Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Aug 18;66(Pt 9):o2304–o2305. doi: 10.1107/S1600536810031582

N-Isopropyl-6-methyl-2-phenyl­quinoline-3-carboxamide

Saida Benzerka a, Abdelmalek Bouraiou a, Sofiane Bouacida b,*, Thierry Roisnel c, Ali Belfaitah a
PMCID: PMC3008085  PMID: 21588654

Abstract

In the title compound, C20H20N2O, the dihedral angle between the quinoline ring system and the phenyl ring is 49.40 (5)°. In the crystal structure, zigzag layers of mol­ecules, in which the quinoline units are parallel to the (Inline graphic10) plane, are arranged perpendicular to the b axis. Inter­molecular N—H⋯O hydrogen bonds connect the mol­ecules into chains along [010], reinforcing the cohesion between the layers of the structure.

Related literature

For our previous work on the preparation of quinoline deriv­atives, see: Benzerka et al. (2008); Ladraa et al. (2009); Bouraiou et al. (2006, 2008). For the evaluation of their biological activity, see: Atwell et al. (1988,1989); Denny et al. (1990); Toshima et al. (1999); Mikata et al. (1998); Henriksen et al. (1991). For the synthetic procedure, see: Saudi et al. (2003).graphic file with name e-66-o2304-scheme1.jpg

Experimental

Crystal data

  • C20H20N2O

  • M r = 304.38

  • Orthorhombic, Inline graphic

  • a = 12.0007 (3) Å

  • b = 9.6314 (2) Å

  • c = 29.4627 (8) Å

  • V = 3405.40 (14) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 150 K

  • 0.32 × 0.11 × 0.08 mm

Data collection

  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001) T min = 0.747, T max = 0.994

  • 15315 measured reflections

  • 3906 independent reflections

  • 2839 reflections with I > 2σ(I)

  • R int = 0.046

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050

  • wR(F 2) = 0.157

  • S = 1.04

  • 3906 reflections

  • 211 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.26 e Å−3

Data collection: APEX2 (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks I. DOI: 10.1107/S1600536810031582/lh5101sup1.cif

e-66-o2304-sup1.cif (18.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810031582/lh5101Isup2.hkl

e-66-o2304-Isup2.hkl (187.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯O1i 0.88 1.95 2.804 (3) 164

Symmetry code: (i) Inline graphic.

Acknowledgments

We are grateful to all personel of the PHYSYNOR laboratory, Université Mentouri-Constantine, Algeria, for their assistance.

supplementary crystallographic information

Comment

Since Atwell et al. (1988) and Denny et al. (1990) demonstrated the efficacy of 2 + 1 unfused tricyclic aromatic systems such as phenylquinolines as a minimal intercalators, 2-phenylquinoline (Mikata et al., 1998; Henriksen et al., 1991) was selected as the DNA intercalator. The conjugated C=N bond in the 2-phenylquinoline unit was also expected to generate the photoexcited 3(n→π*) state upon photoirradiation, which may have a radical character and could be capable of cleaving DNA (Toshima et al., 1999). On the other hand, certain 2-phenylquinoline carboxamide derivatives have been shown to possess DNA binding capability and a broad-spectrum activity in both leukemia and solid-tumor assays (Atwell et al., 1989). As part of our program related to the synthesis of some new heterocyclic compounds with medicinal potential (Bouraiou et al.,2006, 2008; Benzerka et al., 2008; Ladraa et al., 2009), we report here the synthesis and crystal structure of the title compound (I). The molecular geometry and the atom-numbering scheme of (I) are shown in Fig. 1. The asymmetric unit of title compound contains a quinolyl unit bearing a phenyl ring at position C-2, amide group at C-3 and methyl at C-6. The two rings of the quinolyl moiety are fused in an axial fashion and form a dihedral angle of 3.13 (4)°. The dihedral angle between the phenyl ring quinoline ring system is 49.40 (5)°. The amide group is essentially planar. The r.m.s deviation for atoms C2/C17/O1/N2/C18 is 0.007Å and the maximum deviation is -0.0131 (15)Å for C17. The C—N [1.3260 (17) Å] bond length to the carbonyl group is closer to that of a standard C═N double bond (1.27 Å) than to that of a single bond (1.49 Å). This is because the lone pair electrons on nitrogen of the amide are delocalized into the carbonyl group. The crystal packing can be described as layers in zig zag perpendicular to b axis which quinoline rings are parallel to the (-110) plane (Fig. 2). The crystal packing is stabilized by intermolecular hydrogen bond (N—H···O), resulting in the formation of infinite one-dimensional chain along the b axis linked these layers reinforce the cohesion of the structure (Fig. 2).

Experimental

Compound (I) was obtained from 6-methyl-2-phenylquinoline-3-carboxylic acid and ethyl chloroformate in presence triethylamine in chloroform (Saudi et al., 2003). Suitable crystals for X-ray diffraction were obtained by slow evaporation of a solution of (I) in diisopropylether at room temperature.

Refinement

All H atoms were located from Fourier maps but introduced in calculated positions and treated as riding on their parent C atom with C-H = 0.93-0.98Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmethyl).

Figures

Fig. 1.

Fig. 1.

The molecular structure (Farrugia, 1997) of the title compound with the atomic labelling scheme. Displacement are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Part of the crystal structure (Brandenburg & Berndt, 2001) showing the layered packing of (I) viewed along the c axis and showing hydrogen bonds [N—H···O] as dashed line along the b axis.

Crystal data

C20H20N2O F(000) = 1296
Mr = 304.38 Dx = 1.187 Mg m3
Orthorhombic, Pbca Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2ab Cell parameters from 4726 reflections
a = 12.0007 (3) Å θ = 3.0–27.3°
b = 9.6314 (2) Å µ = 0.07 mm1
c = 29.4627 (8) Å T = 150 K
V = 3405.40 (14) Å3 Stick, colourless
Z = 8 0.32 × 0.11 × 0.08 mm

Data collection

Bruker APEXII diffractometer 2839 reflections with I > 2σ(I)
graphite Rint = 0.046
CCD rotation images, thin slices scans θmax = 27.5°, θmin = 2.8°
Absorption correction: multi-scan (SADABS; Bruker, 2001) h = −10→15
Tmin = 0.747, Tmax = 0.994 k = −7→12
15315 measured reflections l = −24→38
3906 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.157 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0914P)2 + 0.3352P] where P = (Fo2 + 2Fc2)/3
3906 reflections (Δ/σ)max = 0.001
211 parameters Δρmax = 0.23 e Å3
0 restraints Δρmin = −0.26 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.29293 (9) −0.22115 (10) 0.10660 (4) 0.0378 (3)
N1 0.58409 (10) −0.43666 (12) 0.14988 (4) 0.0288 (3)
N2 0.21063 (10) −0.43091 (12) 0.09977 (4) 0.0309 (3)
H2N 0.2211 −0.5213 0.0984 0.037*
C1 0.47981 (11) −0.39345 (14) 0.14808 (5) 0.0258 (3)
C2 0.40933 (11) −0.41975 (13) 0.10973 (5) 0.0240 (3)
C3 0.44903 (12) −0.50023 (13) 0.07517 (5) 0.0249 (3)
H3 0.4038 −0.5201 0.0504 0.030*
C4 0.55847 (12) −0.55334 (13) 0.07693 (4) 0.0251 (3)
C5 0.60463 (12) −0.64177 (14) 0.04333 (5) 0.0289 (3)
H5 0.5619 −0.6654 0.0182 0.035*
C6 0.71088 (13) −0.69338 (15) 0.04705 (5) 0.0335 (4)
C7 0.77548 (13) −0.65292 (17) 0.08495 (6) 0.0352 (4)
H7 0.8477 −0.6870 0.0878 0.042*
C8 0.73505 (13) −0.56529 (16) 0.11750 (5) 0.0332 (4)
H8 0.7805 −0.5384 0.1415 0.040*
C9 0.62453 (11) −0.51521 (14) 0.11490 (5) 0.0266 (3)
C10 0.75887 (16) −0.79114 (18) 0.01255 (6) 0.0448 (4)
H10A 0.7119 −0.7928 −0.0138 0.067*
H10B 0.7633 −0.8827 0.0253 0.067*
H10C 0.8321 −0.7604 0.0041 0.067*
C11 0.43566 (13) −0.32106 (16) 0.18883 (5) 0.0328 (4)
C12 0.33582 (14) −0.3632 (2) 0.20819 (6) 0.0464 (5)
H12 0.2956 −0.4352 0.1950 0.056*
C13 0.29535 (17) −0.2991 (3) 0.24697 (7) 0.0681 (7)
H13 0.2292 −0.3291 0.2602 0.082*
C14 0.3541 (2) −0.1903 (3) 0.26577 (8) 0.0792 (8)
H14 0.3264 −0.1452 0.2913 0.095*
C15 0.4537 (2) −0.1480 (2) 0.24698 (7) 0.0690 (7)
H15 0.4928 −0.0746 0.2599 0.083*
C16 0.49557 (16) −0.21433 (18) 0.20900 (6) 0.0454 (4)
H16 0.5639 −0.1874 0.1970 0.055*
C17 0.29824 (12) −0.34913 (13) 0.10575 (5) 0.0258 (3)
C18 0.09700 (12) −0.37692 (16) 0.09527 (6) 0.0395 (4)
H18 0.1017 −0.2852 0.0810 0.047*
C19 0.03298 (16) −0.4717 (2) 0.06337 (11) 0.0859 (9)
H19A 0.0293 −0.5633 0.0762 0.129*
H19B 0.0703 −0.4755 0.0346 0.129*
H19C −0.0411 −0.4363 0.0592 0.129*
C20 0.04341 (19) −0.3592 (3) 0.14068 (8) 0.0850 (9)
H20A 0.0880 −0.2983 0.1590 0.128*
H20B 0.0374 −0.4479 0.1553 0.128*
H20C −0.0296 −0.3201 0.1369 0.128*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0403 (7) 0.0158 (5) 0.0574 (7) −0.0006 (4) −0.0080 (5) 0.0015 (4)
N1 0.0269 (6) 0.0314 (6) 0.0281 (6) −0.0029 (5) 0.0000 (5) 0.0012 (5)
N2 0.0234 (6) 0.0155 (5) 0.0539 (8) 0.0019 (5) −0.0045 (6) 0.0033 (5)
C1 0.0264 (7) 0.0220 (6) 0.0290 (7) −0.0029 (5) −0.0008 (6) 0.0020 (5)
C2 0.0241 (7) 0.0167 (6) 0.0312 (7) −0.0031 (5) −0.0019 (6) 0.0030 (5)
C3 0.0287 (7) 0.0185 (6) 0.0276 (7) −0.0038 (5) −0.0045 (6) 0.0018 (5)
C4 0.0285 (7) 0.0194 (6) 0.0276 (7) −0.0035 (6) 0.0024 (6) 0.0046 (5)
C5 0.0338 (8) 0.0236 (7) 0.0293 (7) −0.0017 (6) 0.0025 (6) 0.0039 (6)
C6 0.0369 (9) 0.0269 (7) 0.0367 (8) 0.0015 (6) 0.0116 (7) 0.0071 (6)
C7 0.0260 (8) 0.0376 (8) 0.0421 (9) 0.0049 (6) 0.0069 (7) 0.0106 (7)
C8 0.0260 (8) 0.0407 (9) 0.0328 (8) −0.0018 (6) −0.0001 (6) 0.0064 (6)
C9 0.0260 (7) 0.0254 (7) 0.0283 (7) −0.0030 (6) 0.0024 (6) 0.0066 (6)
C10 0.0501 (10) 0.0400 (9) 0.0444 (10) 0.0111 (8) 0.0159 (8) 0.0012 (8)
C11 0.0324 (8) 0.0356 (8) 0.0304 (8) 0.0071 (7) −0.0068 (6) −0.0031 (6)
C12 0.0364 (10) 0.0642 (12) 0.0387 (10) 0.0050 (8) 0.0019 (7) −0.0107 (8)
C13 0.0471 (12) 0.112 (2) 0.0449 (11) 0.0199 (12) 0.0061 (9) −0.0181 (12)
C14 0.0741 (16) 0.115 (2) 0.0487 (13) 0.0337 (15) −0.0048 (12) −0.0389 (13)
C15 0.0828 (17) 0.0685 (14) 0.0557 (13) 0.0135 (12) −0.0237 (12) −0.0327 (11)
C16 0.0486 (10) 0.0439 (10) 0.0437 (10) 0.0031 (8) −0.0122 (8) −0.0103 (8)
C17 0.0289 (8) 0.0179 (6) 0.0307 (7) 0.0003 (5) −0.0024 (6) 0.0015 (5)
C18 0.0243 (8) 0.0248 (7) 0.0695 (11) 0.0047 (6) −0.0029 (8) 0.0120 (7)
C19 0.0369 (11) 0.0361 (10) 0.185 (3) 0.0037 (8) −0.0494 (14) −0.0047 (14)
C20 0.0510 (13) 0.112 (2) 0.0926 (18) 0.0396 (13) 0.0298 (12) 0.0511 (16)

Geometric parameters (Å, °)

O1—C17 1.2346 (16) C10—H10B 0.9600
N1—C1 1.3198 (18) C10—H10C 0.9600
N1—C9 1.3676 (18) C11—C12 1.388 (2)
N2—C17 1.3255 (18) C11—C16 1.388 (2)
N2—C18 1.4654 (18) C12—C13 1.387 (3)
N2—H2N 0.8800 C12—H12 0.9300
C1—C2 1.4339 (19) C13—C14 1.379 (4)
C1—C11 1.486 (2) C13—H13 0.9300
C2—C3 1.3656 (19) C14—C15 1.378 (4)
C2—C17 1.5012 (19) C14—H14 0.9300
C3—C4 1.4104 (19) C15—C16 1.383 (3)
C3—H3 0.9300 C15—H15 0.9300
C4—C5 1.4187 (19) C16—H16 0.9300
C4—C9 1.419 (2) C18—C20 1.494 (3)
C5—C6 1.373 (2) C18—C19 1.519 (3)
C5—H5 0.9300 C18—H18 0.9800
C6—C7 1.414 (2) C19—H19A 0.9600
C6—C10 1.501 (2) C19—H19B 0.9600
C7—C8 1.366 (2) C19—H19C 0.9600
C7—H7 0.9300 C20—H20A 0.9600
C8—C9 1.413 (2) C20—H20B 0.9600
C8—H8 0.9300 C20—H20C 0.9600
C10—H10A 0.9600
C1—N1—C9 118.72 (12) C12—C11—C1 120.19 (14)
C17—N2—C18 122.63 (11) C16—C11—C1 120.57 (15)
C17—N2—H2N 118.7 C13—C12—C11 120.73 (19)
C18—N2—H2N 118.7 C13—C12—H12 119.6
N1—C1—C2 122.37 (13) C11—C12—H12 119.6
N1—C1—C11 116.96 (12) C14—C13—C12 119.3 (2)
C2—C1—C11 120.61 (12) C14—C13—H13 120.3
C3—C2—C1 118.81 (13) C12—C13—H13 120.3
C3—C2—C17 120.58 (12) C13—C14—C15 120.4 (2)
C1—C2—C17 120.36 (12) C13—C14—H14 119.8
C2—C3—C4 120.22 (13) C15—C14—H14 119.8
C2—C3—H3 119.9 C14—C15—C16 120.2 (2)
C4—C3—H3 119.9 C14—C15—H15 119.9
C3—C4—C5 123.75 (13) C16—C15—H15 119.9
C3—C4—C9 117.09 (12) C15—C16—C11 120.01 (19)
C5—C4—C9 119.16 (13) C15—C16—H16 120.0
C6—C5—C4 121.61 (13) C11—C16—H16 120.0
C6—C5—H5 119.2 O1—C17—N2 123.72 (13)
C4—C5—H5 119.2 O1—C17—C2 119.78 (12)
C5—C6—C7 118.20 (14) N2—C17—C2 116.46 (11)
C5—C6—C10 121.96 (15) N2—C18—C20 111.09 (14)
C7—C6—C10 119.83 (15) N2—C18—C19 108.26 (13)
C8—C7—C6 121.98 (14) C20—C18—C19 113.9 (2)
C8—C7—H7 119.0 N2—C18—H18 107.8
C6—C7—H7 119.0 C20—C18—H18 107.8
C7—C8—C9 120.40 (14) C19—C18—H18 107.8
C7—C8—H8 119.8 C18—C19—H19A 109.5
C9—C8—H8 119.8 C18—C19—H19B 109.5
N1—C9—C8 118.75 (13) H19A—C19—H19B 109.5
N1—C9—C4 122.61 (13) C18—C19—H19C 109.5
C8—C9—C4 118.59 (13) H19A—C19—H19C 109.5
C6—C10—H10A 109.5 H19B—C19—H19C 109.5
C6—C10—H10B 109.5 C18—C20—H20A 109.5
H10A—C10—H10B 109.5 C18—C20—H20B 109.5
C6—C10—H10C 109.5 H20A—C20—H20B 109.5
H10A—C10—H10C 109.5 C18—C20—H20C 109.5
H10B—C10—H10C 109.5 H20A—C20—H20C 109.5
C12—C11—C16 119.20 (16) H20B—C20—H20C 109.5

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H2N···O1i 0.88 1.95 2.804 (3) 164.

Symmetry codes: (i) −x+1/2, y−1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5101).

References

  1. Atwell, G. J., Baguley, B. C. & Denny, W. A. (1989). J. Med. Chem.32, 396–401. [DOI] [PubMed]
  2. Atwell, G. J., Bos, C. D., Baguley, B. C. & Denny, W. A. (1988). J. Med. Chem.31, 1048–1052. [DOI] [PubMed]
  3. Benzerka, S., Bouraiou, A., Bouacida, S., Rhouati, S. & Belfaitah, A. (2008). Acta Cryst. E64, o2089–o2090. [DOI] [PMC free article] [PubMed]
  4. Bouraiou, A., Debache, A., Rhouati, S., Carboni, B. & Belfaitah, A. (2008). J. Heterocycl. Chem.45, 329–333.
  5. Bouraiou, A., Menasra, H., Debache, A., Rhouati, S. & Belfaitah, A. (2006). J. Soc. Alger. Chim.16, 171–183.
  6. Brandenburg, K. & Berndt, M. (2001). DIAMOND Crystal Impact, Bonn, Germany.
  7. Bruker (2001). APEX2, SAINT and SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.
  8. Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst.38, 381–388.
  9. Denny, W. A. G. W., Rewcastle, G. W. B. C. & Baguley, B. C. (1990). J. Med. Chem.33, 814–819. [DOI] [PubMed]
  10. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  11. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  12. Henriksen, U., Larsen, C., Karup, G., Jeppesen, C., Nielsen, P. E. & Buchardt, O. (1991). Photochem. Photobiol.53, 299–305. [DOI] [PubMed]
  13. Ladraa, S., Bouraiou, A., Bouacida, S., Roisnel, T. & Belfaitah, A. (2009). Acta Cryst. C65, o475–o478. [DOI] [PubMed]
  14. Mikata, Y., Yokoyama, M., Ogura, S., Okura, I., Kawasaki, M., Maeda, M. & Yano, S. (1998). Bioorg. Med. Chem. Lett.8, 1243–1248. [DOI] [PubMed]
  15. Saudi, M. N. S., Rostom, S. A. F., Fahmy, H. T. Y. & El Ashmawy, I. M. (2003). Arch. Pharm. Pharm. Med. Chem.336, 165–174. [DOI] [PubMed]
  16. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  17. Toshima, K., Takano, R., Maeda, Y., Suzuki, M., Asai, A. & Matsumura, S. (1999). Angew. Chem. Int. Ed.38, 3733–3735. [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I. DOI: 10.1107/S1600536810031582/lh5101sup1.cif

e-66-o2304-sup1.cif (18.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810031582/lh5101Isup2.hkl

e-66-o2304-Isup2.hkl (187.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES