Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Aug 28;66(Pt 9):o2462. doi: 10.1107/S1600536810033489

10-(2-Pyrid­yloxy)phenanthren-9-ol

C A M A Huq a, S Sivakumar a, M NizamMohideen b,*
PMCID: PMC3008099  PMID: 21588781

Abstract

In the title compound, C19H13NO2, the pyridyl ring makes a dihedral angle of 87.04 (6)° with the plane of the phenanthrene ring system. In the crystal, mol­ecules are linked through weak inter­molecular C—H⋯O hydrogen bonds and C—H⋯π inter­actions.

Related literature

For the biological activity of heterocyclic compounds containing a pyridine ring, see: Amr & Abdulla (2006); Borgna et al. (1993); Goda et al. (2004); Kamal et al. (2007). For related structures, see: Krivopalov & Shkurko (2005); Li & Flood (2008); Meudtner & Hecht (2008); Richardson et al. (2008); Schweinfurth et al. (2008).graphic file with name e-66-o2462-scheme1.jpg

Experimental

Crystal data

  • C19H13NO2

  • M r = 287.30

  • Monoclinic, Inline graphic

  • a = 8.9379 (6) Å

  • b = 8.6433 (10) Å

  • c = 18.389 (3) Å

  • β = 96.088 (8)°

  • V = 1412.6 (3) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.71 mm−1

  • T = 293 K

  • 0.3 × 0.25 × 0.2 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • 2530 measured reflections

  • 2384 independent reflections

  • 1828 reflections with I > 2σ(I)

  • R int = 0.036

  • 2 standard reflections every 200 reflections intensity decay: none

Refinement

  • R[F 2 > 2σ(F 2)] = 0.054

  • wR(F 2) = 0.158

  • S = 1.07

  • 2384 reflections

  • 200 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 and PLATON.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810033489/lx2166sup1.cif

e-66-o2462-sup1.cif (18.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810033489/lx2166Isup2.hkl

e-66-o2462-Isup2.hkl (114.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the N1/C1–C5 and C6/C7/C12/C13/C18/C19 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O2i 0.93 2.59 3.475 (3) 159
C10—H10⋯Cg1ii 0.93 2.86 3.691 (3) 150
C15—H15⋯Cg2iii 0.93 2.80 3.537 (3) 137

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors thank the Management of The New College (Autonomous), Chennai, India, for providing the necessary facilities.

supplementary crystallographic information

Comment

Heterocyclic compounds containing the pyridine ring are reported to possess a diverse range of biological activities such as antimicrobial, antitumor and anti–inflammatory (Amr & Abdulla, 2006; Borgna et al., 1993; Goda et al., 2004; Kamal et al., 2007) properties. Pyridyl functionalized 1,2,3–triazoles have begun attracting significant attention in a range of areas including anion recognition (Li & Flood, 2008), stimuli responsive foldamers (Meudtner & Hecht, 2008), drug discovery (Krivopalov & Shkurko, 2005) and coordination chemistry (Richardson et al., 2008; Schweinfurth et al., 2008). Against this background the structure of the title compound was determined by X–ray diffraction. Here we report the crystal structure of the title compound (Fig. 1).

The phenanthrene plane is essentially planar, with a mean deviation of 0.011 (2) |%A from the least-squares plane defined by the fourteen constituent atoms. The dihedral angle formed by the phenanthrene plane and the pyridyl ring is 87.04 (6)°. The crystal packing (Fig. 2) is stabilized by a weak intermolecular C—H···O hydrogen bond between the pyidyl H atom and the oxygen of the hydroxyl group, with a C3—H3···O2i (Table 1). The crystal packing (Fig. 2) is further stabilized by two intermolecular C—H···π interactions; the first one between the benzene H atom of the phenanthrene unit and the pyridyl ring, with a C10—H10···Cg1, the second one between the benzene H atom of the phenanthrene unit and the central benzene ring of a neighbouring molecule, with a C15—H15···Cg2 (Table 1; Cg1 and Cg2 are the centroids of the N1/C1—C5 pyridyl ring and the C6/C7/C12/C13/C18/C19 benzene ring, respectively).

Experimental

To a solution of 2–pyridyl magnesium bromide in dry THF at 273° under nitrogen atomsphere, solution of phenanthren-9,10-dione in dry THF was added dropwise. After the addition, the mixture was stirred at room temp under nitrogen atmosphere for 3 h. After the completion of reaction as evidenced by TLC, the reaction was quenched with saturated solution of ammonium chloride and the mixture was extracted into diethyl ether. The organic layer was concentrated at reduced pressure. The residue was purified by coloumn chromotography (hexane-ethyl acetate, 9:1 v/v) to afford the title compound as a pale yellow solid (yield 75%, m.p. 418° K). Single crystals suitable for X–ray diffraction was recrystallized from mixture of dichlromehane-hexane (8: 2 v/v) as solvent.

Refinement

All H atoms were positioned geometrically, with C—H = 0.93–0.98 Å and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C, N), where x = 1.5 for methyl H and x = 1.2 for all H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.

Fig. 2.

Fig. 2.

C—H···O and C—H···π interactions (dotted lines) in the crystal structure of the title compound. Cg denotes the ring centroids. [Symmetry codes: (i) -x + 1, -y + 1, - z + 1; (ii) x, -y + 1/2, z + 1/2; (iii) - x + 2, y + 1/2, - z + 3/2; (iv) x, - y + 1/2, z - 1/2; (v) - x + 2, y - 1/2, - z + 3/2.]

Crystal data

C19H13NO2 F(000) = 600
Mr = 287.30 Dx = 1.351 Mg m3
Monoclinic, P21/c Cu Kα radiation, λ = 1.54180 Å
Hall symbol: -P 2ybc Cell parameters from 25 reflections
a = 8.9379 (6) Å θ = 20–32°
b = 8.6433 (10) Å µ = 0.71 mm1
c = 18.389 (3) Å T = 293 K
β = 96.088 (8)° Block, yellow
V = 1412.6 (3) Å3 0.3 × 0.25 × 0.2 mm
Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometer Rint = 0.036
Radiation source: fine-focus sealed tube θmax = 64.9°, θmin = 4.8°
graphite h = 0→10
ω–2θ scan k = 0→10
2530 measured reflections l = −21→21
2384 independent reflections 2 standard reflections every 100 reflections
1828 reflections with I > 2σ(I) intensity decay: none

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054 H-atom parameters constrained
wR(F2) = 0.158 w = 1/[σ2(Fo2) + (0.0879P)2 + 0.3509P] where P = (Fo2 + 2Fc2)/3
S = 1.07 (Δ/σ)max < 0.001
2384 reflections Δρmax = 0.34 e Å3
200 parameters Δρmin = −0.22 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0161 (14)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.28079 (19) 0.0991 (2) 0.50744 (9) 0.0552 (5)
O1 0.48937 (16) 0.09045 (15) 0.58522 (7) 0.0539 (4)
O2 0.75971 (19) 0.19460 (18) 0.54090 (8) 0.0639 (5)
H2 0.6870 0.1572 0.5161 0.096*
C1 0.1729 (3) 0.1774 (3) 0.46753 (13) 0.0687 (7)
H1 0.0995 0.1213 0.4392 0.082*
C2 0.1638 (3) 0.3354 (3) 0.46580 (14) 0.0734 (7)
H2A 0.0876 0.3854 0.4364 0.088*
C3 0.2706 (3) 0.4179 (3) 0.50877 (13) 0.0675 (7)
H3 0.2666 0.5254 0.5094 0.081*
C4 0.3832 (3) 0.3413 (3) 0.55083 (12) 0.0566 (6)
H4 0.4566 0.3949 0.5803 0.068*
C5 0.3832 (2) 0.1817 (2) 0.54766 (10) 0.0470 (5)
C6 0.5977 (2) 0.1611 (2) 0.63482 (10) 0.0474 (5)
C7 0.5655 (2) 0.1757 (2) 0.70924 (11) 0.0480 (5)
C8 0.4266 (3) 0.1302 (3) 0.73138 (13) 0.0596 (6)
H8 0.3536 0.0884 0.6972 0.072*
C9 0.3968 (3) 0.1465 (3) 0.80255 (14) 0.0690 (7)
H9 0.3042 0.1163 0.8166 0.083*
C10 0.5066 (3) 0.2086 (3) 0.85376 (14) 0.0711 (7)
H10 0.4870 0.2197 0.9021 0.085*
C11 0.6431 (3) 0.2533 (3) 0.83355 (12) 0.0619 (6)
H11 0.7152 0.2934 0.8687 0.074*
C12 0.6769 (2) 0.2399 (2) 0.76057 (11) 0.0493 (5)
C13 0.8179 (2) 0.2907 (2) 0.73679 (11) 0.0501 (5)
C14 0.9345 (3) 0.3569 (3) 0.78452 (13) 0.0637 (6)
H14 0.9197 0.3717 0.8333 0.076*
C15 1.0677 (3) 0.3998 (3) 0.76122 (15) 0.0724 (7)
H15 1.1428 0.4421 0.7942 0.087*
C16 1.0924 (3) 0.3807 (3) 0.68872 (15) 0.0711 (7)
H16 1.1837 0.4107 0.6731 0.085*
C17 0.9837 (3) 0.3184 (3) 0.64021 (13) 0.0610 (6)
H17 1.0013 0.3056 0.5916 0.073*
C18 0.8444 (2) 0.2729 (2) 0.66282 (11) 0.0499 (5)
C19 0.7291 (2) 0.2060 (2) 0.61153 (10) 0.0490 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0622 (11) 0.0553 (11) 0.0456 (10) 0.0030 (9) −0.0056 (8) −0.0065 (8)
O1 0.0661 (9) 0.0412 (8) 0.0506 (8) 0.0005 (6) −0.0119 (7) −0.0040 (6)
O2 0.0903 (11) 0.0595 (9) 0.0425 (8) −0.0129 (8) 0.0099 (7) −0.0048 (7)
C1 0.0683 (14) 0.0799 (17) 0.0541 (13) 0.0067 (13) −0.0111 (11) −0.0061 (12)
C2 0.0766 (16) 0.0800 (18) 0.0613 (15) 0.0221 (14) −0.0028 (12) 0.0118 (13)
C3 0.0822 (16) 0.0522 (14) 0.0689 (15) 0.0120 (12) 0.0120 (13) 0.0076 (11)
C4 0.0687 (14) 0.0476 (12) 0.0531 (12) 0.0002 (10) 0.0046 (10) −0.0013 (10)
C5 0.0572 (12) 0.0475 (11) 0.0356 (10) 0.0030 (9) 0.0022 (8) −0.0007 (8)
C6 0.0610 (12) 0.0360 (10) 0.0427 (10) −0.0001 (9) −0.0062 (9) −0.0026 (8)
C7 0.0594 (12) 0.0371 (10) 0.0463 (11) 0.0049 (9) 0.0004 (9) 0.0001 (8)
C8 0.0681 (14) 0.0507 (12) 0.0596 (13) −0.0014 (11) 0.0040 (11) −0.0012 (10)
C9 0.0797 (16) 0.0602 (15) 0.0705 (16) −0.0034 (12) 0.0234 (13) 0.0006 (12)
C10 0.1028 (19) 0.0614 (15) 0.0528 (13) −0.0004 (14) 0.0252 (13) −0.0022 (11)
C11 0.0860 (17) 0.0543 (13) 0.0444 (12) −0.0012 (12) 0.0023 (11) −0.0055 (10)
C12 0.0646 (13) 0.0387 (10) 0.0431 (11) 0.0052 (9) −0.0009 (9) −0.0002 (8)
C13 0.0608 (13) 0.0403 (10) 0.0471 (11) 0.0044 (9) −0.0051 (9) −0.0016 (9)
C14 0.0711 (15) 0.0630 (14) 0.0534 (13) −0.0028 (12) −0.0099 (11) −0.0073 (11)
C15 0.0687 (15) 0.0661 (16) 0.0781 (17) −0.0094 (13) −0.0118 (13) −0.0095 (13)
C16 0.0618 (14) 0.0638 (15) 0.0872 (18) −0.0101 (12) 0.0058 (12) −0.0036 (14)
C17 0.0701 (14) 0.0528 (13) 0.0607 (13) −0.0049 (11) 0.0100 (11) −0.0015 (11)
C18 0.0617 (13) 0.0386 (10) 0.0483 (11) 0.0018 (9) 0.0008 (9) −0.0011 (8)
C19 0.0679 (13) 0.0386 (11) 0.0401 (11) 0.0022 (9) 0.0028 (9) −0.0016 (8)

Geometric parameters (Å, °)

N1—C5 1.323 (3) C8—H8 0.9300
N1—C1 1.333 (3) C9—C10 1.394 (4)
O1—C5 1.364 (2) C9—H9 0.9300
O1—C6 1.398 (2) C10—C11 1.368 (4)
O2—C19 1.359 (2) C10—H10 0.9300
O2—H2 0.8200 C11—C12 1.411 (3)
C1—C2 1.368 (4) C11—H11 0.9300
C1—H1 0.9300 C12—C13 1.445 (3)
C2—C3 1.372 (4) C13—C14 1.411 (3)
C2—H2A 0.9300 C13—C18 1.413 (3)
C3—C4 1.373 (3) C14—C15 1.359 (3)
C3—H3 0.9300 C14—H14 0.9300
C4—C5 1.381 (3) C15—C16 1.384 (4)
C4—H4 0.9300 C15—H15 0.9300
C6—C19 1.350 (3) C16—C17 1.359 (3)
C6—C7 1.434 (3) C16—H16 0.9300
C7—C8 1.403 (3) C17—C18 1.410 (3)
C7—C12 1.411 (3) C17—H17 0.9300
C8—C9 1.370 (3) C18—C19 1.441 (3)
C5—N1—C1 116.8 (2) C11—C10—C9 120.6 (2)
C5—O1—C6 118.32 (15) C11—C10—H10 119.7
C19—O2—H2 109.5 C9—C10—H10 119.7
N1—C1—C2 123.9 (2) C10—C11—C12 121.5 (2)
N1—C1—H1 118.1 C10—C11—H11 119.3
C2—C1—H1 118.1 C12—C11—H11 119.3
C1—C2—C3 118.0 (2) C7—C12—C11 117.5 (2)
C1—C2—H2A 121.0 C7—C12—C13 119.54 (19)
C3—C2—H2A 121.0 C11—C12—C13 122.99 (19)
C2—C3—C4 119.8 (2) C14—C13—C18 117.1 (2)
C2—C3—H3 120.1 C14—C13—C12 123.0 (2)
C4—C3—H3 120.1 C18—C13—C12 119.90 (19)
C3—C4—C5 117.5 (2) C15—C14—C13 121.9 (2)
C3—C4—H4 121.2 C15—C14—H14 119.0
C5—C4—H4 121.2 C13—C14—H14 119.0
N1—C5—O1 111.97 (18) C14—C15—C16 120.4 (2)
N1—C5—C4 123.98 (19) C14—C15—H15 119.8
O1—C5—C4 124.04 (18) C16—C15—H15 119.8
C19—C6—O1 118.98 (18) C17—C16—C15 120.2 (2)
C19—C6—C7 123.17 (19) C17—C16—H16 119.9
O1—C6—C7 117.78 (18) C15—C16—H16 119.9
C8—C7—C12 119.97 (19) C16—C17—C18 120.6 (2)
C8—C7—C6 121.70 (19) C16—C17—H17 119.7
C12—C7—C6 118.32 (19) C18—C17—H17 119.7
C9—C8—C7 121.1 (2) C17—C18—C13 119.8 (2)
C9—C8—H8 119.5 C17—C18—C19 120.7 (2)
C7—C8—H8 119.5 C13—C18—C19 119.50 (19)
C8—C9—C10 119.4 (2) C6—C19—O2 123.53 (19)
C8—C9—H9 120.3 C6—C19—C18 119.55 (18)
C10—C9—H9 120.3 O2—C19—C18 116.91 (18)
C5—N1—C1—C2 0.4 (3) C10—C11—C12—C7 −1.2 (3)
N1—C1—C2—C3 −1.2 (4) C10—C11—C12—C13 177.9 (2)
C1—C2—C3—C4 1.0 (4) C7—C12—C13—C14 179.54 (19)
C2—C3—C4—C5 0.0 (3) C11—C12—C13—C14 0.5 (3)
C1—N1—C5—O1 −178.97 (18) C7—C12—C13—C18 −1.3 (3)
C1—N1—C5—C4 0.6 (3) C11—C12—C13—C18 179.68 (19)
C6—O1—C5—N1 −174.68 (17) C18—C13—C14—C15 −1.1 (3)
C6—O1—C5—C4 5.7 (3) C12—C13—C14—C15 178.1 (2)
C3—C4—C5—N1 −0.9 (3) C13—C14—C15—C16 0.7 (4)
C3—C4—C5—O1 178.70 (18) C14—C15—C16—C17 −0.3 (4)
C5—O1—C6—C19 −91.9 (2) C15—C16—C17—C18 0.3 (4)
C5—O1—C6—C7 90.9 (2) C16—C17—C18—C13 −0.7 (3)
C19—C6—C7—C8 178.89 (19) C16—C17—C18—C19 −179.7 (2)
O1—C6—C7—C8 −4.0 (3) C14—C13—C18—C17 1.1 (3)
C19—C6—C7—C12 −0.2 (3) C12—C13—C18—C17 −178.16 (19)
O1—C6—C7—C12 176.95 (16) C14—C13—C18—C19 −179.92 (19)
C12—C7—C8—C9 −0.2 (3) C12—C13—C18—C19 0.8 (3)
C6—C7—C8—C9 −179.3 (2) O1—C6—C19—O2 3.9 (3)
C7—C8—C9—C10 −0.3 (4) C7—C6—C19—O2 −179.02 (18)
C8—C9—C10—C11 0.0 (4) O1—C6—C19—C18 −177.34 (17)
C9—C10—C11—C12 0.7 (4) C7—C6—C19—C18 −0.2 (3)
C8—C7—C12—C11 0.9 (3) C17—C18—C19—C6 178.89 (19)
C6—C7—C12—C11 −179.97 (18) C13—C18—C19—C6 −0.1 (3)
C8—C7—C12—C13 −178.16 (18) C17—C18—C19—O2 −2.2 (3)
C6—C7—C12—C13 0.9 (3) C13—C18—C19—O2 178.76 (17)

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the N1/C1–C5 and C6/C7/C12/C13/C18/C19 rings, respectively.
D—H···A D—H H···A D···A D—H···A
C3—H3···O2i 0.93 2.59 3.475 (3) 159.
C10—H10···Cg1ii 0.93 2.86 3.691 (3) 150
C15—H15···Cg2iii 0.93 2.80 3.537 (3) 137

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x, −y+1/2, z−1/2; (iii) −x+1, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LX2166).

References

  1. Amr, A. G. E. & Abdulla, M. M. (2006). Bioorg. Med. Chem.14, 4341–4352. [DOI] [PubMed]
  2. Borgna, P., Pregnolato, M., Gamba, I. A. & Mellerio, G. (1993). J. Heterocycl. Chem.30, 1079–1084.
  3. Enraf–Nonius (1994). CAD-4 EXPRESS Enraf–Nonius, Delft, The Netherlands.
  4. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  5. Goda, F. E., Abdel-Aziz, A. A.-M. & Attef, O. A. (2004). Bioorg. Med. Chem.12, 1845–1852. [DOI] [PubMed]
  6. Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany
  7. Kamal, A., Khan, M. N. A., Srinivasa Reddy, K. & Rohini, K. (2007). Bioorg. Med. Chem.15, 1004–1013. [DOI] [PubMed]
  8. Krivopalov, V. P. & Shkurko, O. P. (2005). Russ. Chem. Rev.74, 339–379.
  9. Li, Y. & Flood, A. H. (2008). Angew. Chem. Int. Ed.47, 2649–2652. [DOI] [PubMed]
  10. Meudtner, R. M. & Hecht, S. (2008). Angew. Chem. Int. Ed.47, 4926–4930. [DOI] [PubMed]
  11. Richardson, C., Fitchett, C. M., Keene, F. R. & Steel, P. J. (2008). Dalton Trans. pp. 2534–2537. [DOI] [PubMed]
  12. Schweinfurth, D., Hardcastle, K. I. & Bunz, U. H. F. (2008). Chem. Commun. pp. 2203–2205. [DOI] [PubMed]
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810033489/lx2166sup1.cif

e-66-o2462-sup1.cif (18.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810033489/lx2166Isup2.hkl

e-66-o2462-Isup2.hkl (114.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES