Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Oct 30;66(Pt 11):m1483. doi: 10.1107/S160053681004331X

Tetra­aqua­{1-[(1H-1,2,3-benzotriazol-1-yl)meth­yl]-1H-1,2,4-triazole}sulfato­zinc(II) dihydrate

Yan-Zhi Wang a, Xiao-Kun Li a, Huai-Xia Yang a,*, Wan Zhou b, Xiang-Ru Meng b
PMCID: PMC3008971  PMID: 21588898

Abstract

In the title complex, [Zn(SO4)(C9H8N6)(H2O)4]·2H2O, the ZnII ion is six-coordinated by one N atom from a 1-[(1H-1,2,3-benzotriazol-1-yl)meth­yl]-1H-1,2,4-triazole ligand and five O atoms from one monodentate sulfate anion and four water mol­ecules in a distorted octa­hedral geometry. The sulfate tetra­hedron is rotationally disordered over two positions in a 0.618 (19):0.382 (19) ratio. In the crystal, adjacent mol­ecules are linked through O—H⋯O and O—H⋯N hydrogen bonds involving the cation, the anion, and the coordinated and uncoordinated water mol­ecules into a three-dimensional network.

Related literature

For background to complexes based on symmetrical N-hetero­cyclic ligands, see: Fan & Hanson (2005); Zhao et al. (2007). For background to complexes with ZnII, see: Lin et al. (2008); Liu et al. (2010).graphic file with name e-66-m1483-scheme1.jpg

Experimental

Crystal data

  • [Zn(SO4)(C9H8N6)(H2O)4]·2H2O

  • M r = 469.74

  • Triclinic, Inline graphic

  • a = 7.5439 (15) Å

  • b = 7.9573 (16) Å

  • c = 16.151 (3) Å

  • α = 99.60 (3)°

  • β = 92.16 (3)°

  • γ = 112.24 (3)°

  • V = 879.4 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.58 mm−1

  • T = 293 K

  • 0.24 × 0.23 × 0.21 mm

Data collection

  • Rigaku Saturn CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2006) T min = 0.703, T max = 0.733

  • 7688 measured reflections

  • 3442 independent reflections

  • 3130 reflections with I > 2σ(I)

  • R int = 0.018

Refinement

  • R[F 2 > 2σ(F 2)] = 0.028

  • wR(F 2) = 0.070

  • S = 1.04

  • 3442 reflections

  • 272 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2006); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXL97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053681004331X/wm2415sup1.cif

e-66-m1483-sup1.cif (22.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053681004331X/wm2415Isup2.hkl

e-66-m1483-Isup2.hkl (168.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O8—H8A⋯O3′ 0.85 2.29 2.793 (14) 118
O10—H10A⋯O1 0.85 2.09 2.938 (2) 178
O10—H10A⋯O2′ 0.85 2.51 3.028 (8) 120
O5—H5B⋯O4i 0.85 1.94 2.761 (5) 163
O5—H5B⋯O4′i 0.85 2.19 2.988 (13) 156
O7—H7B⋯O1i 0.85 1.98 2.823 (2) 170
O5—H5A⋯O10ii 0.85 1.90 2.731 (2) 165
O6—H6A⋯O4iii 0.85 1.94 2.752 (5) 159
O6—H6A⋯O4′iii 0.85 1.94 2.778 (8) 171
O6—H6B⋯O10iv 0.85 1.96 2.808 (2) 172
O7—H7A⋯O2′iv 0.85 1.84 2.684 (7) 171
O7—H7A⋯O2iv 0.85 1.87 2.701 (4) 164
O8—H8B⋯O9v 0.85 1.82 2.673 (3) 177
O8—H8A⋯N2vi 0.85 2.37 3.122 (3) 148
O9—H9B⋯O3vii 0.85 2.03 2.837 (8) 159
O9—H9B⋯O2′vii 0.85 2.22 2.919 (17) 139
O9—H9B⋯O3′vii 0.85 2.48 3.266 (17) 154
O9—H9A⋯N6viii 0.85 2.01 2.854 (3) 174
O10—H10B⋯O2ix 0.85 1.99 2.806 (10) 159
O10—H10B⋯O4′ix 0.85 2.08 2.836 (15) 147

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic; (viii) Inline graphic; (ix) Inline graphic.

Acknowledgments

The study was supported by the Science and Technology Department of Henan Province (grant No. 082102330003).

supplementary crystallographic information

Comment

Up to now, numerous complexes with one-, two- and three-dimensional structure motifs based on symmetrical N-heterocyclic ligands have been synthesized and reported (Fan & Hanson, 2005; Zhao et al., 2007), whereas complexes based on unsymmetrical N-heterocyclic ligands are relatively scarce. Focused on complexes with ZnII, this ion is able to coordinate to different donors simultaneously and the final products can exhibit promising luminescent properties (Lin et al., 2008; Liu et al., 2010). In this work, through the reaction of 1-((benzotriazol-1-yl)methyl)-1-H-1,2,4-triazole (bmt) with zinc sulfate at room temperature, we obtained the title complex [Zn(bmt)(SO4)(H2O)4](H2O)2, which is reported here.

As shown in Figure 1, the ZnII ion displays a distorted octahedral coordination defined by five oxygen atoms from four water molecules and one monodentate sulfate anion and by one nitrogen atom from the bmt ligand. Atoms O1, O5, O6, O8 and Zn1 are nearly co-planar (the mean deviation from the plane is 0.0258 Å), and atoms O7 and N1 are located in the apical positions. The SO4 tetrahedron is rotationally disordered about its S—O axis passing through O1 and S1 atoms. O—H···O and O—H···N hydrogen bonds including coordinated and uncoordinated water molecules, the cations and anions consolidate the crystal packing (Figure 2).

Experimental

The ligand 1-((benzotriazol-1-yl)methyl)-1-H-1,2,4-triazole (0.1 mmol) in methanol (5 ml) was added dropwise to an aqueous solution (2 ml) of zinc sulfate (0.1 mmol). The resulting solution was allowed to stand at room temperature. After three weeks, colorless crystals with good quality were obtained from the filtrate and were dried in air.

Refinement

The disordered sulfate anion has been modeled by splitting it into two combined parts (O2, O3, O4 and O2', O3', O4'), the site occupation factors of which refined in a ratio of 0.618 (19):0.382 (19). H atoms are positioned geometrically and refined as riding atoms, with C-H = 0.93 (aromatic) and 0.97 (CH2) Å and O-H = 0.85 Å, and with Uiso(H) = 1.2 Ueq(C,O).

Figures

Fig. 1.

Fig. 1.

View of the title complex, showing the labelling of the atoms. Displacement ellipsoids are displayed at the 30% probability level. H atoms are omitted for clarity; only one orientation of the disordered SO4 tetrahedron is shown.

Fig. 2.

Fig. 2.

View of the title complex, showing the packing of the structure. Hydrogen bonds are indicated by dashed lines.

Crystal data

[Zn(SO4)(C9H8N6)(H2O)4]·2H2O Z = 2
Mr = 469.74 F(000) = 484
Triclinic, P1 Dx = 1.774 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.5439 (15) Å Cell parameters from 2915 reflections
b = 7.9573 (16) Å θ = 2.6–27.9°
c = 16.151 (3) Å µ = 1.58 mm1
α = 99.60 (3)° T = 293 K
β = 92.16 (3)° Prism, colourless
γ = 112.24 (3)° 0.24 × 0.23 × 0.21 mm
V = 879.4 (3) Å3

Data collection

Rigaku Saturn CCD diffractometer 3442 independent reflections
Radiation source: fine-focus sealed tube 3130 reflections with I > 2σ(I)
graphite Rint = 0.018
Detector resolution: 28.5714 pixels mm-1 θmax = 26.0°, θmin = 2.6°
ω scans h = −9→9
Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2006) k = −9→8
Tmin = 0.703, Tmax = 0.733 l = −19→19
7688 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.070 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0343P)2 + 0.4616P] where P = (Fo2 + 2Fc2)/3
3442 reflections (Δ/σ)max = 0.001
272 parameters Δρmax = 0.29 e Å3
0 restraints Δρmin = −0.27 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Zn1 1.09002 (3) 0.17235 (3) 0.371640 (15) 0.02549 (9)
S1 0.62271 (7) −0.14764 (7) 0.35463 (3) 0.02418 (12)
O1 0.7976 (2) 0.0142 (2) 0.39731 (9) 0.0305 (3)
O2 0.4569 (4) −0.1335 (9) 0.3924 (5) 0.0409 (19) 0.618 (19)
O3 0.6021 (13) −0.1670 (12) 0.2661 (5) 0.0369 (14) 0.618 (19)
O4 0.6445 (10) −0.3168 (6) 0.3758 (5) 0.0414 (14) 0.618 (19)
O2' 0.4634 (9) −0.0755 (15) 0.3547 (9) 0.057 (3) 0.382 (19)
O3' 0.656 (2) −0.189 (2) 0.2635 (9) 0.043 (3) 0.382 (19)
O4' 0.574 (2) −0.2951 (11) 0.3977 (6) 0.044 (3) 0.382 (19)
O5 1.1162 (2) 0.3281 (2) 0.49352 (9) 0.0349 (4)
H5B 1.1754 0.3012 0.5318 0.042*
H5A 1.1677 0.4457 0.5028 0.042*
O6 1.3836 (2) 0.3225 (2) 0.35396 (11) 0.0375 (4)
H6A 1.4383 0.4397 0.3616 0.045*
H6B 1.4681 0.3082 0.3852 0.045*
O7 1.1822 (2) −0.0011 (2) 0.42915 (10) 0.0342 (4)
H7A 1.2706 −0.0324 0.4095 0.041*
H7B 1.1743 −0.0138 0.4803 0.041*
O8 1.0517 (2) −0.0077 (2) 0.25848 (10) 0.0378 (4)
H8B 1.1514 −0.0103 0.2365 0.045*
H8A 0.9778 −0.1201 0.2564 0.045*
N1 0.9899 (3) 0.3421 (2) 0.31394 (11) 0.0288 (4)
N2 0.9472 (3) 0.5789 (2) 0.27075 (12) 0.0344 (4)
N3 0.7996 (2) 0.4154 (2) 0.23720 (11) 0.0265 (4)
N4 0.6884 (3) 0.4047 (2) 0.09507 (11) 0.0285 (4)
N5 0.6883 (3) 0.2466 (3) 0.04821 (13) 0.0395 (5)
N6 0.7300 (3) 0.2763 (3) −0.02657 (13) 0.0419 (5)
C1 1.0571 (3) 0.5274 (3) 0.31691 (14) 0.0328 (5)
H1 1.1710 0.6106 0.3488 0.039*
C2 0.8284 (3) 0.2775 (3) 0.26262 (14) 0.0324 (5)
H2 0.7469 0.1533 0.2467 0.039*
C3 0.6397 (3) 0.4063 (3) 0.18067 (13) 0.0308 (5)
H3A 0.5276 0.2952 0.1823 0.037*
H3B 0.6073 0.5123 0.1997 0.037*
C4 0.7304 (3) 0.5407 (3) 0.04844 (13) 0.0272 (4)
C5 0.7419 (3) 0.7219 (3) 0.06513 (15) 0.0349 (5)
H5 0.7230 0.7772 0.1176 0.042*
C6 0.7834 (4) 0.8139 (4) −0.00128 (18) 0.0442 (6)
H6 0.7918 0.9352 0.0066 0.053*
C7 0.8134 (4) 0.7313 (4) −0.08015 (18) 0.0495 (7)
H7 0.8431 0.8000 −0.1227 0.059*
C8 0.8003 (4) 0.5530 (4) −0.09633 (16) 0.0452 (6)
H8 0.8186 0.4981 −0.1490 0.054*
C9 0.7578 (3) 0.4563 (3) −0.02981 (14) 0.0334 (5)
O9 0.3572 (3) 0.9693 (2) 0.18654 (11) 0.0443 (4)
H9B 0.4072 0.9201 0.2182 0.053*
H9A 0.3326 0.9027 0.1373 0.053*
O10 0.6604 (2) 0.3016 (2) 0.46855 (11) 0.0408 (4)
H10A 0.6979 0.2174 0.4471 0.049*
H10B 0.6070 0.2662 0.5115 0.049*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Zn1 0.02551 (14) 0.02764 (14) 0.02428 (14) 0.01074 (10) 0.00097 (9) 0.00719 (9)
S1 0.0209 (3) 0.0230 (3) 0.0249 (3) 0.0055 (2) 0.00115 (19) 0.00244 (19)
O1 0.0240 (8) 0.0301 (8) 0.0281 (8) 0.0012 (6) 0.0017 (6) 0.0035 (6)
O2 0.0209 (14) 0.041 (3) 0.056 (3) 0.0108 (14) 0.0063 (15) 0.0004 (19)
O3 0.037 (4) 0.047 (2) 0.024 (2) 0.014 (2) 0.002 (2) 0.0040 (16)
O4 0.047 (3) 0.0268 (17) 0.050 (3) 0.0147 (17) −0.006 (2) 0.0086 (16)
O2' 0.038 (3) 0.072 (4) 0.081 (6) 0.038 (3) 0.017 (3) 0.030 (5)
O3' 0.033 (6) 0.056 (5) 0.028 (3) 0.010 (4) 0.008 (4) −0.010 (3)
O4' 0.059 (6) 0.025 (3) 0.040 (4) 0.005 (3) 0.002 (3) 0.012 (2)
O5 0.0417 (9) 0.0287 (8) 0.0281 (8) 0.0092 (7) −0.0044 (7) 0.0019 (6)
O6 0.0274 (8) 0.0326 (9) 0.0499 (10) 0.0066 (7) 0.0016 (7) 0.0138 (7)
O7 0.0405 (9) 0.0412 (9) 0.0315 (8) 0.0248 (8) 0.0071 (7) 0.0136 (7)
O8 0.0347 (9) 0.0374 (9) 0.0307 (9) 0.0050 (7) 0.0065 (7) 0.0000 (7)
N1 0.0273 (9) 0.0283 (9) 0.0295 (10) 0.0079 (8) −0.0017 (8) 0.0102 (7)
N2 0.0347 (10) 0.0249 (9) 0.0392 (11) 0.0083 (8) −0.0037 (8) 0.0046 (8)
N3 0.0269 (9) 0.0266 (9) 0.0244 (9) 0.0079 (8) −0.0015 (7) 0.0075 (7)
N4 0.0327 (10) 0.0301 (10) 0.0254 (9) 0.0161 (8) −0.0012 (7) 0.0047 (7)
N5 0.0481 (12) 0.0356 (11) 0.0374 (12) 0.0224 (10) −0.0033 (9) 0.0012 (9)
N6 0.0474 (13) 0.0468 (12) 0.0338 (11) 0.0259 (10) −0.0003 (9) −0.0029 (9)
C1 0.0302 (12) 0.0288 (11) 0.0337 (12) 0.0072 (10) −0.0057 (9) 0.0035 (9)
C2 0.0307 (12) 0.0258 (11) 0.0349 (12) 0.0038 (9) −0.0045 (9) 0.0096 (9)
C3 0.0276 (11) 0.0376 (12) 0.0284 (11) 0.0131 (10) −0.0007 (9) 0.0100 (9)
C4 0.0228 (10) 0.0333 (11) 0.0253 (11) 0.0109 (9) −0.0022 (8) 0.0064 (9)
C5 0.0342 (13) 0.0329 (12) 0.0358 (13) 0.0125 (10) −0.0006 (10) 0.0041 (9)
C6 0.0396 (14) 0.0378 (14) 0.0557 (17) 0.0112 (11) 0.0003 (12) 0.0208 (12)
C7 0.0378 (14) 0.0657 (19) 0.0470 (16) 0.0131 (13) 0.0049 (12) 0.0333 (14)
C8 0.0404 (14) 0.0727 (19) 0.0276 (12) 0.0246 (14) 0.0088 (10) 0.0158 (12)
C9 0.0295 (11) 0.0442 (13) 0.0269 (11) 0.0169 (10) −0.0010 (9) 0.0029 (9)
O9 0.0512 (11) 0.0463 (10) 0.0343 (9) 0.0215 (9) 0.0003 (8) 0.0003 (7)
O10 0.0422 (10) 0.0314 (9) 0.0502 (10) 0.0153 (8) 0.0090 (8) 0.0087 (7)

Geometric parameters (Å, °)

Zn1—O8 2.0615 (17) N3—C2 1.320 (3)
Zn1—O7 2.0869 (15) N3—C3 1.457 (3)
Zn1—N1 2.0979 (18) N4—N5 1.356 (3)
Zn1—O5 2.1028 (17) N4—C4 1.367 (3)
Zn1—O6 2.1385 (18) N4—C3 1.443 (3)
Zn1—O1 2.1824 (16) N5—N6 1.297 (3)
S1—O4' 1.401 (7) N6—C9 1.377 (3)
S1—O3 1.409 (8) C1—H1 0.9300
S1—O2 1.446 (3) C2—H2 0.9300
S1—O1 1.4912 (16) C3—H3A 0.9700
S1—O3' 1.505 (13) C3—H3B 0.9700
S1—O4 1.507 (4) C4—C5 1.390 (3)
S1—O2' 1.516 (7) C4—C9 1.390 (3)
O5—H5B 0.8500 C5—C6 1.378 (3)
O5—H5A 0.8500 C5—H5 0.9300
O6—H6A 0.8499 C6—C7 1.400 (4)
O6—H6B 0.8499 C6—H6 0.9300
O7—H7A 0.8500 C7—C8 1.364 (4)
O7—H7B 0.8501 C7—H7 0.9300
O8—H8B 0.8500 C8—C9 1.401 (3)
O8—H8A 0.8500 C8—H8 0.9300
N1—C2 1.321 (3) O9—H9B 0.8499
N1—C1 1.357 (3) O9—H9A 0.8501
N2—C1 1.313 (3) O10—H10A 0.8499
N2—N3 1.360 (3) O10—H10B 0.8500
O8—Zn1—O7 87.82 (7) Zn1—O8—H8A 116.6
O8—Zn1—N1 91.97 (7) H8B—O8—H8A 105.9
O7—Zn1—N1 178.51 (7) C2—N1—C1 103.23 (18)
O8—Zn1—O5 173.22 (6) C2—N1—Zn1 123.15 (15)
O7—Zn1—O5 86.93 (6) C1—N1—Zn1 133.61 (15)
N1—Zn1—O5 93.18 (7) C1—N2—N3 102.46 (17)
O8—Zn1—O6 90.69 (7) C2—N3—N2 110.19 (17)
O7—Zn1—O6 88.10 (7) C2—N3—C3 128.18 (18)
N1—Zn1—O6 93.38 (7) N2—N3—C3 121.62 (17)
O5—Zn1—O6 93.40 (8) N5—N4—C4 110.63 (18)
O8—Zn1—O1 91.05 (7) N5—N4—C3 119.25 (18)
O7—Zn1—O1 88.44 (7) C4—N4—C3 130.06 (18)
N1—Zn1—O1 90.10 (7) N6—N5—N4 108.29 (19)
O5—Zn1—O1 84.54 (7) N5—N6—C9 108.93 (19)
O6—Zn1—O1 176.06 (6) N2—C1—N1 114.12 (19)
O4'—S1—O3 124.8 (5) N2—C1—H1 122.9
O4'—S1—O2 79.7 (5) N1—C1—H1 122.9
O3—S1—O2 112.6 (3) N3—C2—N1 109.99 (19)
O4'—S1—O1 112.3 (3) N3—C2—H2 125.0
O3—S1—O1 113.5 (4) N1—C2—H2 125.0
O2—S1—O1 108.19 (15) N4—C3—N3 111.05 (18)
O4'—S1—O3' 116.6 (7) N4—C3—H3A 109.4
O3—S1—O3' 19.3 (5) N3—C3—H3A 109.4
O2—S1—O3' 131.0 (4) N4—C3—H3B 109.4
O1—S1—O3' 106.7 (6) N3—C3—H3B 109.4
O4'—S1—O4 27.9 (4) H3A—C3—H3B 108.0
O3—S1—O4 108.6 (4) N4—C4—C5 133.5 (2)
O2—S1—O4 107.4 (2) N4—C4—C9 103.73 (19)
O1—S1—O4 106.24 (19) C5—C4—C9 122.8 (2)
O3'—S1—O4 94.5 (6) C6—C5—C4 115.5 (2)
O4'—S1—O2' 109.8 (4) C6—C5—H5 122.3
O3—S1—O2' 86.4 (4) C4—C5—H5 122.3
O2—S1—O2' 31.9 (3) C5—C6—C7 122.4 (2)
O1—S1—O2' 104.9 (3) C5—C6—H6 118.8
O3'—S1—O2' 105.8 (5) C7—C6—H6 118.8
O4—S1—O2' 135.7 (4) C8—C7—C6 121.8 (2)
S1—O1—Zn1 138.82 (9) C8—C7—H7 119.1
Zn1—O5—H5B 114.8 C6—C7—H7 119.1
Zn1—O5—H5A 120.7 C7—C8—C9 116.9 (2)
H5B—O5—H5A 103.1 C7—C8—H8 121.6
Zn1—O6—H6A 124.8 C9—C8—H8 121.6
Zn1—O6—H6B 116.0 N6—C9—C4 108.4 (2)
H6A—O6—H6B 96.0 N6—C9—C8 130.9 (2)
Zn1—O7—H7A 119.6 C4—C9—C8 120.7 (2)
Zn1—O7—H7B 126.2 H9B—O9—H9A 107.2
H7A—O7—H7B 110.1 H10A—O10—H10B 105.2
Zn1—O8—H8B 118.1
O4'—S1—O1—Zn1 116.9 (8) C2—N1—C1—N2 −0.1 (3)
O3—S1—O1—Zn1 −31.3 (4) Zn1—N1—C1—N2 −179.33 (16)
O2—S1—O1—Zn1 −157.0 (4) N2—N3—C2—N1 1.1 (3)
O3'—S1—O1—Zn1 −12.0 (7) C3—N3—C2—N1 −179.8 (2)
O4—S1—O1—Zn1 88.0 (4) C1—N1—C2—N3 −0.6 (3)
O2'—S1—O1—Zn1 −123.9 (7) Zn1—N1—C2—N3 178.71 (14)
O8—Zn1—O1—S1 −4.72 (15) N5—N4—C3—N3 76.6 (2)
O7—Zn1—O1—S1 −92.51 (15) C4—N4—C3—N3 −106.4 (2)
N1—Zn1—O1—S1 87.25 (15) C2—N3—C3—N4 −95.9 (3)
O5—Zn1—O1—S1 −179.57 (15) N2—N3—C3—N4 83.0 (2)
O6—Zn1—O1—S1 −120.9 (8) N5—N4—C4—C5 177.5 (2)
O8—Zn1—N1—C2 49.15 (19) C3—N4—C4—C5 0.3 (4)
O7—Zn1—N1—C2 −33 (3) N5—N4—C4—C9 −0.6 (2)
O5—Zn1—N1—C2 −126.43 (19) C3—N4—C4—C9 −177.8 (2)
O6—Zn1—N1—C2 139.96 (19) N4—C4—C5—C6 −177.9 (2)
O1—Zn1—N1—C2 −41.90 (19) C9—C4—C5—C6 −0.2 (3)
O8—Zn1—N1—C1 −131.7 (2) C4—C5—C6—C7 −0.5 (4)
O7—Zn1—N1—C1 147 (2) C5—C6—C7—C8 1.0 (4)
O5—Zn1—N1—C1 52.7 (2) C6—C7—C8—C9 −0.9 (4)
O6—Zn1—N1—C1 −40.9 (2) N5—N6—C9—C4 −0.2 (3)
O1—Zn1—N1—C1 137.2 (2) N5—N6—C9—C8 −178.1 (2)
C1—N2—N3—C2 −1.1 (2) N4—C4—C9—N6 0.4 (2)
C1—N2—N3—C3 179.8 (2) C5—C4—C9—N6 −177.9 (2)
C4—N4—N5—N6 0.5 (2) N4—C4—C9—C8 178.7 (2)
C3—N4—N5—N6 178.03 (19) C5—C4—C9—C8 0.4 (3)
N4—N5—N6—C9 −0.2 (3) C7—C8—C9—N6 177.9 (2)
N3—N2—C1—N1 0.7 (3) C7—C8—C9—C4 0.2 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O8—H8A···O3' 0.85 2.29 2.793 (14) 118
O10—H10A···O1 0.85 2.09 2.938 (2) 178
O10—H10A···O2' 0.85 2.51 3.028 (8) 120
O5—H5B···O4i 0.85 1.94 2.761 (5) 163
O5—H5B···O4'i 0.85 2.19 2.988 (13) 156
O7—H7B···O1i 0.85 1.98 2.823 (2) 170
O5—H5A···O10ii 0.85 1.90 2.731 (2) 165
O6—H6A···O4iii 0.85 1.94 2.752 (5) 159
O6—H6A···O4'iii 0.85 1.94 2.778 (8) 171
O6—H6B···O10iv 0.85 1.96 2.808 (2) 172
O7—H7A···O2'iv 0.85 1.84 2.684 (7) 171
O7—H7A···O2iv 0.85 1.87 2.701 (4) 164
O8—H8B···O9v 0.85 1.82 2.673 (3) 177
O8—H8A···N2vi 0.85 2.37 3.122 (3) 148
O9—H9B···O3vii 0.85 2.03 2.837 (8) 159
O9—H9B···O2'vii 0.85 2.22 2.919 (17) 139
O9—H9B···O3'vii 0.85 2.48 3.266 (17) 154
O9—H9A···N6viii 0.85 2.01 2.854 (3) 174
O10—H10B···O2ix 0.85 1.99 2.806 (10) 159
O10—H10B···O4'ix 0.85 2.08 2.836 (15) 147

Symmetry codes: (i) −x+2, −y, −z+1; (ii) −x+2, −y+1, −z+1; (iii) x+1, y+1, z; (iv) x+1, y, z; (v) x+1, y−1, z; (vi) x, y−1, z; (vii) x, y+1, z; (viii) −x+1, −y+1, −z; (ix) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2415).

References

  1. Fan, J. & Hanson, B. E. (2005). Inorg. Chem.44, 6998–7008. [DOI] [PubMed]
  2. Lin, J.-D., Cheng, J.-W. & Du, S.-W. (2008). Cryst. Growth Des.8, 3345–3353.
  3. Liu, S.-L., Yang, Y., Qi, Y.-F., Meng, X.-R. & Hou, H.-W. (2010). J. Mol. Struct.975, 154–159.
  4. Rigaku/MSC (2006). CrystalClear Rigaku/MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Zhao, X.-X., Ma, J.-P., Dong, Y.-B., Huang, R.-Q. & Lai, T.-S. (2007). Cryst. Growth Des.7, 1058–1068.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053681004331X/wm2415sup1.cif

e-66-m1483-sup1.cif (22.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053681004331X/wm2415Isup2.hkl

e-66-m1483-Isup2.hkl (168.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES