Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Aug 21;66(Pt 9):m1138–m1139. doi: 10.1107/S1600536810032757

[(4-Bromo­phen­yl)(2-pyridyl­methyl­idene)amine-κ2 N,N′]bis­(1,1,1,5,5,5-hexa­fluoro­pentane-2,4-dionato-κ2 O,O′)cobalt(II)

Phimphaka Harding a,*, David J Harding a, Nitisastr Soponrat b, Harry Adams c
PMCID: PMC3008124  PMID: 21588537

Abstract

In the title complex, [Co(C5HF6O2)2(C12H9BrN2)], the CoII atom exhibits a pseudo-octa­hedral coordination geometry, comprising two N-donor atoms from a bidentate chelate (4-bromo­phen­yl)(2-pyridyl­methyl­idene)amine (ppaBr) ligand [Co—N = 2.098 (2) and 2.209 (2) Å] and four O-donor atoms from two bidentate chelate 1,1,1,5,5,5-hexa­fluoro­pentane-2,4-dionate (hfac) ligands [Co—O range = 2.0452 (19)–2.0796 (19) Å]. The packing of the structure involves weak π–π inter­actions between the pyridyl and benzene rings of neighbouring ppaBr ligands [centroid–centroid distance = 3.928 (2) Å] and inter­actions between the Br atom on the ppaBr ligand and the hfac ligand [Br⋯C = 3.531 (2) Å].

Related literature

For a review of halogen bonding, see: Corradi et al. (2000); Walsh et al. (2001); Liantonio et al. (2003). For an introduction to crystal engineering, see: Braga et al. (2002). For related structures, see: Harding, Harding, Sophonrat & Adams (2010); Harding, Harding, Tinpun et al. (2010); Aäkeroy et al. (2004, 2007). For a description of the Cambridge Structural database, see: Allen et al. (2002).graphic file with name e-66-m1138-scheme1.jpg

Experimental

Crystal data

  • [Co(C5HF6O2)2(C12H9BrN2)]

  • M r = 734.17

  • Triclinic, Inline graphic

  • a = 8.3568 (2) Å

  • b = 10.9420 (2) Å

  • c = 14.8151 (3) Å

  • α = 74.042 (1)°

  • β = 86.510 (1)°

  • γ = 77.080 (1)°

  • V = 1269.51 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.37 mm−1

  • T = 150 K

  • 0.60 × 0.30 × 0.03 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997) T min = 0.330, T max = 0.932

  • 21525 measured reflections

  • 5176 independent reflections

  • 4508 reflections with I > 2σ(I)

  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035

  • wR(F 2) = 0.090

  • S = 1.08

  • 5176 reflections

  • 379 parameters

  • H-atom parameters constrained

  • Δρmax = 1.23 e Å−3

  • Δρmin = −0.91 e Å−3

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810032757/zs2056sup1.cif

e-66-m1138-sup1.cif (25.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810032757/zs2056Isup2.hkl

e-66-m1138-Isup2.hkl (253.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the Thailand Research Fund (grant No.: RSA5080007) for funding this research.

supplementary crystallographic information

Comment

The construction of supramolecular networks with designed architectures still remains the goal of crystal engineering and represents a significant challenge (Braga et al., 2002). Although complementary hydrogen-bonding ligands have been successfully used (Aäkeroy et al., 2004) in the construction of a number of networks, halogen-bonding (Walsh et al., 2001; Liantonio et al., 2003) and halogen···halogen interactions remain less well represented despite the fact that these interactions can be as strong as hydrogen-bonding interactions (Corradi et al., 2000). In this paper we report the synthesis and structure of [Co(hfac)2(ppaBr)] [hfac = 1,1,1,5,5,5-hexafluoropentane-2,4-dionato; ppaBr = (4-bromo-phenyl)pyridin-2-ylmethyleneamine].

The reaction of [Co(hfac)2(H2O)2] with ppaBr in CH2Cl2 yields [Co(hfac)2(ppaBr)] (I) (Fig. 1) which crystallizes from CH2Cl2/hexane. In (I) the cobalt metal centre is six-coordinate with a distorted octahedral geometry, the hfac ligands adopting a cis arrangement enforced by the chelating ppaBr ligand. The CF3 groups of the hfac ligand in some cases exhibit large thermal ellipsoids due to thermal motion of these groups. The Co—N and Co—O bond lengths are comparable with related cobalt hfac and diimine complexes reported in the CSD (Allen, 2002) (mean Co—O distance = 2.01 Å, Co—N distance = 2.11 Å). The β-diketonate ligands exhibit a bent coordination mode in which the angles between the planes defined by the Co and oxygen atoms and the carbon and oxygen atoms of the β-diketonate ligand are 18.9° and 24.7°. In contrast, in trans-[M(hfac)2(py-CH=CH—C6F4Br)2] (M = Co, Cu) the β-diketonate ligands exhibit a planar coordination mode (Aäkeroy et al., 2007). In addition, the phenyl ring is twisted with respect to the pyridylimine unit by 17.6° and is similar to the angle observed in [Ni(dbm)2(ppaX)] [X = Me, 22.9°; Cl, 24.0° (Harding, Harding, Tinpun et al., 2010)].

The packing in the structure of (I) involves a weak π–π interaction between the pyridyl and phenyl rings of neighbouring ppaBr ligands as shown in Fig. 2 (Cg1···Cg2 = 3.928 (2) Å where Cg1 and Cg2 are the centroids of the rings C1—C6 and C8—C12—N2). A further weak interaction occurs between the Br atom on the ppaBr ligand and the β-diketonate ligand creating discrete dimers within the structure [Br···C20, 3.531 (2) Å, see Fig. 3]. These dimers are then connected via the π–π interaction mentioned above resulting in one-dimensional chains. A similar interaction is also observed in the structure of trans-[M(hfac)2(py-CH=CH—C6F4Br)2] (Aäkeroy et al., 2007). Interestingly, the corresponding Ni analogue, [Ni(hfac)2(ppaBr)] has a completely different set of interactions with Br···CH interactions clearly evident (Harding, Harding, Sophonrat & Adams, 2010), once again highlighting the difficulties involved in attempting to use specific interactions in the design of supramolecular networks.

Experimental

To an orange red solution of [Co(hfac)2(H2O)2] (0.127 g, 0.25 mmol) in CH2Cl2 (5 cm3) was added a solution of ppaBr (0.065 g, 0.25 mmol) in CH2Cl2 (3 cm3). The deep orange solution was stirred for 1 h and then concentrated in vacuo. n-Hexane (15 cm3) was added to precipitate an orange solid which was washed with n-hexane (2 x 5 cm3) and dried in vacuo: yield 0.142 g (77%). IR in KBr disc νC=O 1647 cm-1. UV-Vis (in CH2Cl2, log ε mol.dm-3cm-1) 243 (4.24), 309 (4.42). C22H11O4N2F12BrCo; calc. C 36.0, H 1.5, N 3.8%; found C 36.5, H 1.5, N 3.8%.

Refinement

Hydrogen atoms were placed geometrically and refined using a riding model with C–H = 0.95 Å and Uiso constrained to be 1.2 times Ueq of the carrier atom.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

The molecular packing in (I) showing the π–π interactions between the phenyl and pyridyl rings of the ppaBr ligand. Only selected atoms are labelled for clarity. [Symmetry code: (i) -x + 2, -y, -z + 2].

Fig. 3.

Fig. 3.

The molecular packing in (I) showing the Br···β-diketonate interactions of the discrete dimers. Only selected atoms are labelled for clarity. [Symmetry code: (i) -x + 1, -y + 1, -z + 2].

Crystal data

[Co(C5HF6O2)2(C12H9BrN2)] Z = 2
Mr = 734.17 F(000) = 718
Triclinic, P1 Dx = 1.921 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.3568 (2) Å Cell parameters from 9953 reflections
b = 10.9420 (2) Å θ = 2.9–32.8°
c = 14.8151 (3) Å µ = 2.37 mm1
α = 74.042 (1)° T = 150 K
β = 86.510 (1)° Plate, orange
γ = 77.080 (1)° 0.60 × 0.30 × 0.03 mm
V = 1269.51 (5) Å3

Data collection

Bruker SMART CCD area-detector diffractometer 5176 independent reflections
Radiation source: fine-focus sealed tube 4508 reflections with I > 2σ(I)
graphite Rint = 0.021
φ and ω scans θmax = 26.4°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Bruker, 1997) h = −10→10
Tmin = 0.330, Tmax = 0.932 k = −13→13
21525 measured reflections l = −18→18

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090 H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0399P)2 + 2.417P] where P = (Fo2 + 2Fc2)/3
5176 reflections (Δ/σ)max = 0.001
379 parameters Δρmax = 1.23 e Å3
0 restraints Δρmin = −0.91 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.24966 (4) 0.40512 (3) 1.12788 (2) 0.02627 (10)
C1 0.4059 (3) 0.3017 (3) 1.0652 (2) 0.0190 (6)
C2 0.4540 (4) 0.1698 (3) 1.1069 (2) 0.0234 (6)
H2 0.4096 0.1318 1.1659 0.028*
C3 0.5671 (4) 0.0937 (3) 1.0621 (2) 0.0220 (6)
H3 0.6002 0.0028 1.0903 0.026*
C4 0.6331 (3) 0.1491 (3) 0.97587 (19) 0.0165 (5)
C5 0.5813 (3) 0.2824 (3) 0.93439 (19) 0.0198 (6)
H5 0.6237 0.3208 0.8750 0.024*
C6 0.4680 (4) 0.3591 (3) 0.9796 (2) 0.0218 (6)
H6 0.4337 0.4500 0.9519 0.026*
C7 0.8328 (3) −0.0354 (3) 0.96759 (19) 0.0182 (5)
H7 0.8186 −0.0694 1.0331 0.022*
C8 0.9486 (3) −0.1115 (3) 0.91526 (19) 0.0172 (5)
C9 1.0341 (4) −0.2363 (3) 0.9576 (2) 0.0221 (6)
H9 1.0201 −0.2753 1.0225 0.027*
C10 1.1404 (4) −0.3031 (3) 0.9032 (2) 0.0240 (6)
H10 1.1991 −0.3896 0.9301 0.029*
C11 1.1601 (4) −0.2431 (3) 0.8099 (2) 0.0242 (6)
H11 1.2336 −0.2869 0.7718 0.029*
C12 1.0707 (4) −0.1171 (3) 0.7723 (2) 0.0217 (6)
H12 1.0847 −0.0757 0.7078 0.026*
C13 0.8228 (4) 0.1729 (3) 0.5708 (2) 0.0215 (6)
C14 0.9068 (4) 0.2216 (3) 0.4767 (2) 0.0322 (7)
C15 0.6657 (4) 0.1503 (3) 0.5689 (2) 0.0258 (6)
H15 0.6125 0.1698 0.5102 0.031*
C16 0.5849 (4) 0.0998 (3) 0.6508 (2) 0.0246 (6)
C17 0.4252 (4) 0.0581 (4) 0.6393 (2) 0.0361 (8)
C18 0.7556 (4) 0.4215 (3) 0.6922 (2) 0.0223 (6)
C19 0.6383 (5) 0.5432 (3) 0.6348 (3) 0.0414 (9)
C20 0.9177 (4) 0.4284 (3) 0.7033 (2) 0.0231 (6)
H20 0.9542 0.5051 0.6707 0.028*
C21 1.0267 (4) 0.3261 (3) 0.7608 (2) 0.0203 (6)
C22 1.1961 (4) 0.3521 (3) 0.7732 (3) 0.0330 (8)
Co1 0.82077 (4) 0.13568 (3) 0.77538 (2) 0.01482 (10)
F1 0.3604 (3) 0.1057 (3) 0.55597 (18) 0.0696 (8)
F2 0.4576 (3) −0.0730 (2) 0.65283 (19) 0.0578 (7)
F3 0.3172 (3) 0.0779 (3) 0.70502 (19) 0.0578 (7)
F4 0.9544 (4) 0.3293 (3) 0.47281 (18) 0.0768 (10)
F5 0.8123 (3) 0.2441 (3) 0.40289 (14) 0.0636 (8)
F6 1.0401 (3) 0.1358 (2) 0.46507 (15) 0.0508 (6)
F7 0.5963 (6) 0.5260 (3) 0.5585 (3) 0.130 (2)
F8 0.5029 (3) 0.5703 (2) 0.6848 (3) 0.0862 (11)
F9 0.6978 (3) 0.64976 (19) 0.61453 (18) 0.0505 (6)
F10 1.2729 (3) 0.3815 (4) 0.6912 (2) 0.0974 (13)
F11 1.1845 (4) 0.4500 (3) 0.8083 (3) 0.1054 (15)
F12 1.2953 (2) 0.25146 (19) 0.82617 (16) 0.0406 (5)
N1 0.7503 (3) 0.0775 (2) 0.92465 (16) 0.0159 (5)
N2 0.9660 (3) −0.0524 (2) 0.82359 (16) 0.0171 (5)
O1 0.9099 (2) 0.15687 (19) 0.64017 (13) 0.0195 (4)
O2 0.6285 (2) 0.07571 (19) 0.73472 (14) 0.0207 (4)
O3 0.6895 (2) 0.32603 (18) 0.72450 (13) 0.0194 (4)
O4 1.0045 (2) 0.21558 (18) 0.80721 (13) 0.0192 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.02487 (16) 0.02549 (16) 0.02822 (17) −0.00312 (12) 0.00920 (12) −0.01065 (12)
C1 0.0152 (13) 0.0234 (14) 0.0211 (14) −0.0036 (11) 0.0022 (11) −0.0116 (11)
C2 0.0295 (16) 0.0212 (14) 0.0213 (14) −0.0111 (12) 0.0086 (12) −0.0061 (12)
C3 0.0280 (15) 0.0158 (13) 0.0219 (14) −0.0066 (12) 0.0031 (12) −0.0036 (11)
C4 0.0159 (13) 0.0189 (13) 0.0166 (13) −0.0056 (11) −0.0007 (10) −0.0061 (10)
C5 0.0201 (14) 0.0212 (14) 0.0152 (13) −0.0026 (11) 0.0008 (11) −0.0021 (11)
C6 0.0222 (14) 0.0179 (13) 0.0214 (14) 0.0010 (11) −0.0018 (11) −0.0026 (11)
C7 0.0207 (14) 0.0194 (13) 0.0140 (13) −0.0048 (11) −0.0011 (11) −0.0032 (10)
C8 0.0172 (13) 0.0169 (13) 0.0179 (13) −0.0040 (11) −0.0035 (10) −0.0044 (10)
C9 0.0240 (15) 0.0202 (14) 0.0192 (14) −0.0010 (12) −0.0058 (11) −0.0026 (11)
C10 0.0232 (15) 0.0190 (13) 0.0269 (15) 0.0036 (12) −0.0074 (12) −0.0063 (12)
C11 0.0207 (14) 0.0244 (14) 0.0270 (15) 0.0004 (12) −0.0010 (12) −0.0102 (12)
C12 0.0224 (14) 0.0227 (14) 0.0195 (14) −0.0036 (12) −0.0001 (11) −0.0057 (11)
C13 0.0279 (15) 0.0176 (13) 0.0181 (14) −0.0028 (12) 0.0005 (12) −0.0050 (11)
C14 0.0380 (19) 0.0381 (18) 0.0193 (15) −0.0089 (15) 0.0039 (13) −0.0058 (13)
C15 0.0278 (16) 0.0287 (15) 0.0206 (15) −0.0050 (13) −0.0044 (12) −0.0060 (12)
C16 0.0245 (15) 0.0239 (14) 0.0269 (16) −0.0075 (12) −0.0044 (12) −0.0065 (12)
C17 0.0330 (18) 0.050 (2) 0.0322 (18) −0.0197 (16) −0.0029 (15) −0.0127 (16)
C18 0.0281 (16) 0.0191 (14) 0.0175 (14) −0.0024 (12) −0.0025 (12) −0.0030 (11)
C19 0.041 (2) 0.0228 (16) 0.054 (2) −0.0067 (15) −0.0224 (18) 0.0045 (16)
C20 0.0279 (15) 0.0195 (14) 0.0218 (14) −0.0095 (12) 0.0018 (12) −0.0025 (11)
C21 0.0216 (14) 0.0208 (14) 0.0206 (14) −0.0074 (11) 0.0005 (11) −0.0069 (11)
C22 0.0295 (17) 0.0220 (15) 0.048 (2) −0.0120 (14) −0.0081 (15) −0.0028 (14)
Co1 0.01588 (19) 0.01408 (18) 0.01382 (18) −0.00367 (14) −0.00033 (14) −0.00219 (14)
F1 0.0544 (16) 0.104 (2) 0.0513 (15) −0.0445 (16) −0.0281 (12) 0.0049 (14)
F2 0.0614 (16) 0.0504 (14) 0.0774 (18) −0.0309 (12) 0.0001 (13) −0.0281 (13)
F3 0.0297 (11) 0.0890 (19) 0.0739 (17) −0.0283 (12) 0.0120 (11) −0.0436 (15)
F4 0.141 (3) 0.0613 (16) 0.0414 (14) −0.0620 (18) 0.0404 (16) −0.0119 (12)
F5 0.0408 (13) 0.118 (2) 0.0176 (10) −0.0071 (14) −0.0015 (9) −0.0019 (12)
F6 0.0361 (12) 0.0704 (16) 0.0345 (12) 0.0019 (11) 0.0130 (9) −0.0088 (11)
F7 0.238 (5) 0.0398 (15) 0.102 (3) 0.010 (2) −0.137 (3) −0.0037 (16)
F8 0.0272 (13) 0.0385 (14) 0.159 (3) 0.0060 (11) 0.0007 (16) 0.0188 (17)
F9 0.0464 (13) 0.0239 (10) 0.0674 (16) −0.0076 (9) −0.0113 (11) 0.0128 (10)
F10 0.0476 (16) 0.158 (3) 0.0688 (19) −0.062 (2) −0.0036 (14) 0.031 (2)
F11 0.0547 (17) 0.0586 (17) 0.230 (4) 0.0108 (14) −0.065 (2) −0.088 (2)
F12 0.0260 (10) 0.0309 (10) 0.0644 (14) −0.0070 (8) −0.0163 (10) −0.0077 (10)
N1 0.0160 (11) 0.0154 (11) 0.0174 (11) −0.0043 (9) −0.0008 (9) −0.0055 (9)
N2 0.0179 (11) 0.0164 (11) 0.0174 (11) −0.0047 (9) −0.0002 (9) −0.0040 (9)
O1 0.0210 (10) 0.0214 (10) 0.0155 (9) −0.0057 (8) 0.0001 (8) −0.0031 (8)
O2 0.0224 (10) 0.0206 (10) 0.0195 (10) −0.0090 (8) −0.0007 (8) −0.0025 (8)
O3 0.0192 (10) 0.0179 (9) 0.0194 (10) −0.0035 (8) −0.0010 (8) −0.0026 (8)
O4 0.0209 (10) 0.0181 (9) 0.0190 (10) −0.0064 (8) −0.0022 (8) −0.0031 (8)

Geometric parameters (Å, °)

Br1—C1 1.902 (3) C14—F6 1.322 (4)
C1—C6 1.378 (4) C14—F5 1.322 (4)
C1—C2 1.382 (4) C15—C16 1.391 (4)
C2—C3 1.379 (4) C15—H15 0.9500
C2—H2 0.9500 C16—O2 1.256 (4)
C3—C4 1.394 (4) C16—C17 1.537 (4)
C3—H3 0.9500 C17—F1 1.300 (4)
C4—C5 1.397 (4) C17—F3 1.316 (4)
C4—N1 1.429 (3) C17—F2 1.358 (4)
C5—C6 1.388 (4) C18—O3 1.255 (4)
C5—H5 0.9500 C18—C20 1.396 (4)
C6—H6 0.9500 C18—C19 1.534 (4)
C7—N1 1.284 (4) C19—F7 1.278 (5)
C7—C8 1.461 (4) C19—F9 1.321 (4)
C7—H7 0.9500 C19—F8 1.336 (5)
C8—N2 1.349 (4) C20—C21 1.387 (4)
C8—C9 1.384 (4) C20—H20 0.9500
C9—C10 1.385 (4) C21—O4 1.264 (3)
C9—H9 0.9500 C21—C22 1.537 (4)
C10—C11 1.375 (4) C22—F11 1.296 (4)
C10—H10 0.9500 C22—F12 1.308 (4)
C11—C12 1.392 (4) C22—F10 1.332 (5)
C11—H11 0.9500 Co1—O2 2.0452 (19)
C12—N2 1.335 (4) Co1—O4 2.0639 (19)
C12—H12 0.9500 Co1—O1 2.0644 (19)
C13—O1 1.246 (3) Co1—O3 2.0796 (19)
C13—C15 1.392 (4) Co1—N2 2.098 (2)
C13—C14 1.537 (4) Co1—N1 2.209 (2)
C14—F4 1.312 (4)
C6—C1—C2 121.5 (3) F1—C17—F2 104.7 (3)
C6—C1—Br1 119.8 (2) F3—C17—F2 103.7 (3)
C2—C1—Br1 118.7 (2) F1—C17—C16 114.6 (3)
C3—C2—C1 119.3 (3) F3—C17—C16 112.2 (3)
C3—C2—H2 120.4 F2—C17—C16 109.1 (3)
C1—C2—H2 120.4 O3—C18—C20 128.0 (3)
C2—C3—C4 120.5 (3) O3—C18—C19 113.7 (3)
C2—C3—H3 119.7 C20—C18—C19 118.3 (3)
C4—C3—H3 119.7 F7—C19—F9 108.7 (4)
C3—C4—C5 119.2 (3) F7—C19—F8 108.4 (4)
C3—C4—N1 124.2 (2) F9—C19—F8 104.6 (3)
C5—C4—N1 116.6 (2) F7—C19—C18 111.1 (3)
C6—C5—C4 120.3 (3) F9—C19—C18 114.0 (3)
C6—C5—H5 119.9 F8—C19—C18 109.6 (3)
C4—C5—H5 119.9 C21—C20—C18 121.5 (3)
C1—C6—C5 119.2 (3) C21—C20—H20 119.3
C1—C6—H6 120.4 C18—C20—H20 119.3
C5—C6—H6 120.4 O4—C21—C20 129.1 (3)
N1—C7—C8 119.7 (2) O4—C21—C22 115.2 (3)
N1—C7—H7 120.1 C20—C21—C22 115.7 (3)
C8—C7—H7 120.1 F11—C22—F12 108.3 (3)
N2—C8—C9 122.5 (3) F11—C22—F10 106.4 (4)
N2—C8—C7 115.7 (2) F12—C22—F10 105.6 (3)
C9—C8—C7 121.7 (3) F11—C22—C21 111.6 (3)
C10—C9—C8 118.5 (3) F12—C22—C21 113.1 (3)
C10—C9—H9 120.7 F10—C22—C21 111.3 (3)
C8—C9—H9 120.7 O2—Co1—O4 173.89 (8)
C11—C10—C9 119.3 (3) O2—Co1—O1 87.88 (8)
C11—C10—H10 120.3 O4—Co1—O1 89.87 (8)
C9—C10—H10 120.3 O2—Co1—O3 87.74 (8)
C10—C11—C12 119.0 (3) O4—Co1—O3 86.41 (8)
C10—C11—H11 120.5 O1—Co1—O3 85.05 (8)
C12—C11—H11 120.5 O2—Co1—N2 94.96 (8)
N2—C12—C11 122.3 (3) O4—Co1—N2 90.82 (8)
N2—C12—H12 118.9 O1—Co1—N2 92.91 (8)
C11—C12—H12 118.9 O3—Co1—N2 176.56 (8)
O1—C13—C15 128.6 (3) O2—Co1—N1 91.80 (8)
O1—C13—C14 113.3 (3) O4—Co1—N1 91.41 (8)
C15—C13—C14 118.1 (3) O1—Co1—N1 169.94 (8)
F4—C14—F6 106.5 (3) O3—Co1—N1 104.98 (8)
F4—C14—F5 107.8 (3) N2—Co1—N1 77.10 (9)
F6—C14—F5 106.3 (3) C7—N1—C4 119.2 (2)
F4—C14—C13 111.0 (3) C7—N1—Co1 111.94 (18)
F6—C14—C13 111.4 (3) C4—N1—Co1 128.79 (17)
F5—C14—C13 113.5 (3) C12—N2—C8 118.4 (2)
C16—C15—C13 121.6 (3) C12—N2—Co1 126.20 (19)
C16—C15—H15 119.2 C8—N2—Co1 115.41 (18)
C13—C15—H15 119.2 C13—O1—Co1 123.71 (19)
O2—C16—C15 129.1 (3) C16—O2—Co1 123.95 (19)
O2—C16—C17 114.0 (3) C18—O3—Co1 123.68 (19)
C15—C16—C17 116.7 (3) C21—O4—Co1 122.51 (18)
F1—C17—F3 111.6 (3)
C6—C1—C2—C3 0.2 (4) C5—C4—N1—C7 162.6 (3)
Br1—C1—C2—C3 179.9 (2) C3—C4—N1—Co1 163.1 (2)
C1—C2—C3—C4 0.4 (4) C5—C4—N1—Co1 −15.6 (3)
C2—C3—C4—C5 −1.1 (4) O2—Co1—N1—C7 97.18 (19)
C2—C3—C4—N1 −179.8 (3) O4—Co1—N1—C7 −88.02 (19)
C3—C4—C5—C6 1.4 (4) O1—Co1—N1—C7 9.2 (6)
N1—C4—C5—C6 −179.8 (2) O3—Co1—N1—C7 −174.68 (18)
C2—C1—C6—C5 0.1 (4) N2—Co1—N1—C7 2.50 (18)
Br1—C1—C6—C5 −179.7 (2) O2—Co1—N1—C4 −84.5 (2)
C4—C5—C6—C1 −0.9 (4) O4—Co1—N1—C4 90.3 (2)
N1—C7—C8—N2 3.1 (4) O1—Co1—N1—C4 −172.5 (4)
N1—C7—C8—C9 −176.7 (3) O3—Co1—N1—C4 3.6 (2)
N2—C8—C9—C10 −0.5 (4) N2—Co1—N1—C4 −179.2 (2)
C7—C8—C9—C10 179.2 (3) C11—C12—N2—C8 0.8 (4)
C8—C9—C10—C11 1.2 (4) C11—C12—N2—Co1 −178.8 (2)
C9—C10—C11—C12 −0.9 (4) C9—C8—N2—C12 −0.5 (4)
C10—C11—C12—N2 −0.2 (4) C7—C8—N2—C12 179.8 (2)
O1—C13—C14—F4 −55.7 (4) C9—C8—N2—Co1 179.2 (2)
C15—C13—C14—F4 125.5 (3) C7—C8—N2—Co1 −0.6 (3)
O1—C13—C14—F6 62.7 (4) O2—Co1—N2—C12 88.0 (2)
C15—C13—C14—F6 −116.0 (3) O4—Co1—N2—C12 −90.1 (2)
O1—C13—C14—F5 −177.3 (3) O1—Co1—N2—C12 −0.2 (2)
C15—C13—C14—F5 3.9 (4) N1—Co1—N2—C12 178.7 (2)
O1—C13—C15—C16 −2.0 (5) O2—Co1—N2—C8 −91.62 (19)
C14—C13—C15—C16 176.6 (3) O4—Co1—N2—C8 90.35 (19)
C13—C15—C16—O2 5.1 (5) O1—Co1—N2—C8 −179.74 (19)
C13—C15—C16—C17 −170.3 (3) N1—Co1—N2—C8 −0.91 (18)
O2—C16—C17—F1 166.4 (3) C15—C13—O1—Co1 −16.6 (4)
C15—C16—C17—F1 −17.5 (5) C14—C13—O1—Co1 164.79 (19)
O2—C16—C17—F3 37.7 (4) O2—Co1—O1—C13 23.0 (2)
C15—C16—C17—F3 −146.2 (3) O4—Co1—O1—C13 −151.3 (2)
O2—C16—C17—F2 −76.6 (4) O3—Co1—O1—C13 −64.9 (2)
C15—C16—C17—F2 99.4 (3) N2—Co1—O1—C13 117.9 (2)
O3—C18—C19—F7 −67.9 (5) N1—Co1—O1—C13 111.4 (5)
C20—C18—C19—F7 112.6 (4) C15—C16—O2—Co1 11.3 (4)
O3—C18—C19—F9 168.8 (3) C17—C16—O2—Co1 −173.2 (2)
C20—C18—C19—F9 −10.7 (5) O1—Co1—O2—C16 −20.5 (2)
O3—C18—C19—F8 51.9 (4) O3—Co1—O2—C16 64.7 (2)
C20—C18—C19—F8 −127.5 (3) N2—Co1—O2—C16 −113.2 (2)
O3—C18—C20—C21 −5.0 (5) N1—Co1—O2—C16 169.6 (2)
C19—C18—C20—C21 174.4 (3) C20—C18—O3—Co1 −16.7 (4)
C18—C20—C21—O4 2.5 (5) C19—C18—O3—Co1 163.9 (2)
C18—C20—C21—C22 −174.7 (3) O2—Co1—O3—C18 −150.4 (2)
O4—C21—C22—F11 −118.6 (4) O4—Co1—O3—C18 27.8 (2)
C20—C21—C22—F11 59.0 (4) O1—Co1—O3—C18 −62.3 (2)
O4—C21—C22—F12 3.9 (4) N1—Co1—O3—C18 118.3 (2)
C20—C21—C22—F12 −178.4 (3) C20—C21—O4—Co1 21.0 (4)
O4—C21—C22—F10 122.6 (3) C22—C21—O4—Co1 −161.8 (2)
C20—C21—C22—F10 −59.7 (4) O1—Co1—O4—C21 55.7 (2)
C8—C7—N1—C4 177.8 (2) O3—Co1—O4—C21 −29.4 (2)
C8—C7—N1—Co1 −3.7 (3) N2—Co1—O4—C21 148.6 (2)
C3—C4—N1—C7 −18.7 (4) N1—Co1—O4—C21 −134.3 (2)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZS2056).

References

  1. Aäkeroy, C. B., Desper, J. & V.-Martínez, J., (2004). CrystEngComm, 6, 413–418.
  2. Aäkeroy, C. B., Schultheiss, N., Desper, J. & Moore, C. (2007). CrystEngComm, 9, 421–426.
  3. Allen, F. H. (2002). Acta Cryst. B58, 380–388. [DOI] [PubMed]
  4. Braga, D., Desiraju, G. R., Miller, J. S., Orpen, A. G. & Price, S. L. (2002). CrystEngComm, 4, 500–509.
  5. Bruker (1997). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Corradi, E., Meille, M. T., Messina, S. V., Metrangolo, P. & Resnati, R. (2000). Angew. Chem. Int. Ed.39, 1782–1786. [DOI] [PubMed]
  7. Harding, P., Harding, D. J., Sophonrat, N. & Adams, H. (2010). Unpublished results.
  8. Harding, P., Harding, D. J., Tinpun, K., Samuadnuan, S., Sophonrat, N. & Adams, H. (2010). Aust. J. Chem.63, 75–82.
  9. Liantonio, R., Metrangolo, P., Pilati, T., Resnati, G. & Stevenazzi, A. (2003). Cryst. Growth Des.3, 799–803.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Walsh, R. B., Padgett, C. W., Metrangolo, P., Resnati, G., Hanks, T. W. & Pennington, W. T. (2001). Cryst. Growth Des.1, 165–175.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810032757/zs2056sup1.cif

e-66-m1138-sup1.cif (25.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810032757/zs2056Isup2.hkl

e-66-m1138-Isup2.hkl (253.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES