Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Aug 11;66(Pt 9):m1079. doi: 10.1107/S1600536810031417

catena-Poly[(S)-2-methyl­piperazine-1,4-diium [[trichloridobismuthate(III)]-di-μ-chlorido]]

Zong-Ling Ru a,*
PMCID: PMC3007984  PMID: 21588498

Abstract

In the crystal structure of the title compound, {(C5H14N2)[BiCl5]}n, the BiIII cation is coordinated by six Cl anions in a distorted octa­hedral geometry. Two Cl anions bridge neighboring BiIII cations, forming a zigzag polymeric chain along the a axis. The discrete methylpiperazinediium cation adopts a normal chair conformation and is linked to the polymeric chains by N—H⋯Cl hydrogen bonding.

Related literature

For transition-metal complexes of 2-methyl­piperazine, see: Ye et al. (2009).graphic file with name e-66-m1079-scheme1.jpg

Experimental

Crystal data

  • (C5H14N2)[BiCl5]

  • M r = 488.41

  • Orthorhombic, Inline graphic

  • a = 7.719 (1) Å

  • b = 10.8997 (16) Å

  • c = 16.302 (3) Å

  • V = 1371.6 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 13.79 mm−1

  • T = 293 K

  • 0.28 × 0.26 × 0.24 mm

Data collection

  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) T min = 0.8, T max = 0.9

  • 14082 measured reflections

  • 3150 independent reflections

  • 3009 reflections with I > 2σ(I)

  • R int = 0.089

Refinement

  • R[F 2 > 2σ(F 2)] = 0.031

  • wR(F 2) = 0.066

  • S = 1.03

  • 3150 reflections

  • 120 parameters

  • H-atom parameters constrained

  • Δρmax = 1.57 e Å−3

  • Δρmin = −1.63 e Å−3

  • Absolute structure: Flack (1983), 1327 Friedel pairs

  • Flack parameter: −0.021 (9)

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810031417/xu5013sup1.cif

e-66-m1079-sup1.cif (15.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810031417/xu5013Isup2.hkl

e-66-m1079-Isup2.hkl (154.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Bi1—Cl1 2.8245 (18)
Bi1—Cl2 2.597 (2)
Bi1—Cl3 2.561 (2)
Bi1—Cl4 2.6135 (18)
Bi1—Cl5 2.875 (2)
Bi1—Cl5i 2.820 (2)

Symmetry code: (i) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H6A⋯Cl1ii 0.97 2.30 3.262 (7) 171
N1—H6B⋯Cl2 0.97 2.48 3.255 (7) 137
N1—H6B⋯Cl3 0.97 2.61 3.244 (6) 124
N2—H7A⋯Cl4iii 0.97 2.33 3.242 (7) 156
N2—H7B⋯Cl1iv 0.97 2.25 3.184 (6) 161

Symmetry codes: (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

This work was supported by a start-up grant from Anyang Institute of Technology, China.

supplementary crystallographic information

Comment

The chiral 2-methylpiperazine has shown tremendous scope in the synthesis of transition metal complexes (Ye et al., 2009). The construction of new members of this family of ligands is an important direction in the development of coordination chemistry. we report here the crystal structure of the title compound.

In the crystal of the title compound, C5H14N2.BiCl5 (Fig.1), the Bi3+ cations are coordinated by six Cl- anions with distances ranging from 2.561 (2) to 2.875 (2) Å (Table 1). The values of bond angles Cl–Bi–Cl are near to 90 or 180°, which make the [BiCl6]3- octahedral geometry. The protonated piperazine ring adopts a chair conformation. The Bi3+ cations conneted through bridging chlorine atom to form a one-dimensional chain structure. The crystal structure is stabilized by intermolecular N—H···Cl hydrogen bonds (Table 2).

Experimental

A mixture of (S)-2-methylpiperazine (2 mmol, 0.2 g), BiCl3 (2 mmol, 0.62 g) and 20% aqueous HCl (20 ml) in 10 ml water was heated at 353 K for 0.5 h. The reaction mixture was cooled slowly to room temperature, crystals of the title compound were formed after 8 d.

Refinement

All H atoms were placed in calculated positions, with C—H = 0.96 or 0.98 Å and N—H = 0.97 Å, and refined using a riding model, with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C,N) for the others.

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title compound with atom labels. Displacement ellipsoids were drawn at the 30% probability level.

Fig. 2.

Fig. 2.

The packing viewed along the a axis. Hydrogen bonds are drawn as dashed lines

Crystal data

(C5H14N2)[BiCl5] F(000) = 904
Mr = 488.41 Dx = 2.365 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 3009 reflections
a = 7.719 (1) Å θ = 2.5–27.5°
b = 10.8997 (16) Å µ = 13.79 mm1
c = 16.302 (3) Å T = 293 K
V = 1371.6 (3) Å3 Block, colorless
Z = 4 0.28 × 0.26 × 0.24 mm

Data collection

Rigaku SCXmini diffractometer 3150 independent reflections
Radiation source: fine-focus sealed tube 3009 reflections with I > 2σ(I)
graphite Rint = 0.089
Detector resolution: 13.6612 pixels mm-1 θmax = 27.5°, θmin = 2.5°
ω scans h = −9→10
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) k = −14→14
Tmin = 0.8, Tmax = 0.9 l = −21→21
14082 measured reflections

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.031 w = 1/[σ2(Fo2) + (0.P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.066 (Δ/σ)max = 0.001
S = 1.03 Δρmax = 1.57 e Å3
3150 reflections Δρmin = −1.63 e Å3
120 parameters Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraints Extinction coefficient: 0.0300 (5)
Primary atom site location: structure-invariant direct methods Absolute structure: Flack (1983), 1327 Friedel pairs
Secondary atom site location: difference Fourier map Flack parameter: −0.021 (9)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Bi1 0.33206 (3) 0.57633 (2) 0.946205 (14) 0.02412 (11)
C1 0.1786 (10) 0.1571 (6) 0.7856 (4) 0.0296 (15)
H1 0.0737 0.1733 0.8177 0.036*
C2 0.1931 (12) 0.0212 (7) 0.7715 (5) 0.0391 (19)
H2A 0.0899 −0.0077 0.7436 0.047*
H2B 0.2917 0.0049 0.7362 0.047*
C3 0.3672 (10) −0.0026 (8) 0.8968 (6) 0.049 (2)
H3A 0.4720 −0.0201 0.8661 0.058*
H3B 0.3740 −0.0456 0.9487 0.058*
C4 0.3548 (12) 0.1343 (8) 0.9124 (4) 0.041 (2)
H4A 0.2566 0.1512 0.9477 0.050*
H4B 0.4589 0.1625 0.9399 0.050*
C5 0.1685 (13) 0.2283 (9) 0.7064 (5) 0.059 (2)
H5A 0.1539 0.3139 0.7183 0.089*
H5B 0.0717 0.1997 0.6748 0.089*
H5C 0.2734 0.2166 0.6758 0.089*
Cl1 0.3347 (3) 0.68787 (17) 0.78982 (11) 0.0414 (4)
Cl2 0.0920 (2) 0.4253 (2) 0.89851 (12) 0.0378 (4)
Cl3 0.5685 (2) 0.4239 (2) 0.90419 (13) 0.0389 (4)
Cl4 0.3272 (3) 0.47345 (19) 1.09100 (11) 0.0412 (4)
Cl5 0.0888 (3) 0.7630 (2) 0.99374 (14) 0.0414 (5)
N1 0.3338 (8) 0.2005 (5) 0.8340 (4) 0.0331 (13)
H6A 0.4376 0.1895 0.8012 0.040*
H6B 0.3211 0.2875 0.8449 0.040*
N2 0.2143 (8) −0.0475 (5) 0.8499 (4) 0.0387 (16)
H7A 0.1108 −0.0363 0.8828 0.046*
H7B 0.2270 −0.1345 0.8388 0.046*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Bi1 0.02674 (15) 0.02120 (14) 0.02443 (15) −0.00003 (11) −0.00047 (11) −0.00161 (10)
C1 0.033 (3) 0.030 (4) 0.026 (3) 0.001 (3) 0.002 (3) 0.005 (3)
C2 0.054 (5) 0.032 (4) 0.031 (4) −0.013 (4) −0.001 (4) −0.007 (3)
C3 0.045 (5) 0.040 (5) 0.060 (5) −0.004 (4) −0.017 (4) 0.021 (4)
C4 0.051 (5) 0.045 (5) 0.028 (4) −0.013 (4) −0.011 (4) 0.011 (3)
C5 0.062 (5) 0.076 (7) 0.040 (5) 0.004 (7) 0.000 (5) 0.023 (5)
Cl1 0.0513 (10) 0.0414 (10) 0.0316 (9) 0.0075 (11) 0.0079 (10) 0.0036 (8)
Cl2 0.0344 (9) 0.0359 (10) 0.0432 (10) −0.0050 (9) −0.0056 (8) −0.0058 (10)
Cl3 0.0326 (8) 0.0350 (10) 0.0490 (11) 0.0048 (9) 0.0058 (8) −0.0045 (11)
Cl4 0.0382 (9) 0.0521 (11) 0.0333 (9) −0.0029 (11) −0.0032 (9) 0.0123 (8)
Cl5 0.0440 (9) 0.0356 (11) 0.0446 (11) 0.0132 (8) 0.0096 (8) 0.0003 (9)
N1 0.043 (3) 0.026 (3) 0.031 (3) −0.005 (3) 0.000 (3) 0.002 (2)
N2 0.039 (3) 0.024 (3) 0.053 (4) −0.002 (3) −0.003 (3) 0.001 (3)

Geometric parameters (Å, °)

Bi1—Cl1 2.8245 (18) C3—C4 1.517 (12)
Bi1—Cl2 2.597 (2) C3—H3A 0.9700
Bi1—Cl3 2.561 (2) C3—H3B 0.9700
Bi1—Cl4 2.6135 (18) C4—N1 1.476 (9)
Bi1—Cl5 2.875 (2) C4—H4A 0.9700
Bi1—Cl5i 2.820 (2) C4—H4B 0.9700
C1—C2 1.504 (10) C5—H5A 0.9600
C1—C5 1.509 (10) C5—H5B 0.9600
C1—N1 1.510 (10) C5—H5C 0.9600
C1—H1 0.9800 N1—H6A 0.9700
C2—N2 1.490 (10) N1—H6B 0.9700
C2—H2A 0.9700 N2—H7A 0.9700
C2—H2B 0.9700 N2—H7B 0.9700
C3—N2 1.489 (10)
Cl3—Bi1—Cl2 90.97 (6) C4—C3—H3A 109.4
Cl3—Bi1—Cl4 88.48 (7) N2—C3—H3B 109.4
Cl2—Bi1—Cl4 89.32 (7) C4—C3—H3B 109.4
Cl3—Bi1—Cl5i 89.71 (8) H3A—C3—H3B 108.0
Cl2—Bi1—Cl5i 177.10 (7) N1—C4—C3 110.0 (6)
Cl4—Bi1—Cl5i 87.88 (7) N1—C4—H4A 109.7
Cl3—Bi1—Cl1 91.88 (7) C3—C4—H4A 109.7
Cl2—Bi1—Cl1 90.44 (7) N1—C4—H4B 109.7
Cl4—Bi1—Cl1 179.57 (7) C3—C4—H4B 109.7
Cl5i—Bi1—Cl1 92.35 (7) H4A—C4—H4B 108.2
Cl3—Bi1—Cl5 175.20 (8) C1—C5—H5A 109.5
Cl2—Bi1—Cl5 93.63 (8) C1—C5—H5B 109.5
Cl4—Bi1—Cl5 92.91 (7) H5A—C5—H5B 109.5
Cl5i—Bi1—Cl5 85.753 (13) C1—C5—H5C 109.5
Cl1—Bi1—Cl5 86.75 (6) H5A—C5—H5C 109.5
C2—C1—C5 112.3 (7) H5B—C5—H5C 109.5
C2—C1—N1 109.2 (7) Bi1ii—Cl5—Bi1 172.74 (9)
C5—C1—N1 109.0 (6) C4—N1—C1 112.7 (6)
C2—C1—H1 108.7 C4—N1—H6A 109.0
C5—C1—H1 108.7 C1—N1—H6A 109.2
N1—C1—H1 108.7 C4—N1—H6B 109.3
N2—C2—C1 111.8 (6) C1—N1—H6B 108.8
N2—C2—H2A 109.3 H6A—N1—H6B 107.8
C1—C2—H2A 109.3 C3—N2—C2 111.2 (6)
N2—C2—H2B 109.3 C3—N2—H7A 109.1
C1—C2—H2B 109.3 C2—N2—H7A 108.7
H2A—C2—H2B 107.9 C3—N2—H7B 109.7
N2—C3—C4 111.1 (7) C2—N2—H7B 110.0
N2—C3—H3A 109.4 H7A—N2—H7B 108.0

Symmetry codes: (i) x+1/2, −y+3/2, −z+2; (ii) x−1/2, −y+3/2, −z+2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H6A···Cl1iii 0.97 2.30 3.262 (7) 171.
N1—H6B···Cl2 0.97 2.48 3.255 (7) 137.
N1—H6B···Cl3 0.97 2.61 3.244 (6) 124.
N2—H7A···Cl4iv 0.97 2.33 3.242 (7) 156.
N2—H7B···Cl1v 0.97 2.25 3.184 (6) 161.

Symmetry codes: (iii) −x+1, y−1/2, −z+3/2; (iv) x−1/2, −y+1/2, −z+2; (v) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5013).

References

  1. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  2. Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  3. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  4. Ye, H.-Y., Fu, D.-W., Zhang, Y., Zhang, W., Xiong, R.-G. & Huang, S. D. (2009). J. Am. Chem. Soc.131, 42–43. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810031417/xu5013sup1.cif

e-66-m1079-sup1.cif (15.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810031417/xu5013Isup2.hkl

e-66-m1079-Isup2.hkl (154.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES