Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Aug 28;66(Pt 9):o2459. doi: 10.1107/S1600536810034276

2-Isopropyl-6-methyl­pyrimidin-4(3H)-one

Madhukar Hemamalini a, Hoong-Kun Fun a,*,
PMCID: PMC3008064  PMID: 21588778

Abstract

The mol­ecular structure of the title compound, C8H12N2O, indicates that 2-isopropyl-6-methyl­pyrimidin-4-ol (the enol–form) undergoes an enol-to-keto tautomerism during the crystallization process. The pyrimidin-4(3H)-one group is essentially planar, with a maximum deviation of 0.081 (1) Å for the O atom. In the crystal structure, symmetry-related mol­ecules are linked into centrosymmetic dimers via pairs of inter­molecular N—H⋯O hydrogen bonds, generating R 2 2(8) rings. These dimers are stacked along the a axis.

Related literature

For applications of pyridinium derivatives, see: Condon et al. (1993); Maeno et al. (1990); Gilchrist (1997); Selby et al. (2002). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).graphic file with name e-66-o2459-scheme1.jpg

Experimental

Crystal data

  • C8H12N2O

  • M r = 152.20

  • Monoclinic, Inline graphic

  • a = 4.8627 (2) Å

  • b = 22.6320 (8) Å

  • c = 7.4228 (3) Å

  • β = 96.495 (2)°

  • V = 811.66 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100 K

  • 0.74 × 0.14 × 0.07 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.940, T max = 0.994

  • 7806 measured reflections

  • 2371 independent reflections

  • 1958 reflections with I > 2σ(I)

  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039

  • wR(F 2) = 0.103

  • S = 1.06

  • 2371 reflections

  • 148 parameters

  • All H-atom parameters refined

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810034276/lh5121sup1.cif

e-66-o2459-sup1.cif (15.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810034276/lh5121Isup2.hkl

e-66-o2459-Isup2.hkl (114.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N2⋯O1i 0.937 (15) 1.844 (14) 2.7809 (11) 178.7 (10)

Symmetry code: (i) Inline graphic.

Acknowledgments

MH and HKF thank the Malaysian Government and Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

supplementary crystallographic information

Comment

Pyrimidine derivatives are very important molecules in biology and have many application in the areas of pesticide and pharmaceutical agents (Condon et al., 1993). For example, imazosulfuron, ethirmol and mepanipyrim have been commercialized as agrochemicals (Maeno et al., 1990). Pyrimidine derivatives have also been developed as antiviral agents, such as AZT, which is the most widely used anti-AIDS drug (Gilchrist, 1997). Recently, a new series of highly active herbicides of substituted azolylpyrimidines were reported (Selby et al., 2002). Keeping in view of the importance of the pyrimidine derivatives, the title compound (I) was presented.

The title molecule, (Fig. 1), exists in the keto-form although 2-isopropyl-4-hydroxy-6-methylpyrimidine (the enol-form) was used for crystallization. This indicates the compound undergoes an enol-to-keto tautomerism during the crystallization process (Fig. 3). The C2═O1 bond length is 1.2497 (11) Å. The pyrimidin-4(3H)-one group is essentially planar with a maximum deviation of 0.081 (1) Å for atom O1. In the crystal structure (Fig. 2), adjacent molecules are linked via pairs of intermolecular N—H···O hydrogen bonds to form dimers, generating R22(8) rings (Bernstein et al., 1995). These dimers are stacked along the a-axis.

Experimental

Hot methanol solution (20 ml) of 2-isopropyl-4-hydroxy-6-methylpyrimidine (46 mg, Aldrich) was warmed over a heating magnetic stirrer for 5 minutes. The resulting solution was allowed to cool slowly at room temperature. Crystals of the title compound appeared from the mother liquor after a few days.

Refinement

All H atoms were located in a difference Fourier map and refined freely.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

The crystal packing of the title compound, viewed approximately along the a-axis. Hydrogen bonds are shown as dashed lines.

Fig. 3.

Fig. 3.

The title compound and the tautomeric form.

Crystal data

C8H12N2O F(000) = 328
Mr = 152.20 Dx = 1.245 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 2995 reflections
a = 4.8627 (2) Å θ = 2.9–30.0°
b = 22.6320 (8) Å µ = 0.08 mm1
c = 7.4228 (3) Å T = 100 K
β = 96.495 (2)° Needle, colourless
V = 811.66 (5) Å3 0.74 × 0.14 × 0.07 mm
Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 2371 independent reflections
Radiation source: fine-focus sealed tube 1958 reflections with I > 2σ(I)
graphite Rint = 0.026
φ and ω scans θmax = 30.1°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −5→6
Tmin = 0.940, Tmax = 0.994 k = −26→31
7806 measured reflections l = −10→10

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103 All H-atom parameters refined
S = 1.06 w = 1/[σ2(Fo2) + (0.049P)2 + 0.163P] where P = (Fo2 + 2Fc2)/3
2371 reflections (Δ/σ)max < 0.001
148 parameters Δρmax = 0.32 e Å3
0 restraints Δρmin = −0.20 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.77782 (15) 0.03007 (3) 0.81600 (9) 0.02023 (18)
N1 0.43265 (17) −0.13343 (3) 0.84671 (10) 0.01613 (18)
N2 0.75959 (17) −0.06091 (3) 0.94759 (10) 0.01473 (17)
C1 0.64511 (19) −0.11546 (4) 0.95755 (12) 0.01455 (19)
C2 0.6596 (2) −0.01885 (4) 0.82081 (12) 0.0158 (2)
C3 0.4232 (2) −0.03768 (4) 0.70385 (12) 0.0169 (2)
C4 0.32239 (19) −0.09370 (4) 0.71759 (12) 0.0156 (2)
C5 0.0868 (2) −0.11656 (5) 0.58916 (13) 0.0190 (2)
C6 0.7737 (2) −0.15603 (4) 1.10544 (13) 0.01614 (19)
C7 0.8468 (3) −0.21559 (5) 1.02578 (15) 0.0249 (2)
C8 0.5752 (2) −0.16347 (5) 1.25028 (14) 0.0222 (2)
H1N2 0.915 (3) −0.0510 (7) 1.0283 (19) 0.034 (4)*
H3A 0.338 (3) −0.0101 (6) 0.6146 (18) 0.025 (3)*
H5A −0.064 (3) −0.1299 (6) 0.655 (2) 0.036 (4)*
H5B 0.011 (3) −0.0864 (7) 0.503 (2) 0.044 (4)*
H5C 0.151 (3) −0.1505 (6) 0.5237 (19) 0.034 (4)*
H6A 0.946 (3) −0.1369 (5) 1.1613 (16) 0.018 (3)*
H7A 0.922 (3) −0.2424 (6) 1.124 (2) 0.031 (3)*
H7B 0.984 (3) −0.2117 (6) 0.9349 (19) 0.031 (4)*
H7C 0.681 (3) −0.2348 (6) 0.9648 (19) 0.036 (4)*
H8A 0.661 (3) −0.1874 (6) 1.3518 (19) 0.029 (3)*
H8B 0.408 (3) −0.1849 (6) 1.1978 (18) 0.031 (4)*
H8C 0.519 (3) −0.1249 (6) 1.2967 (19) 0.032 (4)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0210 (4) 0.0159 (3) 0.0229 (4) −0.0031 (3) −0.0012 (3) 0.0032 (3)
N1 0.0159 (4) 0.0163 (4) 0.0157 (4) −0.0010 (3) 0.0002 (3) −0.0005 (3)
N2 0.0146 (4) 0.0143 (4) 0.0150 (4) −0.0008 (3) 0.0005 (3) 0.0004 (3)
C1 0.0146 (4) 0.0146 (4) 0.0146 (4) 0.0003 (3) 0.0026 (3) −0.0007 (3)
C2 0.0159 (4) 0.0161 (4) 0.0156 (4) 0.0005 (3) 0.0028 (3) 0.0007 (3)
C3 0.0165 (5) 0.0185 (4) 0.0153 (4) 0.0014 (3) 0.0006 (3) 0.0019 (3)
C4 0.0143 (4) 0.0185 (5) 0.0142 (4) 0.0005 (3) 0.0019 (3) −0.0018 (3)
C5 0.0164 (5) 0.0227 (5) 0.0172 (4) −0.0011 (4) −0.0013 (3) −0.0022 (4)
C6 0.0157 (4) 0.0151 (4) 0.0168 (4) −0.0011 (3) −0.0015 (3) 0.0009 (3)
C7 0.0301 (6) 0.0172 (5) 0.0260 (5) 0.0036 (4) −0.0026 (4) −0.0004 (4)
C8 0.0202 (5) 0.0268 (5) 0.0193 (5) −0.0016 (4) 0.0012 (4) 0.0061 (4)

Geometric parameters (Å, °)

O1—C2 1.2497 (11) C5—H5B 0.978 (16)
N1—C1 1.3105 (12) C5—H5C 0.978 (15)
N1—C4 1.3777 (12) C6—C7 1.5297 (14)
N2—C1 1.3595 (12) C6—C8 1.5332 (14)
N2—C2 1.3874 (12) C6—H6A 0.990 (12)
N2—H1N2 0.937 (15) C7—H7A 0.985 (14)
C1—C6 1.5114 (13) C7—H7B 1.004 (14)
C2—C3 1.4254 (13) C7—H7C 0.980 (15)
C3—C4 1.3672 (13) C8—H8A 0.982 (14)
C3—H3A 0.968 (13) C8—H8B 0.987 (14)
C4—C5 1.4972 (13) C8—H8C 0.988 (15)
C5—H5A 0.973 (16)
C1—N1—C4 116.83 (8) H5A—C5—H5C 107.8 (12)
C1—N2—C2 123.08 (8) H5B—C5—H5C 109.9 (12)
C1—N2—H1N2 119.2 (9) C1—C6—C7 110.47 (8)
C2—N2—H1N2 117.7 (9) C1—C6—C8 109.54 (8)
N1—C1—N2 123.11 (9) C7—C6—C8 111.50 (8)
N1—C1—C6 119.97 (8) C1—C6—H6A 107.5 (7)
N2—C1—C6 116.92 (8) C7—C6—H6A 108.9 (7)
O1—C2—N2 120.02 (9) C8—C6—H6A 108.9 (7)
O1—C2—C3 126.12 (9) C6—C7—H7A 109.9 (8)
N2—C2—C3 113.86 (8) C6—C7—H7B 112.5 (8)
C4—C3—C2 120.21 (9) H7A—C7—H7B 109.4 (11)
C4—C3—H3A 121.2 (8) C6—C7—H7C 110.8 (9)
C2—C3—H3A 118.6 (8) H7A—C7—H7C 106.5 (12)
C3—C4—N1 122.85 (9) H7B—C7—H7C 107.6 (11)
C3—C4—C5 121.86 (9) C6—C8—H8A 110.7 (8)
N1—C4—C5 115.27 (8) C6—C8—H8B 109.4 (8)
C4—C5—H5A 110.6 (9) H8A—C8—H8B 106.8 (12)
C4—C5—H5B 112.3 (9) C6—C8—H8C 111.6 (8)
H5A—C5—H5B 107.2 (12) H8A—C8—H8C 109.3 (11)
C4—C5—H5C 108.9 (8) H8B—C8—H8C 109.0 (11)
C4—N1—C1—N2 −1.11 (13) C2—C3—C4—N1 2.79 (14)
C4—N1—C1—C6 178.69 (8) C2—C3—C4—C5 −175.72 (8)
C2—N2—C1—N1 0.98 (14) C1—N1—C4—C3 −0.79 (13)
C2—N2—C1—C6 −178.83 (8) C1—N1—C4—C5 177.82 (8)
C1—N2—C2—O1 −178.41 (8) N1—C1—C6—C7 52.88 (12)
C1—N2—C2—C3 0.98 (12) N2—C1—C6—C7 −127.31 (9)
O1—C2—C3—C4 176.61 (9) N1—C1—C6—C8 −70.32 (11)
N2—C2—C3—C4 −2.73 (13) N2—C1—C6—C8 109.50 (9)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H1N2···O1i 0.937 (15) 1.844 (14) 2.7809 (11) 178.7 (10)

Symmetry codes: (i) −x+2, −y, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5121).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  2. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Condon, M. E., Brady, T. E., Feist, D., Malefyt, T., Marc, P., Quakenbush, L. S., Rodaway, S. J., Shaner, D. L. & Tecle, B. (1993). Brighton Crop Protection Conference on Weeds, pp. 41–46. Alton, Hampshire, England: BCPC Publications.
  4. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  5. Gilchrist, T. L. (1997). Heterocyclic Chemistry, 3rd ed., pp. 261–276. Singapore: Addison Wesley Longman.
  6. Maeno, S., Miura, I., Masuda, K. & Nagata, T. (1990). Brighton Crop Protection Conference on Pests and Diseases, pp. 415–422. Alton, Hampshire, England: BCPC Publications.
  7. Selby, T. P., Drumm, J. E., Coats, R. A., Coppo, F. T., Gee, S. K., Hay, J. V., Pasteris, R. J. & Stevenson, T. M. (2002). ACS Symposium Series, Vol. 800, Synthesis and Chemistry of Agrochemicals VI, pp. 74–84. Washington DC: American Chemical Society.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810034276/lh5121sup1.cif

e-66-o2459-sup1.cif (15.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810034276/lh5121Isup2.hkl

e-66-o2459-Isup2.hkl (114.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES