Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Aug 28;66(Pt 9):o2436. doi: 10.1107/S1600536810034045

4-{2-[(Z)-(5-Methyl-2-fur­yl)methyl­idene­amino]­eth­yl}benzene­sulfonamide

Khalid Mahmood a, Muhammad Yaqub a, M Nawaz Tahir b,*, Zahid Shafiq a, Ashfaq Mahmood Qureshi a
PMCID: PMC3008043  PMID: 21588759

Abstract

In the title compound, C14H16N2O3S, the dihedral angle between the phenyl and 5-methyl­furan groups is 54.89 (14)° and the C=N bond assumes a trans conformation. In the crystal, inversion dimers linked by pairs of N—H⋯O hydrogen bonds generate R 2 2(8) ring motifs. The dimers are inter­linked by N—H⋯N hydrogen bonds, resulting in the formation of infinite chains extending along the b axis. The packing is consolidated by weak C—H⋯π inter­actions.

Related literature

For biochemical background and related crystal structures, see: Chohan et al. (2008); Davis et al. (2007); Li (2006); Suo (2008); For graph-set notation, see: Bernstein et al. (1995).graphic file with name e-66-o2436-scheme1.jpg

Experimental

Crystal data

  • C14H16N2O3S

  • M r = 292.35

  • Triclinic, Inline graphic

  • a = 9.1947 (14) Å

  • b = 9.7592 (14) Å

  • c = 9.8493 (15) Å

  • α = 61.027 (6)°

  • β = 70.650 (6)°

  • γ = 81.574 (7)°

  • V = 729.4 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 296 K

  • 0.20 × 0.16 × 0.08 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.956, T max = 0.977

  • 10058 measured reflections

  • 2638 independent reflections

  • 1461 reflections with I > 2σ(I)

  • R int = 0.068

Refinement

  • R[F 2 > 2σ(F 2)] = 0.058

  • wR(F 2) = 0.153

  • S = 0.97

  • 2638 reflections

  • 188 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.33 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810034045/hb5617sup1.cif

e-66-o2436-sup1.cif (18.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810034045/hb5617Isup2.hkl

e-66-o2436-Isup2.hkl (126.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of furan (C10—C13/O3) and phenyl (C1—C6) rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.80 (4) 2.18 (4) 2.928 (5) 155 (4)
N1—H1B⋯N2ii 0.82 (4) 2.25 (5) 3.015 (5) 156 (5)
C6—H6⋯Cg1iii 0.93 2.87 3.596 (4) 136
C11—H11⋯Cg2iv 0.93 2.75 3.535 (4) 143
C14—H14CCg2v 0.96 2.84 3.743 (5) 157

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

The authors would like to thank the Higher Education Commission (HEC), Pakistan, for financial assistance to KM under the National Research Program for Universities.

supplementary crystallographic information

Comment

The title compound (I, Fig. 1) is being reported here in the context of our new project of synthesizing Schiff basis of various sulfonamide drugs, studying their bio-activity and the formation of their metal complexes.

The crystal structures of (II) 4-(2-(3-ethyl-4-methyl-2-oxo-3-pyrrolidine-1-carboxamido)ethyl) benzenesulfonamide (Li, 2006), (III) N-(2-(4-(aminosulfonyl)phenyl)ethyl)-2-(4-hydroxyphenyl)acetamide (Davis et al., 2007), (IV) 4-(2-((5-chloro-2-hydroxybenzylidene)amino)ethyl)benzenesulfonamide (Chohan et al., 2008) and (V) (E)-4-[(5-methyl-2-furyl)methyleneamino]benzenesulfonic acid (Suo, 2008) have been published which are related to the title compound.

In (I), the thiophenol A (C1–C6/S1) and 5-methylfuran-2-yl B (C10–C14/O3) are planar with r. m. s. deviations of 0.0037 and 0.0029 Å, respectively. The dihedral angle between A/B is 54.89 (14)°. The S-atom is at a distance of -0.4487 (19) Å from the plane formed by (O1/O2/N1). The central group of N-methylideneethanamine makes a torsion angle of -136.6 (4)°. In the title compound an S(5) ring motif (Bernstein et al., 1995) is formed due to C—H···O type of intramolecular H-bonding. The molecules are dimerized due to N—H···O type of intermolecular H-bonding (Table 1, Fig. 2) with R22(8) ring motif. The dimers are interlinked through H-bondings of N—H···N type resulting in the formation of infinite one dimensional polymeric chains extending along the b axis. In the stabilization of molecules C—H···π interactions (Table 1) play an important role.

Experimental

An ethanol solution (15 ml) of sulfonamide (0.20 g, 1 mmol) was added to the solution of 5-methylfuran-2-carbaldehyde (0.099 ml, 1 mmol) in ethanol (10 ml). The reaction mixture was refluxed for 4 h. The solution was cooled to room temperature, filtered and volume reduced to about one-third using rotary evaporator. It was then allowed to stand for 5 days, after which dark yellow plates of (I) were obtained.

Refinement

The coordinates of H-atoms of amine were refined and the other H-atoms were positioned geometrically (C–H = 0.93–0.97 Å) and refined as riding with Uiso(H) = xUeq(C, N), where x = 1.5 for methyl and x = 1.2 for all other H-atoms.

Figures

Fig. 1.

Fig. 1.

View of (I) with displacement ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

The partial packing of (I), which shows that molecules form dimers which are interlinked.

Crystal data

C14H16N2O3S Z = 2
Mr = 292.35 F(000) = 308
Triclinic, P1 Dx = 1.331 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 9.1947 (14) Å Cell parameters from 1461 reflections
b = 9.7592 (14) Å θ = 2.4–25.3°
c = 9.8493 (15) Å µ = 0.23 mm1
α = 61.027 (6)° T = 296 K
β = 70.650 (6)° Plate, dark yellow
γ = 81.574 (7)° 0.20 × 0.16 × 0.08 mm
V = 729.4 (2) Å3

Data collection

Bruker Kappa APEXII CCD diffractometer 2638 independent reflections
Radiation source: fine-focus sealed tube 1461 reflections with I > 2σ(I)
graphite Rint = 0.068
Detector resolution: 8.20 pixels mm-1 θmax = 25.5°, θmin = 2.4°
ω scans h = −11→11
Absorption correction: multi-scan (SADABS; Bruker, 2005) k = −11→11
Tmin = 0.956, Tmax = 0.977 l = −11→11
10058 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.153 H atoms treated by a mixture of independent and constrained refinement
S = 0.97 w = 1/[σ2(Fo2) + (0.0756P)2] where P = (Fo2 + 2Fc2)/3
2638 reflections (Δ/σ)max < 0.001
188 parameters Δρmax = 0.22 e Å3
0 restraints Δρmin = −0.33 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.74690 (11) 0.53303 (11) 0.83986 (11) 0.0552 (4)
O1 0.6857 (3) 0.4598 (3) 1.0147 (3) 0.0670 (10)
O2 0.8947 (3) 0.6089 (3) 0.7640 (3) 0.0748 (11)
O3 0.7176 (3) −0.2510 (3) 0.3423 (3) 0.0507 (8)
N1 0.6254 (4) 0.6587 (4) 0.7715 (4) 0.0646 (12)
N2 0.7059 (3) −0.0369 (3) 0.4601 (4) 0.0574 (11)
C1 0.7622 (4) 0.1521 (4) 0.6961 (4) 0.0461 (11)
C2 0.8939 (4) 0.2404 (4) 0.6471 (4) 0.0510 (12)
C3 0.8887 (4) 0.3549 (4) 0.6906 (4) 0.0474 (11)
C4 0.7533 (4) 0.3868 (4) 0.7848 (4) 0.0413 (11)
C5 0.6216 (4) 0.2987 (4) 0.8352 (4) 0.0486 (12)
C6 0.6275 (4) 0.1842 (4) 0.7922 (4) 0.0510 (12)
C7 0.7667 (4) 0.0281 (4) 0.6470 (5) 0.0635 (14)
C8 0.7022 (5) 0.0834 (4) 0.5068 (5) 0.0725 (18)
C9 0.7504 (4) 0.0059 (4) 0.3090 (5) 0.0568 (14)
C10 0.7612 (4) −0.0949 (4) 0.2409 (4) 0.0496 (12)
C11 0.8112 (4) −0.0715 (5) 0.0851 (4) 0.0594 (16)
C12 0.8012 (4) −0.2149 (5) 0.0879 (4) 0.0615 (16)
C13 0.7442 (4) −0.3207 (4) 0.2452 (4) 0.0504 (12)
C14 0.7067 (5) −0.4902 (4) 0.3273 (5) 0.0703 (16)
H1A 0.535 (4) 0.638 (5) 0.802 (5) 0.0777*
H1B 0.643 (4) 0.724 (5) 0.676 (5) 0.0777*
H2 0.98644 0.22087 0.58379 0.0612*
H3 0.97774 0.41220 0.65631 0.0567*
H5 0.52913 0.31836 0.89844 0.0585*
H6 0.53869 0.12590 0.82844 0.0611*
H7A 0.70791 −0.06283 0.73939 0.0768*
H7B 0.87257 −0.00344 0.61620 0.0768*
H8A 0.59655 0.11552 0.53728 0.0866*
H8B 0.76142 0.17392 0.41410 0.0866*
H9 0.77791 0.11076 0.23804 0.0682*
H11 0.84604 0.02315 −0.00750 0.0717*
H12 0.82872 −0.23341 −0.00147 0.0735*
H14A 0.74691 −0.53007 0.25033 0.1053*
H14B 0.59683 −0.50553 0.37049 0.1053*
H14C 0.75202 −0.54468 0.41435 0.1053*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0661 (7) 0.0559 (6) 0.0413 (6) −0.0178 (5) −0.0026 (4) −0.0246 (5)
O1 0.0882 (19) 0.0783 (18) 0.0346 (14) −0.0201 (14) −0.0061 (13) −0.0285 (13)
O2 0.0692 (17) 0.0801 (19) 0.0763 (19) −0.0301 (14) −0.0002 (14) −0.0428 (16)
O3 0.0698 (16) 0.0453 (14) 0.0336 (13) −0.0044 (11) −0.0145 (11) −0.0152 (11)
N1 0.073 (2) 0.050 (2) 0.052 (2) −0.0051 (18) −0.004 (2) −0.0174 (16)
N2 0.081 (2) 0.0476 (18) 0.046 (2) 0.0008 (15) −0.0207 (16) −0.0225 (16)
C1 0.064 (2) 0.0387 (19) 0.038 (2) 0.0061 (17) −0.0210 (18) −0.0175 (16)
C2 0.058 (2) 0.053 (2) 0.034 (2) 0.0076 (18) −0.0114 (17) −0.0176 (18)
C3 0.053 (2) 0.047 (2) 0.0345 (19) −0.0092 (16) −0.0091 (16) −0.0132 (17)
C4 0.044 (2) 0.0443 (19) 0.0272 (17) −0.0032 (15) −0.0060 (15) −0.0124 (15)
C5 0.048 (2) 0.050 (2) 0.046 (2) −0.0018 (16) −0.0060 (16) −0.0255 (18)
C6 0.052 (2) 0.049 (2) 0.050 (2) −0.0070 (16) −0.0112 (18) −0.0221 (19)
C7 0.089 (3) 0.052 (2) 0.060 (2) 0.009 (2) −0.032 (2) −0.030 (2)
C8 0.118 (4) 0.049 (2) 0.064 (3) 0.008 (2) −0.042 (2) −0.029 (2)
C9 0.073 (3) 0.042 (2) 0.052 (2) −0.0064 (18) −0.025 (2) −0.0135 (19)
C10 0.060 (2) 0.043 (2) 0.037 (2) −0.0075 (16) −0.0156 (16) −0.0092 (17)
C11 0.069 (3) 0.062 (3) 0.031 (2) −0.0100 (19) −0.0118 (17) −0.0085 (18)
C12 0.070 (3) 0.078 (3) 0.038 (2) 0.000 (2) −0.0145 (18) −0.029 (2)
C13 0.061 (2) 0.055 (2) 0.046 (2) 0.0056 (17) −0.0223 (18) −0.029 (2)
C14 0.105 (3) 0.054 (2) 0.062 (3) 0.004 (2) −0.040 (2) −0.026 (2)

Geometric parameters (Å, °)

S1—O1 1.441 (3) C10—C11 1.357 (5)
S1—O2 1.428 (3) C11—C12 1.402 (7)
S1—N1 1.582 (4) C12—C13 1.346 (5)
S1—C4 1.743 (4) C13—C14 1.482 (6)
O3—C10 1.385 (5) C2—H2 0.9300
O3—C13 1.365 (5) C3—H3 0.9300
N2—C8 1.446 (6) C5—H5 0.9300
N2—C9 1.265 (5) C6—H6 0.9300
N1—H1B 0.82 (4) C7—H7A 0.9700
N1—H1A 0.80 (4) C7—H7B 0.9700
C1—C6 1.387 (5) C8—H8A 0.9700
C1—C7 1.496 (6) C8—H8B 0.9700
C1—C2 1.399 (6) C9—H9 0.9300
C2—C3 1.367 (6) C11—H11 0.9300
C3—C4 1.382 (5) C12—H12 0.9300
C4—C5 1.395 (6) C14—H14A 0.9600
C5—C6 1.363 (6) C14—H14B 0.9600
C7—C8 1.509 (6) C14—H14C 0.9600
C9—C10 1.412 (6)
O1—S1—O2 118.85 (17) C12—C13—C14 132.9 (4)
O1—S1—N1 106.50 (18) C1—C2—H2 119.00
O1—S1—C4 106.27 (18) C3—C2—H2 120.00
O2—S1—N1 107.94 (19) C2—C3—H3 119.00
O2—S1—C4 108.41 (19) C4—C3—H3 119.00
N1—S1—C4 108.5 (2) C4—C5—H5 120.00
C10—O3—C13 107.0 (3) C6—C5—H5 120.00
C8—N2—C9 116.4 (4) C1—C6—H6 119.00
S1—N1—H1B 123 (3) C5—C6—H6 119.00
H1A—N1—H1B 105 (4) C1—C7—H7A 109.00
S1—N1—H1A 122 (3) C1—C7—H7B 109.00
C6—C1—C7 121.5 (4) C8—C7—H7A 109.00
C2—C1—C6 117.2 (4) C8—C7—H7B 109.00
C2—C1—C7 121.3 (3) H7A—C7—H7B 108.00
C1—C2—C3 121.1 (4) N2—C8—H8A 109.00
C2—C3—C4 121.1 (4) N2—C8—H8B 109.00
S1—C4—C3 121.0 (3) C7—C8—H8A 109.00
C3—C4—C5 118.3 (4) C7—C8—H8B 109.00
S1—C4—C5 120.7 (3) H8A—C8—H8B 108.00
C4—C5—C6 120.4 (4) N2—C9—H9 118.00
C1—C6—C5 121.9 (4) C10—C9—H9 118.00
C1—C7—C8 112.3 (4) C10—C11—H11 126.00
N2—C8—C7 112.2 (4) C12—C11—H11 126.00
N2—C9—C10 124.4 (4) C11—C12—H12 127.00
O3—C10—C9 119.6 (3) C13—C12—H12 127.00
O3—C10—C11 108.0 (4) C13—C14—H14A 109.00
C9—C10—C11 132.4 (4) C13—C14—H14B 109.00
C10—C11—C12 108.2 (3) C13—C14—H14C 109.00
C11—C12—C13 106.7 (4) H14A—C14—H14B 110.00
O3—C13—C12 110.1 (4) H14A—C14—H14C 110.00
O3—C13—C14 117.0 (3) H14B—C14—H14C 109.00
O1—S1—C4—C3 −125.4 (3) C2—C1—C7—C8 −100.7 (4)
O1—S1—C4—C5 54.5 (3) C6—C1—C7—C8 79.4 (5)
O2—S1—C4—C3 3.4 (4) C1—C2—C3—C4 0.2 (5)
O2—S1—C4—C5 −176.7 (3) C2—C3—C4—S1 −179.9 (3)
N1—S1—C4—C3 120.4 (3) C2—C3—C4—C5 0.2 (5)
N1—S1—C4—C5 −59.7 (3) S1—C4—C5—C6 −179.8 (3)
C13—O3—C10—C9 −178.2 (4) C3—C4—C5—C6 0.1 (5)
C13—O3—C10—C11 0.8 (4) C4—C5—C6—C1 −0.9 (6)
C10—O3—C13—C12 −0.5 (4) C1—C7—C8—N2 −179.7 (3)
C10—O3—C13—C14 179.7 (4) N2—C9—C10—O3 1.7 (6)
C9—N2—C8—C7 −136.6 (4) N2—C9—C10—C11 −177.1 (4)
C8—N2—C9—C10 −179.9 (4) O3—C10—C11—C12 −0.8 (5)
C6—C1—C2—C3 −0.9 (5) C9—C10—C11—C12 178.0 (4)
C7—C1—C2—C3 179.2 (3) C10—C11—C12—C13 0.5 (5)
C2—C1—C6—C5 1.3 (5) C11—C12—C13—O3 0.0 (5)
C7—C1—C6—C5 −178.8 (3) C11—C12—C13—C14 179.8 (4)

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of furan (C10—C13/O3) and phenyl (C1—C6) rings, respectively.
D—H···A D—H H···A D···A D—H···A
N1—H1A···O1i 0.80 (4) 2.18 (4) 2.928 (5) 155 (4)
N1—H1B···N2ii 0.82 (4) 2.25 (5) 3.015 (5) 156 (5)
C6—H6···Cg1iii 0.93 2.87 3.596 (4) 136
C11—H11···Cg2iv 0.93 2.75 3.535 (4) 143
C14—H14C···Cg2v 0.96 2.84 3.743 (5) 157

Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) x, y+1, z; (iii) −x+1, −y, −z+1; (iv) x, y, z−1; (v) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5617).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  2. Bruker (2005). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (2009). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Chohan, Z. H., Shad, H. A., Tahir, M. N. & Khan, I. U. (2008). Acta Cryst. E64, o725. [DOI] [PMC free article] [PubMed]
  5. Davis, R. A., Healy, P. C. & Poulsen, S.-A. (2007). Acta Cryst. E63, o96–o97.
  6. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  7. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  8. Li, X. (2006). Acta Cryst. E62, o3019–o3020.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  11. Suo, J. (2008). Acta Cryst. E64, o1788. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810034045/hb5617sup1.cif

e-66-o2436-sup1.cif (18.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810034045/hb5617Isup2.hkl

e-66-o2436-Isup2.hkl (126.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES