Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Aug 18;66(Pt 9):o2353–o2354. doi: 10.1107/S1600536810031806

Redetermination of {5-[(7-chloro­quinolinium-4-yl)amino]-2-hy­droxy­benz­yl}diethyl­ammonium dichloride dihydrate

Peter Mangwala Kimpende a, Luc Van Meervelt a,*
PMCID: PMC3007921  PMID: 21588696

Abstract

The structure of the title compound (common name: amodiaquinium dichloride dihydrate), C20H24ClN3O2 +·2Cl·2H2O, was previously determined from powder diffraction data [Llinàs et al. (2006). Acta Cryst. E62, o4196-o4199]. It has now been refined from diffractometer data to a significantly higher precision. The dihedral angle between the quinoline and benzene rings is 54.57 (6)°. The central amino N atom inter­acts more strongly with the quinoline ring than with the benzene ring, as indicated by the shorter C—N bond length [1.341 (2) Å compared to 1.431 (2) Å]. In the crystal, mol­ecules are packed into a three-dimensional network/supra­molecular structure through hydrogen bonds between the amodiaquinium cations, chloride anions and water mol­ecules.

Related literature

Amodiaquine, as a dihydro­chloride salt, is often used as a synthetic anti­malarial drug against chloro­quine-sensitive and chloro­quine-resistant strains of Plasmodium falciparum, see: Olliaro & Taylor (2003). For related structures, see: Llinàs et al. (2006); Yennawar & Viswamitra (1991); Semeniuk et al. (2008).graphic file with name e-66-o2353-scheme1.jpg

Experimental

Crystal data

  • C20H24ClN3O2+·2Cl·2H2O

  • M r = 464.80

  • Monoclinic, Inline graphic

  • a = 7.7622 (1) Å

  • b = 26.8709 (4) Å

  • c = 10.7085 (2) Å

  • β = 92.784 (1)°

  • V = 2230.91 (6) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 3.94 mm−1

  • T = 100 K

  • 0.56 × 0.14 × 0.12 mm

Data collection

  • Bruker SMART 6000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997) T min = 0.312, T max = 0.623

  • 31612 measured reflections

  • 3917 independent reflections

  • 3699 reflections with I > 2σ(I)

  • R int = 0.088

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038

  • wR(F 2) = 0.100

  • S = 1.10

  • 3917 reflections

  • 287 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.32 e Å−3

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and DIAMOND (Brandenburg, 2010); software used to prepare material for publication: PLATON.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810031806/lx2163sup1.cif

e-66-o2353-sup1.cif (22.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810031806/lx2163Isup2.hkl

e-66-o2353-Isup2.hkl (192KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯Cl2 0.89 (2) 2.32 (2) 3.1913 (16) 166.8 (19)
N2—H2N⋯O2Wi 0.83 (2) 2.07 (2) 2.880 (2) 167 (2)
N3—H3N⋯Cl3 0.85 (2) 2.26 (2) 3.0771 (14) 161 (2)
O1—H1O⋯Cl2ii 0.84 2.22 3.0640 (12) 177
O1W—H1WA⋯Cl3iii 0.88 (3) 2.30 (3) 3.1778 (16) 175 (3)
O1W—H1WB⋯Cl3i 0.80 (3) 2.42 (3) 3.2100 (16) 171 (3)
O2W—H2WA⋯O1W 0.83 (3) 1.95 (3) 2.775 (2) 174 (2)
O2W—H2WB⋯Cl2ii 0.83 (3) 2.33 (3) 3.1585 (15) 173 (3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

supplementary crystallographic information

Comment

Amodiaquine, 4-[7-chloro-4-quinolinyl)amino]-2-[(diethylamino)methyl]phenol, is as dihydrochloride salt, often used as synthetic antimalarial drug against chloroquine-sensitive and chloroquine-resistant strains of Plasmodium falciparum (Olliaro & Taylor, 2003). The single-crystal structure of the monohydrate form has been reported by Yennawar & Viswamitra (1991) and by Semeniuk et al. (2008). The room temperature structure of the dihydrate form based on powder diffraction at 1.79 Å resolution has been reported by Llinàs et al. (2006). Here we report the crystal structure of the title compound (I) at 100 K and a resolution of 0.84 Å (Fig. 1).

Two N atoms (N1 and N3) are protonated indicating that the dihydrochloride salt of amodiaquine is present. The shape of the molecule is mainly dominated by three torsion angles: C8–C9–N2–C19 (τ1 = -7.7 (3)°), C9–N2–C10–C11 (τ2 = -52.8 (2)°) and C11–C12–C16–N3 (τ3 = -85.85 (18)°). It was suggested by Yennawar & Viswamitra (1991) that the C–N bonds linking both aromatic rings have double-bond character. However, we observe a large difference between both bonds C9–N2 (1.341 (2) Å) and N2–C10 (1.431 (2) Å), indicating that N2 interacts more with the quinoline than with the benzene unit. It is also clear from inspection of τ1 and τ2 that the overlap of the lone pair of the sp2-hybridized N2 with the quinoline unit is favoured, and this despite the short H2N···H2 contact distance (2.08 Å). The dihedral angle between the quinoline and benzene units is 54.57 (6)°. An intramolecular close contact between H16A and O1 (2.396 Å) is observed by Llinàs et al. (2006). The r.m.s. deviation when fitting the amodiaquinium units obtained by single-crystal and powder diffraction (Llinàs et al., 2006) is 0.0739 Å. The hydrogen bonds in the crystal packing (Table 1, Fig. 2) are similar to those described by Llinàs et al. (2006).

Experimental

Amodiaquinium dichloride dihydrate was purchased from Sigma-Aldrich (Belgium). Colourless crystals were obtained at room temperature by slow evaporation from a DMSO solution of (I).

Refinement

H atoms of the NH groups and of both waters were located in a difference map. The other H atoms were positioned with idealized geometry using a riding model with C–H = 0.95-0.99 Å. All H atoms were refined with isotropic displacement parameters (set to 1.2 or 1.5 times the Ueq of the parent atom).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.

Fig. 2.

Fig. 2.

N–H···Cl, N–H···O, O–H···Cl, and O–H···O hydrogen bonds (dotted lines) in the crystal structure of the title compound. [Symmetry codes : (i) x , - y + 1/2, z - 1/2; (ii) -x - 1, y - 1/2, - z + 1/2; (iii) - x , y -1/2, - z + 1/2.]

Crystal data

C20H24ClN3O2+·2Cl·2H2O F(000) = 976
Mr = 464.80 Dx = 1.384 Mg m3
Monoclinic, P21/c Cu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybc Cell parameters from 6662 reflections
a = 7.7622 (1) Å θ = 3.3–70.5°
b = 26.8709 (4) Å µ = 3.94 mm1
c = 10.7085 (2) Å T = 100 K
β = 92.784 (1)° Prism, colourless
V = 2230.91 (6) Å3 0.56 × 0.14 × 0.12 mm
Z = 4

Data collection

Bruker SMART 6000 CCD diffractometer 3917 independent reflections
Radiation source: fine-focus sealed tube 3699 reflections with I > 2σ(I)
crossed Göbel mirrors Rint = 0.088
Detector resolution: 0.92 pixels mm-1 θmax = 66.6°, θmin = 3.3°
ω and φ scans h = −8→9
Absorption correction: multi-scan (SADABS; Bruker, 1997) k = −31→31
Tmin = 0.312, Tmax = 0.623 l = −12→12
31612 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038 Hydrogen site location: difference Fourier map
wR(F2) = 0.100 H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0443P)2 + 1.0601P] where P = (Fo2 + 2Fc2)/3
3917 reflections (Δ/σ)max = 0.001
287 parameters Δρmax = 0.40 e Å3
0 restraints Δρmin = −0.32 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 −0.2951 (2) 0.51757 (6) 0.06525 (16) 0.0118 (3)
C2 −0.2063 (2) 0.52058 (6) −0.04673 (16) 0.0131 (4)
H2 −0.1539 0.4915 −0.0782 0.016*
C3 −0.1939 (2) 0.56445 (7) −0.11087 (16) 0.0140 (4)
H3 −0.1362 0.5658 −0.1870 0.017*
C4 −0.2681 (2) 0.60736 (7) −0.06187 (17) 0.0147 (4)
C5 −0.3573 (2) 0.60667 (6) 0.04469 (17) 0.0141 (4)
H5 −0.4080 0.6362 0.0753 0.017*
C6 −0.3724 (2) 0.56123 (6) 0.10810 (16) 0.0118 (3)
C7 −0.4831 (2) 0.51792 (7) 0.27924 (16) 0.0141 (4)
H7 −0.5498 0.5183 0.3513 0.017*
C8 −0.4081 (2) 0.47445 (6) 0.24440 (16) 0.0138 (4)
H8 −0.4226 0.4453 0.2928 0.017*
C9 −0.3097 (2) 0.47234 (6) 0.13779 (16) 0.0118 (3)
C10 −0.2219 (2) 0.38571 (6) 0.17370 (16) 0.0127 (4)
C11 −0.1590 (2) 0.38657 (6) 0.29763 (16) 0.0125 (4)
H11 −0.1216 0.4171 0.3343 0.015*
C12 −0.1502 (2) 0.34316 (6) 0.36829 (16) 0.0115 (3)
C13 −0.2084 (2) 0.29835 (6) 0.31382 (17) 0.0121 (3)
C14 −0.2641 (2) 0.29733 (6) 0.18823 (17) 0.0139 (4)
H14 −0.2977 0.2667 0.1501 0.017*
C15 −0.2709 (2) 0.34090 (7) 0.11850 (17) 0.0140 (4)
H15 −0.3091 0.3400 0.0329 0.017*
C16 −0.0831 (2) 0.34431 (6) 0.50266 (16) 0.0133 (4)
H16A −0.1354 0.3166 0.5485 0.016*
H16B −0.1191 0.3759 0.5414 0.016*
C17 0.1735 (2) 0.34491 (6) 0.65140 (16) 0.0136 (4)
H17A 0.1177 0.3744 0.6876 0.016*
H17B 0.2995 0.3509 0.6553 0.016*
C18 0.1364 (3) 0.29984 (7) 0.73055 (17) 0.0206 (4)
H18A 0.0146 0.2906 0.7179 0.031*
H18B 0.1614 0.3077 0.8189 0.031*
H18C 0.2090 0.2720 0.7061 0.031*
C19 0.1800 (2) 0.29476 (7) 0.45331 (16) 0.0145 (4)
H19A 0.1337 0.2938 0.3655 0.017*
H19B 0.1390 0.2646 0.4960 0.017*
C20 0.3754 (3) 0.29404 (8) 0.45504 (19) 0.0242 (4)
H20A 0.4172 0.3254 0.4210 0.036*
H20B 0.4137 0.2662 0.4040 0.036*
H20C 0.4217 0.2900 0.5412 0.036*
N1 −0.4650 (2) 0.56009 (6) 0.21445 (14) 0.0137 (3)
H1N −0.514 (3) 0.5883 (9) 0.237 (2) 0.016*
N2 −0.2317 (2) 0.43058 (5) 0.10177 (14) 0.0126 (3)
H2N −0.190 (3) 0.4290 (8) 0.032 (2) 0.015*
N3 0.1117 (2) 0.33997 (5) 0.51605 (14) 0.0114 (3)
H3N 0.152 (3) 0.3658 (9) 0.482 (2) 0.015 (5)*
O1 −0.20278 (17) 0.25706 (4) 0.38692 (12) 0.0160 (3)
H1O −0.2483 0.2331 0.3472 0.024*
O1W −0.0091 (2) 0.02817 (6) 0.17421 (15) 0.0321 (4)
H1WA −0.080 (4) 0.0063 (12) 0.139 (3) 0.038*
H1WB 0.063 (4) 0.0345 (11) 0.126 (3) 0.038*
O2W −0.08987 (19) 0.09265 (5) 0.36517 (13) 0.0201 (3)
H2WA −0.073 (3) 0.0731 (10) 0.307 (3) 0.024*
H2WB −0.157 (4) 0.1146 (10) 0.337 (2) 0.024*
Cl1 −0.24427 (7) 0.663720 (16) −0.13878 (5) 0.02505 (15)
Cl2 −0.63123 (6) 0.667531 (14) 0.24913 (4) 0.01525 (13)
Cl3 0.24523 (6) 0.444735 (15) 0.45660 (4) 0.02012 (14)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0116 (8) 0.0129 (8) 0.0105 (8) −0.0019 (7) −0.0021 (7) 0.0008 (6)
C2 0.0133 (8) 0.0126 (8) 0.0134 (8) −0.0003 (7) 0.0005 (7) −0.0025 (6)
C3 0.0148 (9) 0.0163 (8) 0.0110 (8) −0.0015 (7) 0.0004 (7) 0.0011 (7)
C4 0.0153 (9) 0.0129 (8) 0.0156 (8) −0.0009 (7) −0.0013 (7) 0.0041 (7)
C5 0.0144 (9) 0.0110 (8) 0.0168 (8) 0.0017 (7) 0.0000 (7) −0.0009 (7)
C6 0.0100 (8) 0.0141 (8) 0.0110 (8) −0.0001 (6) −0.0012 (7) −0.0003 (6)
C7 0.0133 (8) 0.0174 (9) 0.0117 (8) −0.0014 (7) 0.0017 (7) 0.0012 (7)
C8 0.0144 (8) 0.0135 (8) 0.0135 (8) −0.0013 (7) 0.0002 (7) 0.0023 (6)
C9 0.0109 (8) 0.0127 (8) 0.0115 (8) −0.0005 (6) −0.0038 (7) 0.0002 (6)
C10 0.0128 (8) 0.0119 (8) 0.0134 (8) 0.0025 (7) 0.0013 (7) 0.0018 (6)
C11 0.0128 (8) 0.0093 (8) 0.0153 (8) 0.0010 (6) 0.0014 (7) −0.0012 (6)
C12 0.0104 (8) 0.0134 (8) 0.0108 (8) 0.0020 (6) 0.0024 (7) 0.0006 (6)
C13 0.0098 (8) 0.0106 (8) 0.0159 (9) 0.0018 (6) 0.0015 (7) 0.0030 (6)
C14 0.0154 (9) 0.0106 (8) 0.0154 (9) −0.0005 (6) −0.0014 (7) −0.0011 (6)
C15 0.0145 (9) 0.0152 (9) 0.0120 (8) 0.0023 (7) −0.0018 (7) 0.0001 (6)
C16 0.0127 (9) 0.0154 (8) 0.0119 (8) 0.0008 (7) 0.0014 (7) −0.0010 (6)
C17 0.0160 (9) 0.0158 (8) 0.0087 (8) −0.0004 (7) −0.0016 (7) −0.0013 (6)
C18 0.0265 (10) 0.0228 (10) 0.0123 (8) −0.0023 (8) −0.0021 (8) 0.0032 (7)
C19 0.0168 (9) 0.0153 (8) 0.0113 (8) 0.0019 (7) −0.0004 (7) −0.0029 (6)
C20 0.0173 (10) 0.0341 (11) 0.0210 (10) 0.0059 (8) −0.0007 (8) −0.0101 (8)
N1 0.0149 (8) 0.0124 (7) 0.0140 (7) 0.0027 (6) 0.0025 (6) −0.0007 (6)
N2 0.0169 (8) 0.0113 (7) 0.0098 (7) 0.0003 (6) 0.0021 (6) 0.0013 (5)
N3 0.0137 (8) 0.0113 (7) 0.0093 (7) −0.0015 (6) 0.0004 (6) 0.0019 (6)
O1 0.0223 (7) 0.0093 (6) 0.0163 (6) −0.0028 (5) −0.0011 (5) 0.0030 (5)
O1W 0.0378 (9) 0.0334 (9) 0.0259 (8) −0.0084 (7) 0.0113 (7) −0.0119 (7)
O2W 0.0264 (8) 0.0181 (7) 0.0161 (6) 0.0032 (6) 0.0033 (6) 0.0022 (5)
Cl1 0.0353 (3) 0.0141 (2) 0.0266 (3) 0.00221 (18) 0.0109 (2) 0.00951 (17)
Cl2 0.0173 (2) 0.0126 (2) 0.0157 (2) 0.00398 (15) −0.00045 (17) −0.00229 (14)
Cl3 0.0266 (3) 0.0168 (2) 0.0171 (2) −0.00626 (17) 0.00212 (19) 0.00298 (15)

Geometric parameters (Å, °)

C1—C6 1.405 (2) C14—H14 0.9500
C1—C2 1.414 (3) C15—H15 0.9500
C1—C9 1.450 (2) C16—N3 1.516 (2)
C2—C3 1.370 (3) C16—H16A 0.9900
C2—H2 0.9500 C16—H16B 0.9900
C3—C4 1.402 (3) C17—N3 1.510 (2)
C3—H3 0.9500 C17—C18 1.514 (2)
C4—C5 1.364 (3) C17—H17A 0.9900
C4—Cl1 1.7381 (17) C17—H17B 0.9900
C5—C6 1.405 (2) C18—H18A 0.9800
C5—H5 0.9500 C18—H18B 0.9800
C6—N1 1.376 (2) C18—H18C 0.9800
C7—N1 1.340 (2) C19—N3 1.497 (2)
C7—C8 1.365 (3) C19—C20 1.516 (3)
C7—H7 0.9500 C19—H19A 0.9900
C8—C9 1.405 (3) C19—H19B 0.9900
C8—H8 0.9500 C20—H20A 0.9800
C9—N2 1.340 (2) C20—H20B 0.9800
C10—C15 1.386 (3) C20—H20C 0.9800
C10—C11 1.392 (3) N1—H1N 0.89 (2)
C10—N2 1.431 (2) N2—H2N 0.83 (3)
C11—C12 1.390 (2) N3—H3N 0.85 (3)
C11—H11 0.9500 O1—H1O 0.8400
C12—C13 1.403 (2) O1W—H1WA 0.88 (3)
C12—C16 1.507 (2) O1W—H1WB 0.80 (3)
C13—O1 1.357 (2) O2W—H2WA 0.83 (3)
C13—C14 1.393 (3) O2W—H2WB 0.84 (3)
C14—C15 1.388 (3)
C6—C1—C2 117.57 (16) C12—C16—N3 112.69 (14)
C6—C1—C9 118.64 (16) C12—C16—H16A 109.1
C2—C1—C9 123.79 (16) N3—C16—H16A 109.1
C3—C2—C1 121.54 (16) C12—C16—H16B 109.1
C3—C2—H2 119.2 N3—C16—H16B 109.1
C1—C2—H2 119.2 H16A—C16—H16B 107.8
C2—C3—C4 118.68 (16) N3—C17—C18 114.01 (14)
C2—C3—H3 120.7 N3—C17—H17A 108.8
C4—C3—H3 120.7 C18—C17—H17A 108.8
C5—C4—C3 122.46 (16) N3—C17—H17B 108.8
C5—C4—Cl1 118.58 (14) C18—C17—H17B 108.8
C3—C4—Cl1 118.96 (14) H17A—C17—H17B 107.6
C4—C5—C6 118.29 (16) C17—C18—H18A 109.5
C4—C5—H5 120.9 C17—C18—H18B 109.5
C6—C5—H5 120.9 H18A—C18—H18B 109.5
N1—C6—C1 120.02 (16) C17—C18—H18C 109.5
N1—C6—C5 118.59 (16) H18A—C18—H18C 109.5
C1—C6—C5 121.40 (16) H18B—C18—H18C 109.5
N1—C7—C8 121.68 (16) N3—C19—C20 112.36 (15)
N1—C7—H7 119.2 N3—C19—H19A 109.1
C8—C7—H7 119.2 C20—C19—H19A 109.1
C7—C8—C9 120.83 (16) N3—C19—H19B 109.1
C7—C8—H8 119.6 C20—C19—H19B 109.1
C9—C8—H8 119.6 H19A—C19—H19B 107.9
N2—C9—C8 122.57 (16) C19—C20—H20A 109.5
N2—C9—C1 119.97 (16) C19—C20—H20B 109.5
C8—C9—C1 117.46 (16) H20A—C20—H20B 109.5
C15—C10—C11 119.80 (16) C19—C20—H20C 109.5
C15—C10—N2 119.74 (15) H20A—C20—H20C 109.5
C11—C10—N2 120.43 (15) H20B—C20—H20C 109.5
C12—C11—C10 120.72 (16) C7—N1—C6 121.31 (15)
C12—C11—H11 119.6 C7—N1—H1N 121.8 (14)
C10—C11—H11 119.6 C6—N1—H1N 116.8 (14)
C11—C12—C13 119.18 (16) C9—N2—C10 124.30 (16)
C11—C12—C16 120.54 (16) C9—N2—H2N 120.2 (15)
C13—C12—C16 120.26 (15) C10—N2—H2N 115.4 (15)
O1—C13—C14 122.72 (15) C19—N3—C17 113.52 (13)
O1—C13—C12 117.46 (16) C19—N3—C16 113.13 (14)
C14—C13—C12 119.79 (16) C17—N3—C16 110.65 (14)
C15—C14—C13 120.30 (16) C19—N3—H3N 108.9 (15)
C15—C14—H14 119.8 C17—N3—H3N 103.8 (15)
C13—C14—H14 119.8 C16—N3—H3N 106.1 (15)
C10—C15—C14 120.05 (16) C13—O1—H1O 109.5
C10—C15—H15 120.0 H1WA—O1W—H1WB 108 (3)
C14—C15—H15 120.0 H2WA—O2W—H2WB 107 (2)
C6—C1—C2—C3 0.7 (3) C11—C12—C13—O1 −177.99 (16)
C9—C1—C2—C3 −178.97 (16) C16—C12—C13—O1 0.6 (2)
C1—C2—C3—C4 1.5 (3) C11—C12—C13—C14 3.8 (3)
C2—C3—C4—C5 −2.5 (3) C16—C12—C13—C14 −177.60 (16)
C2—C3—C4—Cl1 177.02 (14) O1—C13—C14—C15 178.55 (16)
C3—C4—C5—C6 1.1 (3) C12—C13—C14—C15 −3.4 (3)
Cl1—C4—C5—C6 −178.43 (13) C11—C10—C15—C14 2.8 (3)
C2—C1—C6—N1 178.00 (16) N2—C10—C15—C14 −179.04 (17)
C9—C1—C6—N1 −2.3 (2) C13—C14—C15—C10 0.1 (3)
C2—C1—C6—C5 −2.1 (3) C11—C12—C16—N3 −85.8 (2)
C9—C1—C6—C5 177.54 (16) C13—C12—C16—N3 95.62 (19)
C4—C5—C6—N1 −178.85 (16) C8—C7—N1—C6 1.3 (3)
C4—C5—C6—C1 1.3 (3) C1—C6—N1—C7 0.2 (3)
N1—C7—C8—C9 −0.6 (3) C5—C6—N1—C7 −179.66 (16)
C7—C8—C9—N2 178.87 (17) C8—C9—N2—C10 −7.7 (3)
C7—C8—C9—C1 −1.6 (3) C1—C9—N2—C10 172.72 (15)
C6—C1—C9—N2 −177.47 (16) C15—C10—N2—C9 129.05 (19)
C2—C1—C9—N2 2.2 (3) C11—C10—N2—C9 −52.8 (3)
C6—C1—C9—C8 2.9 (2) C20—C19—N3—C17 −59.3 (2)
C2—C1—C9—C8 −177.40 (17) C20—C19—N3—C16 173.55 (15)
C15—C10—C11—C12 −2.3 (3) C18—C17—N3—C19 −55.1 (2)
N2—C10—C11—C12 179.55 (16) C18—C17—N3—C16 73.33 (19)
C10—C11—C12—C13 −1.0 (3) C12—C16—N3—C19 −55.29 (19)
C10—C11—C12—C16 −179.61 (16) C12—C16—N3—C17 176.05 (14)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1N···Cl2 0.89 (2) 2.32 (2) 3.1913 (16) 166.8 (19)
N2—H2N···O2Wi 0.83 (2) 2.07 (2) 2.880 (2) 167 (2)
N3—H3N···Cl3 0.85 (2) 2.26 (2) 3.0771 (14) 161 (2)
O1—H1O···Cl2ii 0.84 2.22 3.0640 (12) 177
O1W—H1WA···Cl3iii 0.88 (3) 2.30 (3) 3.1778 (16) 175 (3)
O1W—H1WB···Cl3i 0.80 (3) 2.42 (3) 3.2100 (16) 171 (3)
O2W—H2WA···O1W 0.83 (3) 1.95 (3) 2.775 (2) 174 (2)
O2W—H2WB···Cl2ii 0.83 (3) 2.33 (3) 3.1585 (15) 173 (3)

Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) −x−1, y−1/2, −z+1/2; (iii) −x, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LX2163).

References

  1. Brandenburg, K. (2010). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Bruker (1997). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Llinàs, A., Fábián, L., Burley, J. C., van de Streek, J. & Goodman, J. M. (2006). Acta Cryst. E62, o4196–o4199.
  4. Olliaro, P. L. & Taylor, W. R. J. (2003). J. Exp. Biol.206, 3753–3759. [DOI] [PubMed]
  5. Semeniuk, A., Niedospial, A., Kalinowska-Tluscik, J., Nitek, W. & Oleksyn, B. J. (2008). J. Mol. Struct.875, 32–41.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  8. Yennawar, H. P. & Viswamitra, M. A. (1991). Curr. Sci.61, 39–43.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810031806/lx2163sup1.cif

e-66-o2353-sup1.cif (22.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810031806/lx2163Isup2.hkl

e-66-o2353-Isup2.hkl (192KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES