Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Aug 4;66(Pt 9):o2211. doi: 10.1107/S1600536810029594

2-Hy­droxy-4-meth­oxy­benzaldehyde thio­semicarbazone

Yu-Mei Hao a,*
PMCID: PMC3008052  PMID: 21588582

Abstract

The title Schiff base compound, C9H11N3O2S, was prepared by the reaction of equimolar quanti­ties of 2-hy­droxy-4-meth­oxy­benzaldehyde with thio­semicarbazide in methanol. The mol­ecule adopts a trans configuration with respect to the azo­methine group and an intra­molecular O—H⋯N hydrogen bond generates an S(6) ring. In the crystal structure, mol­ecules are linked through inter­molecular N—H⋯O and N—H⋯S hydrogen bonds, forming a three-dimensional network.

Related literature

For a related structure and background references, see: Hao (2010). For reference structural data, see: Allen et al. (1987).graphic file with name e-66-o2211-scheme1.jpg

Experimental

Crystal data

  • C9H11N3O2S

  • M r = 225.27

  • Monoclinic, Inline graphic

  • a = 4.929 (1) Å

  • b = 10.519 (2) Å

  • c = 20.357 (3) Å

  • β = 92.838 (2)°

  • V = 1054.2 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 298 K

  • 0.17 × 0.13 × 0.12 mm

Data collection

  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.952, T max = 0.966

  • 5879 measured reflections

  • 2247 independent reflections

  • 1650 reflections with I > 2σ(I)

  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.101

  • S = 1.04

  • 2247 reflections

  • 147 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810029594/hb5575sup1.cif

e-66-o2211-sup1.cif (14.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810029594/hb5575Isup2.hkl

e-66-o2211-Isup2.hkl (110.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3B⋯O2i 0.89 (1) 2.26 (2) 2.998 (3) 141 (2)
N3—H3A⋯O1ii 0.88 (1) 2.23 (1) 3.076 (3) 162 (2)
N2—H2⋯S1iii 0.90 (1) 2.48 (1) 3.366 (3) 168 (2)
O1—H1⋯N1 0.82 1.99 2.700 (2) 145

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

supplementary crystallographic information

Comment

As a continuation of our structural studies of Schiff bases (Hao, 2010), in this paper, the title new Schiff base compound, (I), Fig. 1, is reported.

The molecule of the title compound adopts a trans configuration with respect to the azomethine group. All the bond lengths are within normal values (Allen et al., 1987). There is an intramolecular O—H···N hydrogen bond (Table 1) in the molecule. In the crystal structure, molecules are linked through intermolecular N—H···O and N—H···S hydrogen bonds (Table 1), forming a 3D network (Fig. 2).

Experimental

2-Hydroxy-4-methoxybenzaldehyde (0.1 mmol, 15.2 mg) and thiosemicarbazide (0.1 mmol, 9.1 mg) were refluxed in a 30 ml methanol solution for 30 min to give a clear colorless solution. Colorless blocks of (I) were formed by slow evaporation of the solvent over several days at room temperature.

Refinement

H2, H3A and H3B were located from a difference Fourier map and refined isotropically, with the N—H and H···H distances restrained to 0.90 (1) Å and 1.53 (2) Å, respectively, and with Uiso restrained to 0.08Å2. Other H atoms were constrained to ideal geometries, with d(C—H) = 0.93-0.96Å, d(O—H) = 0.82Å, and with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O1 and C7).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with 30% probability ellipsoids. Intramolecular hydrogen bond is drawn as a dashed line.

Fig. 2.

Fig. 2.

Molecular packing of the title compound with hydrogen bonds drawn as dashed lines.

Crystal data

C9H11N3O2S F(000) = 472
Mr = 225.27 Dx = 1.420 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 1566 reflections
a = 4.929 (1) Å θ = 2.8–26.2°
b = 10.519 (2) Å µ = 0.29 mm1
c = 20.357 (3) Å T = 298 K
β = 92.838 (2)° Block, colorless
V = 1054.2 (3) Å3 0.17 × 0.13 × 0.12 mm
Z = 4

Data collection

Bruker SMART CCD diffractometer 2247 independent reflections
Radiation source: fine-focus sealed tube 1650 reflections with I > 2σ(I)
graphite Rint = 0.030
ω scans θmax = 26.9°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −6→6
Tmin = 0.952, Tmax = 0.966 k = −13→11
5879 measured reflections l = −20→25

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101 H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0453P)2 + 0.1092P] where P = (Fo2 + 2Fc2)/3
2247 reflections (Δ/σ)max < 0.001
147 parameters Δρmax = 0.18 e Å3
4 restraints Δρmin = −0.23 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.6185 (3) 0.11719 (14) 0.11874 (8) 0.0391 (4)
N2 0.7882 (3) 0.04027 (15) 0.08411 (7) 0.0420 (4)
N3 0.9140 (4) −0.06702 (18) 0.17762 (8) 0.0528 (5)
O1 0.4001 (3) 0.22381 (13) 0.22458 (6) 0.0520 (4)
H1 0.4909 0.1714 0.2055 0.078*
O2 −0.2624 (3) 0.53431 (13) 0.19151 (6) 0.0483 (4)
S1 1.12828 (11) −0.14847 (5) 0.06920 (2) 0.0530 (2)
C1 0.2729 (4) 0.27756 (17) 0.11180 (9) 0.0370 (4)
C2 0.2464 (4) 0.29172 (18) 0.17967 (9) 0.0371 (4)
C3 0.0662 (4) 0.37755 (18) 0.20376 (9) 0.0419 (5)
H3 0.0521 0.3855 0.2490 0.050*
C4 −0.0943 (4) 0.45216 (17) 0.16165 (9) 0.0381 (4)
C5 −0.0757 (4) 0.43980 (18) 0.09409 (9) 0.0425 (5)
H5 −0.1835 0.4891 0.0652 0.051*
C6 0.1059 (4) 0.35287 (19) 0.07061 (9) 0.0445 (5)
H6 0.1171 0.3443 0.0254 0.053*
C7 −0.4289 (4) 0.61772 (19) 0.15119 (11) 0.0536 (6)
H7A −0.3154 0.6726 0.1267 0.080*
H7B −0.5402 0.6681 0.1785 0.080*
H7C −0.5429 0.5684 0.1213 0.080*
C8 0.4607 (4) 0.18930 (18) 0.08365 (9) 0.0420 (5)
H8 0.4667 0.1849 0.0381 0.050*
C9 0.9333 (4) −0.05273 (18) 0.11353 (9) 0.0382 (4)
H2 0.799 (5) 0.058 (2) 0.0411 (5) 0.080*
H3A 0.998 (4) −0.1287 (16) 0.1999 (10) 0.080*
H3B 0.830 (4) −0.0115 (18) 0.2022 (10) 0.080*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0443 (9) 0.0365 (9) 0.0377 (9) −0.0007 (7) 0.0136 (7) −0.0049 (7)
N2 0.0523 (10) 0.0419 (9) 0.0331 (9) 0.0090 (7) 0.0157 (8) −0.0006 (7)
N3 0.0661 (12) 0.0616 (12) 0.0315 (9) 0.0130 (9) 0.0107 (8) 0.0032 (8)
O1 0.0617 (9) 0.0581 (9) 0.0365 (8) 0.0216 (7) 0.0051 (6) −0.0001 (6)
O2 0.0500 (8) 0.0493 (8) 0.0463 (8) 0.0142 (6) 0.0110 (7) −0.0011 (6)
S1 0.0681 (4) 0.0523 (3) 0.0400 (3) 0.0193 (3) 0.0167 (3) 0.0030 (2)
C1 0.0411 (10) 0.0370 (10) 0.0336 (10) −0.0025 (8) 0.0084 (8) −0.0039 (8)
C2 0.0380 (10) 0.0402 (10) 0.0333 (10) −0.0004 (8) 0.0049 (8) −0.0005 (8)
C3 0.0472 (11) 0.0478 (12) 0.0314 (10) 0.0040 (9) 0.0085 (9) −0.0041 (8)
C4 0.0367 (10) 0.0380 (10) 0.0404 (11) −0.0010 (8) 0.0085 (8) −0.0007 (8)
C5 0.0460 (11) 0.0430 (11) 0.0386 (11) 0.0049 (9) 0.0025 (9) 0.0045 (9)
C6 0.0545 (12) 0.0485 (12) 0.0311 (10) 0.0008 (10) 0.0072 (9) −0.0017 (8)
C7 0.0537 (13) 0.0443 (12) 0.0631 (14) 0.0107 (10) 0.0073 (11) 0.0033 (10)
C8 0.0510 (12) 0.0427 (11) 0.0332 (10) −0.0005 (9) 0.0114 (9) −0.0039 (8)
C9 0.0416 (11) 0.0401 (11) 0.0333 (10) −0.0046 (8) 0.0077 (8) −0.0021 (8)

Geometric parameters (Å, °)

N1—C8 1.279 (2) C1—C2 1.402 (3)
N1—N2 1.382 (2) C1—C8 1.449 (3)
N2—C9 1.336 (2) C2—C3 1.374 (3)
N2—H2 0.899 (10) C3—C4 1.382 (3)
N3—C9 1.321 (2) C3—H3 0.9300
N3—H3A 0.882 (9) C4—C5 1.389 (3)
N3—H3B 0.886 (9) C5—C6 1.381 (3)
O1—C2 1.361 (2) C5—H5 0.9300
O1—H1 0.8200 C6—H6 0.9300
O2—C4 1.361 (2) C7—H7A 0.9600
O2—C7 1.432 (2) C7—H7B 0.9600
S1—C9 1.685 (2) C7—H7C 0.9600
C1—C6 1.393 (3) C8—H8 0.9300
C8—N1—N2 115.42 (16) C3—C4—C5 119.83 (17)
C9—N2—N1 121.62 (16) C6—C5—C4 118.70 (17)
C9—N2—H2 122.0 (15) C6—C5—H5 120.7
N1—N2—H2 116.4 (15) C4—C5—H5 120.7
C9—N3—H3A 122.4 (15) C5—C6—C1 122.82 (18)
C9—N3—H3B 122.7 (15) C5—C6—H6 118.6
H3A—N3—H3B 114.6 (18) C1—C6—H6 118.6
C2—O1—H1 109.5 O2—C7—H7A 109.5
C4—O2—C7 118.50 (16) O2—C7—H7B 109.5
C6—C1—C2 116.84 (17) H7A—C7—H7B 109.5
C6—C1—C8 119.77 (17) O2—C7—H7C 109.5
C2—C1—C8 123.39 (17) H7A—C7—H7C 109.5
O1—C2—C3 116.95 (16) H7B—C7—H7C 109.5
O1—C2—C1 122.03 (16) N1—C8—C1 122.81 (18)
C3—C2—C1 121.00 (17) N1—C8—H8 118.6
C2—C3—C4 120.80 (17) C1—C8—H8 118.6
C2—C3—H3 119.6 N3—C9—N2 117.57 (17)
C4—C3—H3 119.6 N3—C9—S1 122.11 (15)
O2—C4—C3 115.21 (17) N2—C9—S1 120.31 (14)
O2—C4—C5 124.97 (17)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N3—H3B···O2i 0.89 (1) 2.26 (2) 2.998 (3) 141.(2)
N3—H3A···O1ii 0.88 (1) 2.23 (1) 3.076 (3) 162 (2)
N2—H2···S1iii 0.90 (1) 2.48 (1) 3.366 (3) 168 (2)
O1—H1···N1 0.82 1.99 2.700 (2) 145

Symmetry codes: (i) −x+1/2, y−1/2, −z+1/2; (ii) −x+3/2, y−1/2, −z+1/2; (iii) −x+2, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5575).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bruker (2002). SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Hao, Y.-M. (2010). Acta Cryst. E66, o1177. [DOI] [PMC free article] [PubMed]
  4. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810029594/hb5575sup1.cif

e-66-o2211-sup1.cif (14.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810029594/hb5575Isup2.hkl

e-66-o2211-Isup2.hkl (110.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES