bromopyridinium cation, a wider than normal angle (C5—N1—C1 = 123.02 (9)°) is subtented at the protonated N1 atom. The 2-amino-5-bromopyridinium cation is essentially planar, with a maximum deviation of 0.016 (1) Å for atom Br1. The bond lengths (Allen et al., 1987) and angles are normal.

In the crystal packing (Fig. 2), the protonated N1 atom and the 2-amino group (N2) are hydrogen-bonded to the carboxylate oxygen atoms (O3 and O4) via a pair of intermolecular N1—H1N1···O4 and N2—H1N2···O3 hydrogen bonds forming an R22(8) ring motif (Bernstein et al., 1995). There is an intramolecular O1—H1O1···O3 hydrogen bond in the hydrogen maleate anion, which generates an S(7) ring motif. Furthermore these two motifs are connected via N2—H2N2···O2, C3—H3A···O2 and C5—H5A···O4 (Table 1) hydrogen bonds, forming a two-dimensional network parallel to the (011) plane.

Experimental

A hot methanol solution (20 ml) of 2-amino-5-bromopyridine (43 mg, Aldrich) and maleic acid (29 mg, Merck) were mixed and warmed over a heating magnetic stirrer hotplate for a few minutes. The resulting solution was allowed to cool slowly at room temperature and crystals of the title compound appeared after a few days.

Refinement

Atoms H1N1, H1N2 and H2N2 were located in a difference Fourier map and were refined freely [N–H= 0.82 (2)–0.870 (19) Å ]. The remaining H atoms were positioned geometrically [O–H = 0.88 Å and C–H = 0.93 Å] and were refined using a riding model, with Uiso(H) = 1.2 Ueq(C).

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level. The dashed line indicates a intramolecular hydrogen bond.

Fig. 2.

Fig. 2.

Part of the crystal structure of the title compound, showing S(7) and R22(8) ring motifs.

Crystal data

C5H6BrN2+·C4H3O4 Z = 2
Mr = 289.09 F(000) = 288
Triclinic, P1 Dx = 1.785 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 5.7434 (1) Å Cell parameters from 9953 reflections
b = 9.5871 (1) Å θ = 2.8–35.2°
c = 10.3034 (2) Å µ = 3.82 mm1
α = 80.455 (1)° T = 100 K
β = 74.175 (1)° Plate, colourless
γ = 85.123 (1)° 0.55 × 0.26 × 0.17 mm
V = 537.80 (2) Å3

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 4705 independent reflections
Radiation source: fine-focus sealed tube 4235 reflections with I > 2σ(I)
graphite Rint = 0.020
φ and ω scans θmax = 35.0°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −9→8
Tmin = 0.226, Tmax = 0.554 k = −15→15
17591 measured reflections l = −16→15

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.064 H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0326P)2 + 0.177P] where P = (Fo2 + 2Fc2)/3
4705 reflections (Δ/σ)max = 0.001
157 parameters Δρmax = 1.11 e Å3
0 restraints Δρmin = −0.70 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.08004 (2) 0.537686 (13) 0.294128 (12) 0.02696 (4)
N1 0.42643 (16) 0.83409 (10) −0.01859 (9) 0.01624 (14)
N2 0.81699 (17) 0.85829 (11) −0.15773 (10) 0.02185 (17)
C1 0.65936 (17) 0.78492 (11) −0.05651 (10) 0.01673 (16)
C2 0.72501 (19) 0.65511 (12) 0.01629 (11) 0.01905 (18)
H2A 0.8842 0.6194 −0.0062 0.023*
C3 0.55552 (19) 0.58268 (11) 0.11897 (11) 0.01939 (18)
H3A 0.5979 0.4971 0.1659 0.023*
C4 0.31486 (19) 0.63883 (11) 0.15333 (11) 0.01821 (17)
C5 0.25417 (18) 0.76411 (11) 0.08418 (10) 0.01714 (16)
H5A 0.0962 0.8017 0.1069 0.021*
O1 0.81743 (14) 0.18263 (11) 0.44160 (9) 0.02726 (19)
H1O1 0.7489 0.1584 0.5288 0.041*
O2 0.68803 (15) 0.26191 (9) 0.25903 (8) 0.02102 (15)
O3 0.63826 (14) 0.09096 (10) 0.68047 (9) 0.02256 (16)
O4 0.27013 (14) 0.06052 (9) 0.82150 (8) 0.01999 (14)
C6 0.64341 (18) 0.21863 (11) 0.38215 (10) 0.01679 (16)
C7 0.38534 (18) 0.20548 (12) 0.46279 (11) 0.01807 (17)
H7A 0.2729 0.2353 0.4128 0.022*
C8 0.28808 (18) 0.15795 (12) 0.59511 (11) 0.01824 (17)
H8A 0.1197 0.1616 0.6220 0.022*
C9 0.40698 (18) 0.09990 (11) 0.70659 (10) 0.01663 (16)
H1N1 0.381 (3) 0.913 (2) −0.0621 (19) 0.026 (4)*
H1N2 0.769 (3) 0.931 (2) −0.2027 (19) 0.028 (4)*
H2N2 0.956 (4) 0.827 (2) −0.183 (2) 0.038 (5)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.02461 (6) 0.02342 (6) 0.02515 (6) −0.00137 (4) 0.00082 (4) 0.00590 (4)
N1 0.0158 (3) 0.0172 (4) 0.0146 (3) 0.0015 (3) −0.0040 (3) −0.0003 (3)
N2 0.0163 (3) 0.0246 (4) 0.0203 (4) 0.0009 (3) −0.0015 (3) 0.0024 (3)
C1 0.0153 (4) 0.0190 (4) 0.0154 (4) 0.0006 (3) −0.0039 (3) −0.0021 (3)
C2 0.0171 (4) 0.0184 (4) 0.0213 (4) 0.0028 (3) −0.0059 (3) −0.0023 (3)
C3 0.0209 (4) 0.0162 (4) 0.0206 (4) 0.0022 (3) −0.0067 (3) −0.0009 (3)
C4 0.0191 (4) 0.0175 (4) 0.0163 (4) −0.0004 (3) −0.0031 (3) −0.0005 (3)
C5 0.0164 (4) 0.0179 (4) 0.0158 (4) 0.0006 (3) −0.0031 (3) −0.0015 (3)
O1 0.0143 (3) 0.0452 (5) 0.0193 (4) −0.0035 (3) −0.0053 (3) 0.0062 (3)
O2 0.0205 (3) 0.0239 (4) 0.0163 (3) 0.0014 (3) −0.0039 (3) 0.0010 (3)
O3 0.0157 (3) 0.0322 (4) 0.0184 (3) −0.0007 (3) −0.0058 (3) 0.0021 (3)
O4 0.0193 (3) 0.0209 (4) 0.0162 (3) 0.0023 (3) −0.0016 (3) 0.0008 (3)
C6 0.0158 (4) 0.0164 (4) 0.0172 (4) −0.0001 (3) −0.0041 (3) −0.0006 (3)
C7 0.0146 (4) 0.0213 (4) 0.0178 (4) 0.0011 (3) −0.0053 (3) −0.0006 (3)
C8 0.0146 (4) 0.0211 (4) 0.0177 (4) 0.0009 (3) −0.0042 (3) −0.0002 (3)
C9 0.0171 (4) 0.0164 (4) 0.0161 (4) 0.0006 (3) −0.0046 (3) −0.0017 (3)

Geometric parameters (Å, °)

Br1—C4 1.8848 (11) C4—C5 1.3609 (15)
N1—C1 1.3540 (13) C5—H5A 0.93
N1—C5 1.3624 (13) O1—C6 1.3032 (12)
N1—H1N1 0.870 (19) O1—H1O1 0.88
N2—C1 1.3237 (14) O2—C6 1.2301 (13)
N2—H1N2 0.842 (19) O3—C9 1.2796 (12)
N2—H2N2 0.82 (2) O4—C9 1.2477 (12)
C1—C2 1.4207 (15) C6—C7 1.4929 (14)
C2—C3 1.3633 (16) C7—C8 1.3417 (15)
C2—H2A 0.93 C7—H7A 0.93
C3—C4 1.4126 (15) C8—C9 1.4988 (14)
C3—H3A 0.93 C8—H8A 0.93
C1—N1—C5 123.02 (9) C3—C4—Br1 119.31 (8)
C1—N1—H1N1 119.6 (13) C4—C5—N1 119.57 (9)
C5—N1—H1N1 117.3 (13) C4—C5—H5A 120.2
C1—N2—H1N2 119.8 (13) N1—C5—H5A 120.2
C1—N2—H2N2 120.2 (15) C6—O1—H1O1 106.9
H1N2—N2—H2N2 120 (2) O2—C6—O1 120.95 (9)
N2—C1—N1 119.76 (10) O2—C6—C7 118.87 (9)
N2—C1—C2 122.44 (9) O1—C6—C7 120.17 (9)
N1—C1—C2 117.79 (9) C8—C7—C6 130.95 (9)
C3—C2—C1 120.27 (9) C8—C7—H7A 114.5
C3—C2—H2A 119.9 C6—C7—H7A 114.5
C1—C2—H2A 119.9 C7—C8—C9 130.44 (9)
C2—C3—C4 119.36 (10) C7—C8—H8A 114.8
C2—C3—H3A 120.3 C9—C8—H8A 114.8
C4—C3—H3A 120.3 O4—C9—O3 123.48 (10)
C5—C4—C3 119.99 (10) O4—C9—C8 116.75 (9)
C5—C4—Br1 120.70 (8) O3—C9—C8 119.77 (9)
C5—N1—C1—N2 179.73 (10) Br1—C4—C5—N1 −178.99 (8)
C5—N1—C1—C2 −0.79 (15) C1—N1—C5—C4 0.00 (16)
N2—C1—C2—C3 −179.37 (11) O2—C6—C7—C8 177.71 (12)
N1—C1—C2—C3 1.17 (16) O1—C6—C7—C8 −1.27 (19)
C1—C2—C3—C4 −0.77 (16) C6—C7—C8—C9 −1.0 (2)
C2—C3—C4—C5 −0.03 (17) C7—C8—C9—O4 −178.65 (11)
C2—C3—C4—Br1 179.39 (8) C7—C8—C9—O3 0.33 (18)
C3—C4—C5—N1 0.43 (16)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1O1···O3 0.88 1.57 2.4380 (13) 171
N1—H1N1···O4i 0.87 (2) 1.88 (2) 2.7426 (13) 169 (2)
N2—H1N2···O3i 0.84 (2) 2.01 (2) 2.8495 (14) 174 (2)
N2—H2N2···O2ii 0.82 (2) 2.14 (2) 2.9534 (13) 176 (2)
C3—H3A···O2 0.93 2.37 3.2937 (14) 171
C5—H5A···O4iii 0.93 2.39 3.3051 (14) 167

Symmetry codes: (i) x, y+1, z−1; (ii) −x+2, −y+1, −z; (iii) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI5141).

References

  1. Allen, F. H. (2002). Acta Cryst. B58, 380–388. [DOI] [PubMed]
  2. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  3. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  4. Bowes, K. F., Ferguson, G., Lough, A. J. & Glidewell, C. (2003). Acta Cryst. B59, 100–117. [DOI] [PubMed]
  5. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  7. Jeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. Oxford University Press.
  8. Jeffrey, G. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin: Springer.
  9. Jin, Z. M., Hu, M. L., Wang, K. W., Shen, L. & Li, M. C. (2003). Acta Cryst. E59, o1–o3.
  10. Katritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). Comprehensive Heterocyclic Chemistry II. Oxford: Pergamon Press.
  11. Lah, N. & Leban, I. (2003). Acta Cryst. C59, o537–o538. [DOI] [PubMed]
  12. Pozharski, A. F., Soldatenkov, A. T. & Katritzky, A. R. (1997). Heterocycles in Life and Society. New York: Wiley.
  13. Scheiner, S. (1997). Hydrogen Bonding. A Theoretical Perspective. Oxford University Press.
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810030059/ci5141sup1.cif

e-66-o2200-sup1.cif (15.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810030059/ci5141Isup2.hkl

e-66-o2200-Isup2.hkl (225.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES