Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Aug 18;66(Pt 9):o2343. doi: 10.1107/S1600536810032277

Methyl 2-(tert-but­oxy­carbonyl­amino)-1,3-thia­zole-5-carboxyl­ate

Kang An a, Jiannin Guan a, Pen Yu a, Hao Yang b, Rong Wan a,*
PMCID: PMC3007983  PMID: 21588688

Abstract

The title compound, C10H14N2O4S, was synthesized by the reaction of methyl 2-amino­thia­zole-5-carboxyl­ate and di-tert-butyl carbonate. In this structure, the thia­zole ring is planar (mean deviation = 0.0011 Å). Two weak intra­molecular C—H⋯O hydrogen bonds are formed between two of the methyl groups and one carbonyl O atom, resulting in the formation of two twisted six-membered rings. Inter­molecular N—H⋯N hydrogen bonds link the mol­ecules to form centrosymmetric dimeric units, and the hydrogen-bond scheme is completed by inter­molecular C—H⋯O contacts.

Related literature

For information on the use of the title compound in the synthesis of dasatinib [systematic name: N-(2-chloro-6-methyl­phenyl)-2-({6-[4-(2-hydroxyethyl)piperazin-1-yl]-2-methyl­pyrimidin-4-yl}amino)-5-thiazolecarboxamide], see: Lombardo et al. (2004). For information on the effectiveness of dasatinib in imatinib-resistant Bcr–Abl kinase domain mutants, see: Shah et al. (2004).graphic file with name e-66-o2343-scheme1.jpg

Experimental

Crystal data

  • C10H14N2O4S

  • M r = 258.29

  • Triclinic, Inline graphic

  • a = 7.0700 (14) Å

  • b = 9.2580 (19) Å

  • c = 10.708 (2) Å

  • α = 70.10 (3)°

  • β = 79.67 (3)°

  • γ = 79.08 (3)°

  • V = 642.1 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 293 K

  • 0.30 × 0.10 × 0.10 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968) T min = 0.927, T max = 0.975

  • 2543 measured reflections

  • 2338 independent reflections

  • 1975 reflections with I > 2σ(I)

  • R int = 0.014

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047

  • wR(F 2) = 0.142

  • S = 1.01

  • 2338 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.36 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1989); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810032277/bh2305sup1.cif

e-66-o2343-sup1.cif (16.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810032277/bh2305Isup2.hkl

e-66-o2343-Isup2.hkl (114.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8A⋯O3 0.96 2.47 3.030 (4) 117
C10—H10A⋯O3 0.96 2.45 3.010 (4) 117
N2—H2A⋯N1i 0.86 2.02 2.879 (3) 174
C9—H9C⋯O2ii 0.96 2.60 3.440 (4) 146
C10—H10C⋯O2ii 0.96 2.57 3.436 (4) 150

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank Professor Hua-qin Wang (Nanjing University) for carrying out the X-ray crystallographic analysis.

supplementary crystallographic information

Comment

Methyl 2-((tert-butoxycarbonyl)amino)thiazole-5-carboxylate is an important intermediate compound in research on synthesizing Dasatinib (Lombardo et al., 2004). Dasatinib is a high affinity dual Src/Abl and c-Kit inhibitor that has been recently approved for all categories of imatinib-refractory chronic myelogenous leukemia (CML) and acute lymphoblastic leukemia (ALL). Dasatinib is also effective in many imatinib resistant Bcr–Abl kinase domain mutants (Shah et al., 2004).

We report here the crystal structure of the title compound, (I). The molecular structure of (I) is shown in Fig. 1. Ring A (S/C5/N1/C4/C3) is a planar five-membered ring with a r.m.s. deviation of 0.0011 Å. In this plane, atoms S, C5, N1, C4 and C3 deviate from the mean plane by less than 0.002 Å. The intramolecular C—H···O hydrogen bonds (Table 1) result in the formation of two twisty six-membered rings B (O3/C6/O4/C7/C8/H8A) and C (O3/C6/O4/C7/C10/H10A). In the crystal structure, intermolecular N—H···N hydrogen bonds (Table 1) link the molecules to form dimeric units (Fig. 2), stabilizing the crystal structure. The hydrogen bonds scheme is completed by intermolecular C—H···O contacts.

Experimental

Methyl 2-aminothiazole-5-carboxylate (10 mmol), di-tert-butyl carbonate (12 mmol) and 4-dimethylamino pyridine (0.66 mmol) were added in THF (30 ml), stirred and refluxed under a nitrogen atmosphere for 10 h. The reaction mixture was left to cool to room temperature, precipitated, filtered, and the filter cake was crystallized from ethanol to give pure compound (I). Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution.

Refinement

All H atoms were positioned geometrically, with C—H = 0.96 and 0.93 Å for methyl and aromatic H atoms, respectively, and N—H = 0.86 Å. All H atoms were constrained to ride on their parent atoms, with Uiso(H) = xUeq(carrier atom), where x = 1.5 for methyl H atoms and x = 1.2 for all other H atoms.

Figures

Fig. 1.

Fig. 1.

A view of the molecular structure of (I). Displacement ellipsoids are drawn at the 50% probability level. Dashed lines indicate intramolecular C—H···O hydrogen bonds.

Fig. 2.

Fig. 2.

A packing diagram for (I). Dashed lines indicate C—H···N and C—H···O hydrogen bonds.

Crystal data

C10H14N2O4S Z = 2
Mr = 258.29 F(000) = 272
Triclinic, P1 Dx = 1.336 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.0700 (14) Å Cell parameters from 25 reflections
b = 9.2580 (19) Å θ = 10–13°
c = 10.708 (2) Å µ = 0.26 mm1
α = 70.10 (3)° T = 293 K
β = 79.67 (3)° Block, colourless
γ = 79.08 (3)° 0.30 × 0.10 × 0.10 mm
V = 642.1 (2) Å3

Data collection

Enraf–Nonius CAD-4 diffractometer 1975 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.014
graphite θmax = 25.3°, θmin = 2.0°
ω/2θ scans h = 0→8
Absorption correction: ψ scan (North et al., 1968) k = −10→11
Tmin = 0.927, Tmax = 0.975 l = −12→12
2543 measured reflections 3 standard reflections every 200 reflections
2338 independent reflections intensity decay: 1%

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142 H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.1P)2 + 0.077P] where P = (Fo2 + 2Fc2)/3
2338 reflections (Δ/σ)max < 0.001
154 parameters Δρmax = 0.22 e Å3
0 restraints Δρmin = −0.36 e Å3
0 constraints

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S 0.31065 (8) 0.77835 (6) 0.78035 (6) 0.0496 (2)
N1 0.1959 (3) 1.0086 (2) 0.58090 (19) 0.0477 (5)
O1 0.6194 (3) 0.8268 (2) 0.89511 (19) 0.0668 (5)
C1 0.7656 (4) 0.8233 (4) 0.9752 (3) 0.0845 (10)
H1B 0.7815 0.7239 1.0430 0.127*
H1C 0.7258 0.9029 1.0168 0.127*
H1D 0.8866 0.8406 0.9190 0.127*
N2 0.0259 (3) 0.7987 (2) 0.63197 (18) 0.0476 (5)
H2A −0.0454 0.8511 0.5698 0.057*
O2 0.6587 (4) 1.0667 (2) 0.7674 (3) 0.1004 (8)
C2 0.5780 (3) 0.9562 (3) 0.7965 (3) 0.0538 (6)
O3 0.0857 (3) 0.56934 (19) 0.79484 (18) 0.0637 (5)
C3 0.4211 (3) 0.9438 (2) 0.7294 (2) 0.0466 (5)
O4 −0.1471 (2) 0.61245 (16) 0.65983 (15) 0.0486 (4)
C4 0.3422 (3) 1.0503 (2) 0.6244 (2) 0.0504 (6)
H4A 0.3845 1.1467 0.5835 0.061*
C5 0.1664 (3) 0.8678 (2) 0.6549 (2) 0.0413 (5)
C6 −0.0051 (3) 0.6494 (2) 0.7045 (2) 0.0462 (5)
C7 −0.2028 (3) 0.4528 (2) 0.7162 (2) 0.0471 (5)
C8 −0.2827 (4) 0.4215 (3) 0.8624 (2) 0.0627 (7)
H8A −0.1806 0.4165 0.9126 0.094*
H8B −0.3338 0.3246 0.8954 0.094*
H8C −0.3842 0.5035 0.8718 0.094*
C9 −0.3586 (4) 0.4627 (3) 0.6324 (3) 0.0622 (7)
H9A −0.3035 0.4830 0.5404 0.093*
H9B −0.4604 0.5451 0.6403 0.093*
H9C −0.4107 0.3663 0.6633 0.093*
C10 −0.0294 (4) 0.3355 (3) 0.6947 (3) 0.0594 (6)
H10A 0.0673 0.3313 0.7489 0.089*
H10B 0.0241 0.3657 0.6021 0.089*
H10C −0.0699 0.2351 0.7197 0.089*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S 0.0506 (4) 0.0442 (3) 0.0525 (4) −0.0135 (2) −0.0243 (3) −0.0006 (2)
N1 0.0485 (10) 0.0378 (9) 0.0545 (10) −0.0097 (8) −0.0187 (8) −0.0035 (8)
O1 0.0607 (11) 0.0730 (12) 0.0673 (11) −0.0191 (9) −0.0341 (9) −0.0046 (9)
C1 0.0636 (17) 0.120 (3) 0.081 (2) −0.0089 (17) −0.0399 (16) −0.0318 (19)
N2 0.0527 (11) 0.0383 (9) 0.0512 (10) −0.0130 (8) −0.0265 (9) 0.0002 (8)
O2 0.0982 (16) 0.0674 (13) 0.144 (2) −0.0372 (12) −0.0668 (16) −0.0038 (13)
C2 0.0439 (12) 0.0543 (14) 0.0684 (15) −0.0107 (10) −0.0157 (11) −0.0196 (12)
O3 0.0749 (11) 0.0483 (9) 0.0655 (10) −0.0212 (8) −0.0409 (9) 0.0079 (8)
C3 0.0406 (11) 0.0447 (12) 0.0558 (13) −0.0098 (9) −0.0144 (10) −0.0114 (10)
O4 0.0564 (9) 0.0403 (8) 0.0488 (9) −0.0159 (7) −0.0232 (7) −0.0005 (6)
C4 0.0496 (12) 0.0383 (11) 0.0628 (14) −0.0130 (9) −0.0154 (11) −0.0074 (10)
C5 0.0424 (11) 0.0377 (10) 0.0426 (11) −0.0066 (8) −0.0124 (9) −0.0069 (8)
C6 0.0519 (12) 0.0406 (11) 0.0466 (11) −0.0122 (9) −0.0198 (10) −0.0046 (9)
C7 0.0482 (12) 0.0409 (11) 0.0506 (12) −0.0162 (9) −0.0134 (10) −0.0035 (9)
C8 0.0643 (15) 0.0627 (15) 0.0529 (14) −0.0171 (12) −0.0054 (12) −0.0043 (12)
C9 0.0623 (15) 0.0575 (14) 0.0714 (16) −0.0204 (12) −0.0261 (13) −0.0107 (12)
C10 0.0605 (14) 0.0496 (13) 0.0689 (16) −0.0116 (11) −0.0141 (12) −0.0146 (11)

Geometric parameters (Å, °)

S—C5 1.716 (2) O4—C6 1.329 (3)
S—C3 1.728 (2) O4—C7 1.494 (2)
N1—C5 1.309 (3) C4—H4A 0.9300
N1—C4 1.372 (3) C7—C9 1.512 (3)
O1—C2 1.324 (3) C7—C8 1.513 (3)
O1—C1 1.446 (3) C7—C10 1.517 (3)
C1—H1B 0.9600 C8—H8A 0.9600
C1—H1C 0.9600 C8—H8B 0.9600
C1—H1D 0.9600 C8—H8C 0.9600
N2—C6 1.373 (3) C9—H9A 0.9600
N2—C5 1.375 (3) C9—H9B 0.9600
N2—H2A 0.8600 C9—H9C 0.9600
O2—C2 1.187 (3) C10—H10A 0.9600
C2—C3 1.466 (3) C10—H10B 0.9600
O3—C6 1.205 (3) C10—H10C 0.9600
C3—C4 1.345 (3)
C5—S—C3 88.29 (10) O3—C6—N2 122.9 (2)
C5—N1—C4 109.33 (19) O4—C6—N2 109.62 (17)
C2—O1—C1 117.7 (2) O4—C7—C9 102.10 (17)
O1—C1—H1B 109.5 O4—C7—C8 109.55 (19)
O1—C1—H1C 109.5 C9—C7—C8 111.5 (2)
H1B—C1—H1C 109.5 O4—C7—C10 109.70 (18)
O1—C1—H1D 109.5 C9—C7—C10 111.0 (2)
H1B—C1—H1D 109.5 C8—C7—C10 112.4 (2)
H1C—C1—H1D 109.5 C7—C8—H8A 109.5
C6—N2—C5 122.54 (18) C7—C8—H8B 109.5
C6—N2—H2A 118.7 H8A—C8—H8B 109.5
C5—N2—H2A 118.7 C7—C8—H8C 109.5
O2—C2—O1 123.7 (2) H8A—C8—H8C 109.5
O2—C2—C3 125.2 (2) H8B—C8—H8C 109.5
O1—C2—C3 111.0 (2) C7—C9—H9A 109.5
C4—C3—C2 128.1 (2) C7—C9—H9B 109.5
C4—C3—S 110.13 (16) H9A—C9—H9B 109.5
C2—C3—S 121.78 (17) C7—C9—H9C 109.5
C6—O4—C7 120.74 (16) H9A—C9—H9C 109.5
C3—C4—N1 116.2 (2) H9B—C9—H9C 109.5
C3—C4—H4A 121.9 C7—C10—H10A 109.5
N1—C4—H4A 121.9 C7—C10—H10B 109.5
N1—C5—N2 120.82 (19) H10A—C10—H10B 109.5
N1—C5—S 116.08 (16) C7—C10—H10C 109.5
N2—C5—S 123.10 (15) H10A—C10—H10C 109.5
O3—C6—O4 127.5 (2) H10B—C10—H10C 109.5
C1—O1—C2—O2 2.8 (4) C4—N1—C5—S 0.3 (3)
C1—O1—C2—C3 −177.2 (2) C6—N2—C5—N1 177.8 (2)
O2—C2—C3—C4 1.0 (5) C6—N2—C5—S −2.8 (3)
O1—C2—C3—C4 −178.9 (2) C3—S—C5—N1 −0.13 (18)
O2—C2—C3—S −179.3 (2) C3—S—C5—N2 −179.6 (2)
O1—C2—C3—S 0.7 (3) C7—O4—C6—O3 −4.2 (4)
C5—S—C3—C4 −0.09 (18) C7—O4—C6—N2 176.44 (18)
C5—S—C3—C2 −179.8 (2) C5—N2—C6—O3 1.5 (4)
C2—C3—C4—N1 −180.0 (2) C5—N2—C6—O4 −179.13 (19)
S—C3—C4—N1 0.3 (3) C6—O4—C7—C9 −177.3 (2)
C5—N1—C4—C3 −0.4 (3) C6—O4—C7—C8 64.4 (3)
C4—N1—C5—N2 179.8 (2) C6—O4—C7—C10 −59.4 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C8—H8A···O3 0.96 2.47 3.030 (4) 117.
C10—H10A···O3 0.96 2.45 3.010 (4) 117.
N2—H2A···N1i 0.86 2.02 2.879 (3) 174.
C9—H9C···O2ii 0.96 2.60 3.440 (4) 146.
C10—H10C···O2ii 0.96 2.57 3.436 (4) 150.

Symmetry codes: (i) −x, −y+2, −z+1; (ii) x−1, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2305).

References

  1. Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  2. Harms, K. & Wocadlo, S. (1995). CAD-4 EXPRESS University of Marburg, Germany.
  3. Lombardo, L. J. et al. (2004). J. Med. Chem.47, 6658–6661. [DOI] [PubMed]
  4. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  5. Shah, N. P., Tran, C., Lee, F. Y., Chen, P., Norris, D. & Sawyers, C. L. (2004). Science, 305, 399–402. [DOI] [PubMed]
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810032277/bh2305sup1.cif

e-66-o2343-sup1.cif (16.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810032277/bh2305Isup2.hkl

e-66-o2343-Isup2.hkl (114.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES