Abstract
In the title compound, C20H20N2O, the dihedral angle between the quinoline ring system and the phenyl ring is 49.40 (5)°. In the crystal structure, zigzag layers of molecules, in which the quinoline units are parallel to the (
10) plane, are arranged perpendicular to the b axis. Intermolecular N—H⋯O hydrogen bonds connect the molecules into chains along [010], reinforcing the cohesion between the layers of the structure.
Related literature
For our previous work on the preparation of quinoline derivatives, see: Benzerka et al. (2008 ▶); Ladraa et al. (2009 ▶); Bouraiou et al. (2006 ▶, 2008 ▶). For the evaluation of their biological activity, see: Atwell et al. (1988 ▶,1989 ▶); Denny et al. (1990 ▶); Toshima et al. (1999 ▶); Mikata et al. (1998 ▶); Henriksen et al. (1991 ▶). For the synthetic procedure, see: Saudi et al. (2003 ▶).
Experimental
Crystal data
C20H20N2O
M r = 304.38
Orthorhombic,
a = 12.0007 (3) Å
b = 9.6314 (2) Å
c = 29.4627 (8) Å
V = 3405.40 (14) Å3
Z = 8
Mo Kα radiation
μ = 0.07 mm−1
T = 150 K
0.32 × 0.11 × 0.08 mm
Data collection
Bruker APEXII diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2001 ▶) T min = 0.747, T max = 0.994
15315 measured reflections
3906 independent reflections
2839 reflections with I > 2σ(I)
R int = 0.046
Refinement
R[F 2 > 2σ(F 2)] = 0.050
wR(F 2) = 0.157
S = 1.04
3906 reflections
211 parameters
H-atom parameters constrained
Δρmax = 0.23 e Å−3
Δρmin = −0.26 e Å−3
Data collection: APEX2 (Bruker, 2001 ▶); cell refinement: SAINT (Bruker, 2001 ▶); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2003 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 ▶) and DIAMOND (Brandenburg & Berndt, 2001 ▶); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999 ▶).
Supplementary Material
Crystal structure: contains datablocks I. DOI: 10.1107/S1600536810031582/lh5101sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536810031582/lh5101Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| N2—H2N⋯O1i | 0.88 | 1.95 | 2.804 (3) | 164 |
Symmetry code: (i)
.
Acknowledgments
We are grateful to all personel of the PHYSYNOR laboratory, Université Mentouri-Constantine, Algeria, for their assistance.
supplementary crystallographic information
Comment
Since Atwell et al. (1988) and Denny et al. (1990) demonstrated the efficacy of 2 + 1 unfused tricyclic aromatic systems such as phenylquinolines as a minimal intercalators, 2-phenylquinoline (Mikata et al., 1998; Henriksen et al., 1991) was selected as the DNA intercalator. The conjugated C=N bond in the 2-phenylquinoline unit was also expected to generate the photoexcited 3(n→π*) state upon photoirradiation, which may have a radical character and could be capable of cleaving DNA (Toshima et al., 1999). On the other hand, certain 2-phenylquinoline carboxamide derivatives have been shown to possess DNA binding capability and a broad-spectrum activity in both leukemia and solid-tumor assays (Atwell et al., 1989). As part of our program related to the synthesis of some new heterocyclic compounds with medicinal potential (Bouraiou et al.,2006, 2008; Benzerka et al., 2008; Ladraa et al., 2009), we report here the synthesis and crystal structure of the title compound (I). The molecular geometry and the atom-numbering scheme of (I) are shown in Fig. 1. The asymmetric unit of title compound contains a quinolyl unit bearing a phenyl ring at position C-2, amide group at C-3 and methyl at C-6. The two rings of the quinolyl moiety are fused in an axial fashion and form a dihedral angle of 3.13 (4)°. The dihedral angle between the phenyl ring quinoline ring system is 49.40 (5)°. The amide group is essentially planar. The r.m.s deviation for atoms C2/C17/O1/N2/C18 is 0.007Å and the maximum deviation is -0.0131 (15)Å for C17. The C—N [1.3260 (17) Å] bond length to the carbonyl group is closer to that of a standard C═N double bond (1.27 Å) than to that of a single bond (1.49 Å). This is because the lone pair electrons on nitrogen of the amide are delocalized into the carbonyl group. The crystal packing can be described as layers in zig zag perpendicular to b axis which quinoline rings are parallel to the (-110) plane (Fig. 2). The crystal packing is stabilized by intermolecular hydrogen bond (N—H···O), resulting in the formation of infinite one-dimensional chain along the b axis linked these layers reinforce the cohesion of the structure (Fig. 2).
Experimental
Compound (I) was obtained from 6-methyl-2-phenylquinoline-3-carboxylic acid and ethyl chloroformate in presence triethylamine in chloroform (Saudi et al., 2003). Suitable crystals for X-ray diffraction were obtained by slow evaporation of a solution of (I) in diisopropylether at room temperature.
Refinement
All H atoms were located from Fourier maps but introduced in calculated positions and treated as riding on their parent C atom with C-H = 0.93-0.98Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmethyl).
Figures
Fig. 1.
The molecular structure (Farrugia, 1997) of the title compound with the atomic labelling scheme. Displacement are drawn at the 50% probability level.
Fig. 2.
Part of the crystal structure (Brandenburg & Berndt, 2001) showing the layered packing of (I) viewed along the c axis and showing hydrogen bonds [N—H···O] as dashed line along the b axis.
Crystal data
| C20H20N2O | F(000) = 1296 |
| Mr = 304.38 | Dx = 1.187 Mg m−3 |
| Orthorhombic, Pbca | Mo Kα radiation, λ = 0.71073 Å |
| Hall symbol: -P 2ac 2ab | Cell parameters from 4726 reflections |
| a = 12.0007 (3) Å | θ = 3.0–27.3° |
| b = 9.6314 (2) Å | µ = 0.07 mm−1 |
| c = 29.4627 (8) Å | T = 150 K |
| V = 3405.40 (14) Å3 | Stick, colourless |
| Z = 8 | 0.32 × 0.11 × 0.08 mm |
Data collection
| Bruker APEXII diffractometer | 2839 reflections with I > 2σ(I) |
| graphite | Rint = 0.046 |
| CCD rotation images, thin slices scans | θmax = 27.5°, θmin = 2.8° |
| Absorption correction: multi-scan (SADABS; Bruker, 2001) | h = −10→15 |
| Tmin = 0.747, Tmax = 0.994 | k = −7→12 |
| 15315 measured reflections | l = −24→38 |
| 3906 independent reflections |
Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.050 | Hydrogen site location: inferred from neighbouring sites |
| wR(F2) = 0.157 | H-atom parameters constrained |
| S = 1.04 | w = 1/[σ2(Fo2) + (0.0914P)2 + 0.3352P] where P = (Fo2 + 2Fc2)/3 |
| 3906 reflections | (Δ/σ)max = 0.001 |
| 211 parameters | Δρmax = 0.23 e Å−3 |
| 0 restraints | Δρmin = −0.26 e Å−3 |
Special details
| Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| O1 | 0.29293 (9) | −0.22115 (10) | 0.10660 (4) | 0.0378 (3) | |
| N1 | 0.58409 (10) | −0.43666 (12) | 0.14988 (4) | 0.0288 (3) | |
| N2 | 0.21063 (10) | −0.43091 (12) | 0.09977 (4) | 0.0309 (3) | |
| H2N | 0.2211 | −0.5213 | 0.0984 | 0.037* | |
| C1 | 0.47981 (11) | −0.39345 (14) | 0.14808 (5) | 0.0258 (3) | |
| C2 | 0.40933 (11) | −0.41975 (13) | 0.10973 (5) | 0.0240 (3) | |
| C3 | 0.44903 (12) | −0.50023 (13) | 0.07517 (5) | 0.0249 (3) | |
| H3 | 0.4038 | −0.5201 | 0.0504 | 0.030* | |
| C4 | 0.55847 (12) | −0.55334 (13) | 0.07693 (4) | 0.0251 (3) | |
| C5 | 0.60463 (12) | −0.64177 (14) | 0.04333 (5) | 0.0289 (3) | |
| H5 | 0.5619 | −0.6654 | 0.0182 | 0.035* | |
| C6 | 0.71088 (13) | −0.69338 (15) | 0.04705 (5) | 0.0335 (4) | |
| C7 | 0.77548 (13) | −0.65292 (17) | 0.08495 (6) | 0.0352 (4) | |
| H7 | 0.8477 | −0.6870 | 0.0878 | 0.042* | |
| C8 | 0.73505 (13) | −0.56529 (16) | 0.11750 (5) | 0.0332 (4) | |
| H8 | 0.7805 | −0.5384 | 0.1415 | 0.040* | |
| C9 | 0.62453 (11) | −0.51521 (14) | 0.11490 (5) | 0.0266 (3) | |
| C10 | 0.75887 (16) | −0.79114 (18) | 0.01255 (6) | 0.0448 (4) | |
| H10A | 0.7119 | −0.7928 | −0.0138 | 0.067* | |
| H10B | 0.7633 | −0.8827 | 0.0253 | 0.067* | |
| H10C | 0.8321 | −0.7604 | 0.0041 | 0.067* | |
| C11 | 0.43566 (13) | −0.32106 (16) | 0.18883 (5) | 0.0328 (4) | |
| C12 | 0.33582 (14) | −0.3632 (2) | 0.20819 (6) | 0.0464 (5) | |
| H12 | 0.2956 | −0.4352 | 0.1950 | 0.056* | |
| C13 | 0.29535 (17) | −0.2991 (3) | 0.24697 (7) | 0.0681 (7) | |
| H13 | 0.2292 | −0.3291 | 0.2602 | 0.082* | |
| C14 | 0.3541 (2) | −0.1903 (3) | 0.26577 (8) | 0.0792 (8) | |
| H14 | 0.3264 | −0.1452 | 0.2913 | 0.095* | |
| C15 | 0.4537 (2) | −0.1480 (2) | 0.24698 (7) | 0.0690 (7) | |
| H15 | 0.4928 | −0.0746 | 0.2599 | 0.083* | |
| C16 | 0.49557 (16) | −0.21433 (18) | 0.20900 (6) | 0.0454 (4) | |
| H16 | 0.5639 | −0.1874 | 0.1970 | 0.055* | |
| C17 | 0.29824 (12) | −0.34913 (13) | 0.10575 (5) | 0.0258 (3) | |
| C18 | 0.09700 (12) | −0.37692 (16) | 0.09527 (6) | 0.0395 (4) | |
| H18 | 0.1017 | −0.2852 | 0.0810 | 0.047* | |
| C19 | 0.03298 (16) | −0.4717 (2) | 0.06337 (11) | 0.0859 (9) | |
| H19A | 0.0293 | −0.5633 | 0.0762 | 0.129* | |
| H19B | 0.0703 | −0.4755 | 0.0346 | 0.129* | |
| H19C | −0.0411 | −0.4363 | 0.0592 | 0.129* | |
| C20 | 0.04341 (19) | −0.3592 (3) | 0.14068 (8) | 0.0850 (9) | |
| H20A | 0.0880 | −0.2983 | 0.1590 | 0.128* | |
| H20B | 0.0374 | −0.4479 | 0.1553 | 0.128* | |
| H20C | −0.0296 | −0.3201 | 0.1369 | 0.128* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| O1 | 0.0403 (7) | 0.0158 (5) | 0.0574 (7) | −0.0006 (4) | −0.0080 (5) | 0.0015 (4) |
| N1 | 0.0269 (6) | 0.0314 (6) | 0.0281 (6) | −0.0029 (5) | 0.0000 (5) | 0.0012 (5) |
| N2 | 0.0234 (6) | 0.0155 (5) | 0.0539 (8) | 0.0019 (5) | −0.0045 (6) | 0.0033 (5) |
| C1 | 0.0264 (7) | 0.0220 (6) | 0.0290 (7) | −0.0029 (5) | −0.0008 (6) | 0.0020 (5) |
| C2 | 0.0241 (7) | 0.0167 (6) | 0.0312 (7) | −0.0031 (5) | −0.0019 (6) | 0.0030 (5) |
| C3 | 0.0287 (7) | 0.0185 (6) | 0.0276 (7) | −0.0038 (5) | −0.0045 (6) | 0.0018 (5) |
| C4 | 0.0285 (7) | 0.0194 (6) | 0.0276 (7) | −0.0035 (6) | 0.0024 (6) | 0.0046 (5) |
| C5 | 0.0338 (8) | 0.0236 (7) | 0.0293 (7) | −0.0017 (6) | 0.0025 (6) | 0.0039 (6) |
| C6 | 0.0369 (9) | 0.0269 (7) | 0.0367 (8) | 0.0015 (6) | 0.0116 (7) | 0.0071 (6) |
| C7 | 0.0260 (8) | 0.0376 (8) | 0.0421 (9) | 0.0049 (6) | 0.0069 (7) | 0.0106 (7) |
| C8 | 0.0260 (8) | 0.0407 (9) | 0.0328 (8) | −0.0018 (6) | −0.0001 (6) | 0.0064 (6) |
| C9 | 0.0260 (7) | 0.0254 (7) | 0.0283 (7) | −0.0030 (6) | 0.0024 (6) | 0.0066 (6) |
| C10 | 0.0501 (10) | 0.0400 (9) | 0.0444 (10) | 0.0111 (8) | 0.0159 (8) | 0.0012 (8) |
| C11 | 0.0324 (8) | 0.0356 (8) | 0.0304 (8) | 0.0071 (7) | −0.0068 (6) | −0.0031 (6) |
| C12 | 0.0364 (10) | 0.0642 (12) | 0.0387 (10) | 0.0050 (8) | 0.0019 (7) | −0.0107 (8) |
| C13 | 0.0471 (12) | 0.112 (2) | 0.0449 (11) | 0.0199 (12) | 0.0061 (9) | −0.0181 (12) |
| C14 | 0.0741 (16) | 0.115 (2) | 0.0487 (13) | 0.0337 (15) | −0.0048 (12) | −0.0389 (13) |
| C15 | 0.0828 (17) | 0.0685 (14) | 0.0557 (13) | 0.0135 (12) | −0.0237 (12) | −0.0327 (11) |
| C16 | 0.0486 (10) | 0.0439 (10) | 0.0437 (10) | 0.0031 (8) | −0.0122 (8) | −0.0103 (8) |
| C17 | 0.0289 (8) | 0.0179 (6) | 0.0307 (7) | 0.0003 (5) | −0.0024 (6) | 0.0015 (5) |
| C18 | 0.0243 (8) | 0.0248 (7) | 0.0695 (11) | 0.0047 (6) | −0.0029 (8) | 0.0120 (7) |
| C19 | 0.0369 (11) | 0.0361 (10) | 0.185 (3) | 0.0037 (8) | −0.0494 (14) | −0.0047 (14) |
| C20 | 0.0510 (13) | 0.112 (2) | 0.0926 (18) | 0.0396 (13) | 0.0298 (12) | 0.0511 (16) |
Geometric parameters (Å, °)
| O1—C17 | 1.2346 (16) | C10—H10B | 0.9600 |
| N1—C1 | 1.3198 (18) | C10—H10C | 0.9600 |
| N1—C9 | 1.3676 (18) | C11—C12 | 1.388 (2) |
| N2—C17 | 1.3255 (18) | C11—C16 | 1.388 (2) |
| N2—C18 | 1.4654 (18) | C12—C13 | 1.387 (3) |
| N2—H2N | 0.8800 | C12—H12 | 0.9300 |
| C1—C2 | 1.4339 (19) | C13—C14 | 1.379 (4) |
| C1—C11 | 1.486 (2) | C13—H13 | 0.9300 |
| C2—C3 | 1.3656 (19) | C14—C15 | 1.378 (4) |
| C2—C17 | 1.5012 (19) | C14—H14 | 0.9300 |
| C3—C4 | 1.4104 (19) | C15—C16 | 1.383 (3) |
| C3—H3 | 0.9300 | C15—H15 | 0.9300 |
| C4—C5 | 1.4187 (19) | C16—H16 | 0.9300 |
| C4—C9 | 1.419 (2) | C18—C20 | 1.494 (3) |
| C5—C6 | 1.373 (2) | C18—C19 | 1.519 (3) |
| C5—H5 | 0.9300 | C18—H18 | 0.9800 |
| C6—C7 | 1.414 (2) | C19—H19A | 0.9600 |
| C6—C10 | 1.501 (2) | C19—H19B | 0.9600 |
| C7—C8 | 1.366 (2) | C19—H19C | 0.9600 |
| C7—H7 | 0.9300 | C20—H20A | 0.9600 |
| C8—C9 | 1.413 (2) | C20—H20B | 0.9600 |
| C8—H8 | 0.9300 | C20—H20C | 0.9600 |
| C10—H10A | 0.9600 | ||
| C1—N1—C9 | 118.72 (12) | C12—C11—C1 | 120.19 (14) |
| C17—N2—C18 | 122.63 (11) | C16—C11—C1 | 120.57 (15) |
| C17—N2—H2N | 118.7 | C13—C12—C11 | 120.73 (19) |
| C18—N2—H2N | 118.7 | C13—C12—H12 | 119.6 |
| N1—C1—C2 | 122.37 (13) | C11—C12—H12 | 119.6 |
| N1—C1—C11 | 116.96 (12) | C14—C13—C12 | 119.3 (2) |
| C2—C1—C11 | 120.61 (12) | C14—C13—H13 | 120.3 |
| C3—C2—C1 | 118.81 (13) | C12—C13—H13 | 120.3 |
| C3—C2—C17 | 120.58 (12) | C13—C14—C15 | 120.4 (2) |
| C1—C2—C17 | 120.36 (12) | C13—C14—H14 | 119.8 |
| C2—C3—C4 | 120.22 (13) | C15—C14—H14 | 119.8 |
| C2—C3—H3 | 119.9 | C14—C15—C16 | 120.2 (2) |
| C4—C3—H3 | 119.9 | C14—C15—H15 | 119.9 |
| C3—C4—C5 | 123.75 (13) | C16—C15—H15 | 119.9 |
| C3—C4—C9 | 117.09 (12) | C15—C16—C11 | 120.01 (19) |
| C5—C4—C9 | 119.16 (13) | C15—C16—H16 | 120.0 |
| C6—C5—C4 | 121.61 (13) | C11—C16—H16 | 120.0 |
| C6—C5—H5 | 119.2 | O1—C17—N2 | 123.72 (13) |
| C4—C5—H5 | 119.2 | O1—C17—C2 | 119.78 (12) |
| C5—C6—C7 | 118.20 (14) | N2—C17—C2 | 116.46 (11) |
| C5—C6—C10 | 121.96 (15) | N2—C18—C20 | 111.09 (14) |
| C7—C6—C10 | 119.83 (15) | N2—C18—C19 | 108.26 (13) |
| C8—C7—C6 | 121.98 (14) | C20—C18—C19 | 113.9 (2) |
| C8—C7—H7 | 119.0 | N2—C18—H18 | 107.8 |
| C6—C7—H7 | 119.0 | C20—C18—H18 | 107.8 |
| C7—C8—C9 | 120.40 (14) | C19—C18—H18 | 107.8 |
| C7—C8—H8 | 119.8 | C18—C19—H19A | 109.5 |
| C9—C8—H8 | 119.8 | C18—C19—H19B | 109.5 |
| N1—C9—C8 | 118.75 (13) | H19A—C19—H19B | 109.5 |
| N1—C9—C4 | 122.61 (13) | C18—C19—H19C | 109.5 |
| C8—C9—C4 | 118.59 (13) | H19A—C19—H19C | 109.5 |
| C6—C10—H10A | 109.5 | H19B—C19—H19C | 109.5 |
| C6—C10—H10B | 109.5 | C18—C20—H20A | 109.5 |
| H10A—C10—H10B | 109.5 | C18—C20—H20B | 109.5 |
| C6—C10—H10C | 109.5 | H20A—C20—H20B | 109.5 |
| H10A—C10—H10C | 109.5 | C18—C20—H20C | 109.5 |
| H10B—C10—H10C | 109.5 | H20A—C20—H20C | 109.5 |
| C12—C11—C16 | 119.20 (16) | H20B—C20—H20C | 109.5 |
Hydrogen-bond geometry (Å, °)
| D—H···A | D—H | H···A | D···A | D—H···A |
| N2—H2N···O1i | 0.88 | 1.95 | 2.804 (3) | 164. |
Symmetry codes: (i) −x+1/2, y−1/2, z.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5101).
References
- Atwell, G. J., Baguley, B. C. & Denny, W. A. (1989). J. Med. Chem.32, 396–401. [DOI] [PubMed]
- Atwell, G. J., Bos, C. D., Baguley, B. C. & Denny, W. A. (1988). J. Med. Chem.31, 1048–1052. [DOI] [PubMed]
- Benzerka, S., Bouraiou, A., Bouacida, S., Rhouati, S. & Belfaitah, A. (2008). Acta Cryst. E64, o2089–o2090. [DOI] [PMC free article] [PubMed]
- Bouraiou, A., Debache, A., Rhouati, S., Carboni, B. & Belfaitah, A. (2008). J. Heterocycl. Chem.45, 329–333.
- Bouraiou, A., Menasra, H., Debache, A., Rhouati, S. & Belfaitah, A. (2006). J. Soc. Alger. Chim.16, 171–183.
- Brandenburg, K. & Berndt, M. (2001). DIAMOND Crystal Impact, Bonn, Germany.
- Bruker (2001). APEX2, SAINT and SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.
- Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst.38, 381–388.
- Denny, W. A. G. W., Rewcastle, G. W. B. C. & Baguley, B. C. (1990). J. Med. Chem.33, 814–819. [DOI] [PubMed]
- Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
- Henriksen, U., Larsen, C., Karup, G., Jeppesen, C., Nielsen, P. E. & Buchardt, O. (1991). Photochem. Photobiol.53, 299–305. [DOI] [PubMed]
- Ladraa, S., Bouraiou, A., Bouacida, S., Roisnel, T. & Belfaitah, A. (2009). Acta Cryst. C65, o475–o478. [DOI] [PubMed]
- Mikata, Y., Yokoyama, M., Ogura, S., Okura, I., Kawasaki, M., Maeda, M. & Yano, S. (1998). Bioorg. Med. Chem. Lett.8, 1243–1248. [DOI] [PubMed]
- Saudi, M. N. S., Rostom, S. A. F., Fahmy, H. T. Y. & El Ashmawy, I. M. (2003). Arch. Pharm. Pharm. Med. Chem.336, 165–174. [DOI] [PubMed]
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Toshima, K., Takano, R., Maeda, Y., Suzuki, M., Asai, A. & Matsumura, S. (1999). Angew. Chem. Int. Ed.38, 3733–3735. [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks I. DOI: 10.1107/S1600536810031582/lh5101sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536810031582/lh5101Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report


