Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Aug 28;66(Pt 9):o2460. doi: 10.1107/S1600536810033969

2-[(E)-(2-Chloro­phen­yl)imino­meth­yl]-6-methyl­phenol

Peihua Zhu a,*, Jiemei Yu a, Hongyan Wang a, Chunlai Zhang a, Dongming Yang a
PMCID: PMC3008053  PMID: 21588779

Abstract

The title compound, C14H12ClNO, a Schiff base derived from 3-methyl­salicyl­aldehyde, crystallizes in the phenol–imine tautomeric form with an E conformation for the imine functionality. The mol­ecule is not planar, the dihedral angle between the aromatic rings being 36.38 (5)°. The hy­droxy H atom is involved in a strong intra­molecular O—H⋯N hydrogen bond, generating an S(6) ring.

Related literature

For background information and applications of Schiff base complexes, see: Barton & Ollis (1979); Layer (1963); Ingold (1969); Cohen et al. (1964); Henrici-Olive & Olive (1984); Garnovskii et al. (1993). For related structures, see: Köysal et al. (2007); Kılıç et al. (2009); Şahin et al. (2009).graphic file with name e-66-o2460-scheme1.jpg

Experimental

Crystal data

  • C14H12ClNO

  • M r = 245.70

  • Orthorhombic, Inline graphic

  • a = 7.8318 (14) Å

  • b = 11.693 (2) Å

  • c = 13.250 (2) Å

  • V = 1213.4 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 293 K

  • 0.21 × 0.11 × 0.06 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003) T min = 0.940, T max = 0.982

  • 6803 measured reflections

  • 2477 independent reflections

  • 1486 reflections with I > 2σ(I)

  • R int = 0.070

Refinement

  • R[F 2 > 2σ(F 2)] = 0.051

  • wR(F 2) = 0.096

  • S = 1.00

  • 2477 reflections

  • 158 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.14 e Å−3

  • Absolute structure: Flack (1983), 1034 Friedel pairs

  • Flack parameter: −0.06 (9)

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810033969/zq2056sup1.cif

e-66-o2460-sup1.cif (17KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810033969/zq2056Isup2.hkl

e-66-o2460-Isup2.hkl (121.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.87 (1) 1.84 (2) 2.615 (3) 148 (3)

Acknowledgments

This work was supported by Shandong Province (2007BS02016).

supplementary crystallographic information

Comment

Schiff bases are used as starting materials in the synthesis of important drugs (Layer, 1963; Ingold, 1969). A large number of Schiff bases and their complexes have been studied for their interesting and important properties, e.g. catalytic activity (Henrici-Olive & Olive, 1984), photochromic properties (Cohen et al., 1964), biological activity (Barton et al., 1979). On the other hand, Schiff base ligands play a vital role in coordination chemistry due to their metal binding ability (Garnovskii et al., 1993).

The structure of the title compound is shown in Fig. 1. The C7═N1 double bond of 1.283 (3) Å is slightly longer than the literature values found in similar structures (Köysal et al., 2007; Kılıç et al., 2009; Şahin et al., 2009) in the range of 1.262 (8)-1.279 (3) Å. The title molecule is not planar with a dihedral angle between the aromatic rings C1/C6 and C8/C13 of 36.38 (5) °. The imino group is coplanar with the hydroxyphenyl ring with the torsion angle C13—C8—C7—N1 of 1.6 (4) °.

The molecular structure is stabilized by a strong intramolecular O—H···N hydrogen bond.

Experimental

A solution of 3-methylsalicylaldehyde (0.0681 g, 0.5 mmol) in ethanol (10 ml) was added to a solution of 2-chlorobenzenamine (0.0638 g, 0.5 mmol) in ethanol (20 ml). The reaction mixture was stirred for 2 h under reflux. Single crystals suitable for a X-ray analysis were obtained from ethanol by slow evaporation (0.0749 g, 61%).

Refinement

The H atom bounded to O1 was located in the difference Fourier map and freely refined with Uiso(H) = 1.2Ueq (O). All other H atoms were placed in calculated positions and refined using a riding-model approximation with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic H atoms, and with C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with the atom-numbering scheme and 25% probability displacement ellipsoids for the non-H atoms.

Crystal data

C14H12ClNO F(000) = 512
Mr = 245.70 Dx = 1.345 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 1163 reflections
a = 7.8318 (14) Å θ = 3.1–28.8°
b = 11.693 (2) Å µ = 0.30 mm1
c = 13.250 (2) Å T = 293 K
V = 1213.4 (4) Å3 Needle, yellow
Z = 4 0.21 × 0.11 × 0.06 mm

Data collection

Bruker APEXII CCD area-detector diffractometer 2477 independent reflections
Radiation source: fine-focus sealed tube 1486 reflections with I > 2σ(I)
graphite Rint = 0.070
φ and ω scans θmax = 26.4°, θmin = 3.1°
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) h = −9→9
Tmin = 0.940, Tmax = 0.982 k = −14→14
6803 measured reflections l = −16→16

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.096 w = 1/[σ2(Fo2) + (0.0358P)2 + 0.0414P] where P = (Fo2 + 2Fc2)/3
S = 1.00 (Δ/σ)max < 0.001
2477 reflections Δρmax = 0.15 e Å3
158 parameters Δρmin = −0.14 e Å3
1 restraint Absolute structure: Flack (1983), 1034 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: −0.06 (9)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 −0.30427 (11) −0.84282 (9) −0.18201 (8) 0.0873 (3)
C11 −0.2023 (4) −0.5269 (3) −0.6436 (3) 0.0609 (9)
H11 −0.1358 −0.4949 −0.6945 0.073*
C2 −0.6147 (5) −0.8244 (3) −0.0959 (3) 0.0673 (9)
H2 −0.5727 −0.8740 −0.0469 0.081*
C4 −0.8405 (4) −0.7124 (3) −0.1622 (3) 0.0704 (10)
H4 −0.9518 −0.6851 −0.1577 0.085*
C13 −0.2304 (4) −0.5959 (2) −0.4763 (2) 0.0460 (7)
N1 −0.4592 (3) −0.68266 (18) −0.32559 (19) 0.0510 (6)
C8 −0.4038 (3) −0.6210 (2) −0.4942 (2) 0.0446 (7)
C5 −0.7384 (3) −0.6793 (3) −0.2418 (3) 0.0600 (8)
H5 −0.7817 −0.6305 −0.2910 0.072*
C1 −0.5125 (4) −0.7905 (2) −0.1741 (2) 0.0546 (8)
C3 −0.7793 (5) −0.7849 (3) −0.0899 (3) 0.0726 (10)
H3 −0.8492 −0.8075 −0.0368 0.087*
C9 −0.4702 (4) −0.5986 (2) −0.5894 (2) 0.0568 (8)
H9 −0.5835 −0.6167 −0.6030 0.068*
C7 −0.5128 (3) −0.6658 (2) −0.4159 (2) 0.0476 (7)
H7 −0.6257 −0.6830 −0.4313 0.057*
C12 −0.1285 (3) −0.5488 (2) −0.5514 (2) 0.0509 (8)
C6 −0.5706 (3) −0.7186 (2) −0.2491 (2) 0.0495 (7)
C10 −0.3721 (4) −0.5507 (3) −0.6631 (2) 0.0638 (9)
H10 −0.4190 −0.5342 −0.7260 0.077*
C14 0.0568 (4) −0.5250 (3) −0.5305 (3) 0.0781 (11)
H14C 0.1143 −0.5953 −0.5150 0.117*
H14A 0.0662 −0.4737 −0.4742 0.117*
H14B 0.1081 −0.4907 −0.5889 0.117*
O1 −0.1569 (2) −0.61668 (18) −0.38591 (17) 0.0618 (6)
H1 −0.233 (3) −0.648 (3) −0.3472 (19) 0.074*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0762 (5) 0.1058 (7) 0.0799 (7) 0.0203 (5) −0.0073 (5) 0.0146 (6)
C11 0.072 (2) 0.0524 (19) 0.058 (2) 0.0033 (17) 0.0238 (19) 0.0008 (17)
C2 0.089 (3) 0.054 (2) 0.059 (2) −0.0124 (19) −0.002 (2) 0.0131 (19)
C4 0.064 (2) 0.065 (2) 0.083 (3) −0.0066 (17) 0.016 (2) 0.000 (2)
C13 0.0515 (19) 0.0393 (16) 0.0471 (19) 0.0069 (13) 0.0008 (15) −0.0042 (15)
N1 0.0543 (13) 0.0510 (14) 0.0477 (16) −0.0051 (11) 0.0029 (14) 0.0016 (14)
C8 0.0473 (18) 0.0412 (17) 0.0452 (19) 0.0026 (12) 0.0044 (15) −0.0075 (15)
C5 0.0581 (18) 0.0538 (19) 0.068 (2) −0.0021 (15) 0.0058 (17) 0.0120 (18)
C1 0.0629 (18) 0.0511 (16) 0.0499 (19) −0.0042 (15) −0.0015 (18) −0.0013 (18)
C3 0.087 (3) 0.064 (2) 0.067 (2) −0.0186 (19) 0.022 (2) 0.002 (2)
C9 0.0564 (17) 0.0652 (18) 0.049 (2) 0.0009 (15) −0.0027 (17) −0.0051 (19)
C7 0.0468 (15) 0.0460 (16) 0.050 (2) −0.0023 (14) −0.0025 (16) −0.0025 (17)
C12 0.0527 (17) 0.0432 (16) 0.057 (2) 0.0023 (14) 0.0098 (18) −0.0034 (16)
C6 0.0539 (18) 0.0423 (16) 0.0523 (19) −0.0094 (13) 0.0014 (16) −0.0013 (17)
C10 0.079 (2) 0.071 (2) 0.042 (2) 0.0057 (18) 0.0028 (18) −0.0004 (19)
C14 0.057 (2) 0.085 (2) 0.093 (3) −0.0041 (17) 0.0114 (19) 0.004 (2)
O1 0.0516 (12) 0.0784 (16) 0.0554 (15) −0.0011 (11) −0.0025 (11) 0.0044 (12)

Geometric parameters (Å, °)

Cl1—C1 1.745 (3) C8—C9 1.388 (4)
C11—C12 1.376 (4) C8—C7 1.442 (4)
C11—C10 1.384 (4) C5—C6 1.396 (4)
C11—H11 0.9300 C5—H5 0.9300
C2—C1 1.369 (4) C1—C6 1.378 (4)
C2—C3 1.372 (4) C3—H3 0.9300
C2—H2 0.9300 C9—C10 1.363 (4)
C4—C3 1.366 (4) C9—H9 0.9300
C4—C5 1.379 (4) C7—H7 0.9300
C4—H4 0.9300 C12—C14 1.503 (4)
C13—O1 1.351 (3) C10—H10 0.9300
C13—C12 1.389 (4) C14—H14C 0.9600
C13—C8 1.410 (4) C14—H14A 0.9600
N1—C7 1.283 (3) C14—H14B 0.9600
N1—C6 1.402 (3) O1—H1 0.87 (3)
C12—C11—C10 122.2 (3) C2—C3—H3 120.1
C12—C11—H11 118.9 C10—C9—C8 121.2 (3)
C10—C11—H11 118.9 C10—C9—H9 119.4
C1—C2—C3 119.7 (3) C8—C9—H9 119.4
C1—C2—H2 120.1 N1—C7—C8 122.2 (3)
C3—C2—H2 120.1 N1—C7—H7 118.9
C3—C4—C5 120.5 (3) C8—C7—H7 118.9
C3—C4—H4 119.8 C11—C12—C13 117.9 (3)
C5—C4—H4 119.8 C11—C12—C14 122.3 (3)
O1—C13—C12 117.5 (3) C13—C12—C14 119.8 (3)
O1—C13—C8 121.4 (3) C1—C6—C5 117.5 (3)
C12—C13—C8 121.1 (3) C1—C6—N1 119.9 (3)
C7—N1—C6 121.1 (2) C5—C6—N1 122.5 (3)
C9—C8—C13 118.3 (3) C9—C10—C11 119.3 (3)
C9—C8—C7 120.0 (3) C9—C10—H10 120.3
C13—C8—C7 121.7 (3) C11—C10—H10 120.3
C4—C5—C6 120.4 (3) C12—C14—H14C 109.5
C4—C5—H5 119.8 C12—C14—H14A 109.5
C6—C5—H5 119.8 H14C—C14—H14A 109.5
C2—C1—C6 122.0 (3) C12—C14—H14B 109.5
C2—C1—Cl1 119.4 (3) H14C—C14—H14B 109.5
C6—C1—Cl1 118.6 (2) H14A—C14—H14B 109.5
C4—C3—C2 119.9 (3) C13—O1—H1 108 (2)
C4—C3—H3 120.1
O1—C13—C8—C9 −179.2 (2) C10—C11—C12—C14 178.9 (3)
C12—C13—C8—C9 0.7 (4) O1—C13—C12—C11 −179.7 (2)
O1—C13—C8—C7 2.5 (4) C8—C13—C12—C11 0.4 (4)
C12—C13—C8—C7 −177.6 (2) O1—C13—C12—C14 1.0 (4)
C3—C4—C5—C6 −0.6 (4) C8—C13—C12—C14 −178.9 (3)
C3—C2—C1—C6 −1.1 (5) C2—C1—C6—C5 1.1 (4)
C3—C2—C1—Cl1 −179.1 (3) Cl1—C1—C6—C5 179.1 (2)
C5—C4—C3—C2 0.6 (5) C2—C1—C6—N1 177.5 (3)
C1—C2—C3—C4 0.2 (5) Cl1—C1—C6—N1 −4.5 (3)
C13—C8—C9—C10 −1.8 (4) C4—C5—C6—C1 −0.2 (4)
C7—C8—C9—C10 176.5 (3) C4—C5—C6—N1 −176.6 (3)
C6—N1—C7—C8 175.4 (2) C7—N1—C6—C1 146.1 (3)
C9—C8—C7—N1 −176.7 (3) C7—N1—C6—C5 −37.6 (4)
C13—C8—C7—N1 1.6 (4) C8—C9—C10—C11 1.8 (5)
C10—C11—C12—C13 −0.4 (4) C12—C11—C10—C9 −0.7 (5)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1···N1 0.87 (1) 1.84 (2) 2.615 (3) 148 (3)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZQ2056).

References

  1. Barton, D. & Ollis, W. D. (1979). Comprehensive Organic Chemistry, Vol 2. Oxford: Pergamon Press.
  2. Bruker (2001). SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (2004). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Cohen, M. D., Schmidt, G. M. J. & Flavian, S. (1964). J. Chem. Soc. pp. 2041–2051.
  5. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  6. Garnovskii, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev.126, 1–69.
  7. Henrici-Olive, G. & Olive, S. (1984). The Chemistry of the Catalyzed Hydrogenation of Carbon Monoxide Berlin: Springer.
  8. Ingold, C. K. (1969). Structure and Mechanism in Organic Chemistry, 2nd ed. Ithaca: Cornell University Press.
  9. Kılıç, I., Işık, Ş., Ağar, E. & Erşahin, F. (2009). Acta Cryst. E65, o1347. [DOI] [PMC free article] [PubMed]
  10. Köysal, Y., Işık, Ş. & Ağar, A. (2007). Acta Cryst. E63, o4916.
  11. Layer, R. W. (1963). Chem. Rev.63, 489–510.
  12. Şahin, Z. S., Işık, Ş., Erşahin, F. & Ağar, E.(2009). Acta Cryst. E65, o811. [DOI] [PMC free article] [PubMed]
  13. Sheldrick, G. M. (2003). SADABS University of Göttingen, Germany.
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810033969/zq2056sup1.cif

e-66-o2460-sup1.cif (17KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810033969/zq2056Isup2.hkl

e-66-o2460-Isup2.hkl (121.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES