Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Oct 9;66(Pt 11):o2777–o2778. doi: 10.1107/S160053681003936X

3-Ethyl-4-[3-(1H-imidazol-1-yl)prop­yl]-5-phenyl-4H-1,2,4-triazole dihydrate

Anuradha Gurumoorthy a, Vasuki Gopalsamy b,*, Dilek Ünlüer c, Esra Düğdü c, Babu Varghesee d
PMCID: PMC3008975  PMID: 21588976

Abstract

In the title compound, C16H19N5·2H2O, the triazole ring makes dihedral angles of 70.61 (6) and 41.89 (8)°, respectively, with the imidazole and benzene rings. The water mol­ecules are involved in inter­molecular O—H⋯N and O—H⋯O hydrogen bonds, which stabilize the crystal packing.

Related literature

For a related structure, see: Rizzoli et al. (2009); Kalkan et al. (2007). For bond lengths and angles in triazole rings, see: Thenmozhi et al. (2010); Rizzoli et al. (2009); Dolzhenko et al. (2010); Ocak Ískeleli et al. (2005); Ünver et al. (2010). For the biological activity of triazole Schiff bases, see: Thenmozhi et al. (2010) and of 1,2,4-triazole derivatives, see: Ünver et al. (2010). For the search for and synthesis of new anti­biotics, see: Köysal et al. (2006). For the synthesis, see: Ünver et al. (2009). graphic file with name e-66-o2777-scheme1.jpg

Experimental

Crystal data

  • C16H19N5·2H2O

  • M r = 317.39

  • Monoclinic, Inline graphic

  • a = 11.0787 (16) Å

  • b = 9.8428 (8) Å

  • c = 16.3289 (18) Å

  • β = 105.602 (9)°

  • V = 1715.0 (3) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.68 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan North et al. (1968) T min = 0.821, T max = 0.876

  • 3030 measured reflections

  • 2868 independent reflections

  • 2166 reflections with I > 2σ(I)

  • R int = 0.029

  • 2 standard reflections every 60 min intensity decay: none

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045

  • wR(F 2) = 0.123

  • S = 1.08

  • 2868 reflections

  • 226 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: MolEN (Fair, 1990); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ZORTEP (Zsolnai, 1997); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053681003936X/jh2213sup1.cif

e-66-o2777-sup1.cif (20.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053681003936X/jh2213Isup2.hkl

e-66-o2777-Isup2.hkl (140.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (Å, °).

C7—N1 1.308 (2)
C7—N3 1.373 (2)
C8—N2 1.312 (2)
C8—N3 1.363 (2)
N1—N2 1.387 (2)
C8—N3—C7 105.09 (14)
C8—N3—C11 126.52 (14)
C7—N3—C11 128.05 (14)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O2 0.91 (1) 1.98 (1) 2.882 (3) 172 (3)
O1—H1B⋯N2i 0.90 (1) 2.02 (1) 2.913 (2) 170 (3)
O2—H2A⋯N5ii 0.91 (1) 1.95 (1) 2.859 (3) 176 (2)
O2—H2B⋯O1iii 0.91 (1) 2.08 (2) 2.949 (3) 160 (3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

DÜ and ED thank the Research Fund of Karadeniz Technical University for its support of this work.

supplementary crystallographic information

Comment

The biological importance of imidazoles and triazoles has stimulated much work on these heterocycles. 1,2,4-Triazole is a basic aromatic ring and possesses good coordination ability due to the presence of nitrogen atoms (Thenmozhi et al.,2010). 1,2,4-Triazole compounds posses important pharmacology activities such as antifungal and antiviral activities. Examples of such compounds bearing the 1,2,4-Triazole residues are fluconazole, the powerful azole antifungal agent as well as the potent antiviral N-nucleoside ribavirin. Furthermore various 1,2,4-Triazole derivatives have been reported as fungicidal, insecticidal, antimicrobial as well as anticonvulsants, antidepressants and plant growth regulator anticoagulants (Ünver et al., 2010). 1,2,4-Triazole derivatives are also used to build polymetallic complexes. Compounds derived from triazole possess antimicrobial, analgesic, anti-inflammatory, local anesthetic, antineoplastic and antimalarial properties. Some triazole Schiff bases also exhibit antiproliferative and anticancer activities (Thenmozhi et al., 2010). 1,2,4-Triazole moieties interact strongly with heme iron and aromatic substituents on the triazoles are very effective for interacting with the active site of aromatase. Furthermore, it was reported that compounds having triazole moieties such as Vorozole, Anastrozole and Letrozole appear to be very effective aromatese inhibitors very useful for preventing breast cancer (Ünver et al., 2010). Some of the azole derivatives used as common antibiotics, such as amphotericin B, exhibit toxic effects on humans along with antimicrobial effects. Although different antimicrobial agents are used in the treatment of microbial infections, an increasing resistance to these drugs is observed. Therefore, the search for and synthesis of new antibiotics different from commonly used ones is of current importance (Köysal et al., 2006). In a search for new triazole compounds with better biological activity, the title compound (I), was synthesized. We report here the crystal structure of the title compound, (I) (Fig.1), a new 1,2,4-triazole derivative. The compound (I) crystallizes as a dihydrate, the bond lengths and angles (Table 1) are generally normal in the triazole ring (Thenmozhi et al., 2010; Rizzoli et al., 2009; Dolzhenko et al., 2010; Ocak Ískeleli et al., 2005; Ünver et al., 2010). Atom N3 has a trigonal configuration, the sum of the three bond angles around them being 360° (Kalkan et al., 2007). The dihedral angles between the planes A(N1/N2/C7/N3/C8), B(N4/C14/N5/C15/C16) and C(C1/C2/C3/C4/C5/C6) are A/B = 70.61 (6)°, A/C = 41.89 (8)° and B/C = 68.16 (7)°. The triazole ring is essentially planar with r.m.s deviation of 0.0046Å (Dolzhenko et al., 2010). The C—N bond lengths in the triazole ring of all molecules lie in the range of 1.260 (3)–1.349 (4) Å. These are longer than a typical double C═ N bond [1.269 (2) Å], but shorter than a C—N single bond [1.443 (4) Å], (Thenmozhi et al., 2010) indicating the possibility of electron delocalization. The N3–C11–C12–C13 torsion angle of 172.00 (15)° indicates that the triazole ring and the imidazole moiety has an E-configuration across the C11–C12 bond. This configuration is stabilized by an intramolecular C11–H11···N4 hydrogen bond with H11···N4 distance of 2.54 Å. The uncoordinated water molecules are involved in intermolecular O–H···O and O–H···N hydrogen bonds (Table 2), which stabilize the crystal packing.

Experimental

The compound was synthesized by published method (Ünver et al., 2009).

Refinement

Water H atoms were located in a difference Fourier map and isotropically refined with O—H distance restraints of 0.90 (1) Å. All the other H atoms were positioned geometrically and treated as riding on their parent atoms, with C—H = 0.93Å (aromatic) and 0.97Å (methylene), N—H = 0.86 Å, and refined using a riding model with Uiso(H) = 1.2Ueq or 1.5Ueq(parent atom). In the absence of significant anomalous scattering effects, Friedel pairs were merged.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Crystal packing of the title compound viewed along the a axiS. Intermolecular O—H···O and O—H···N hydrogen bonds are shown as dashed lines.

Fig. 3.

Fig. 3.

Crystal Packing of the title compound with hydrogen bonds.

Crystal data

C16H19N5·2H2O F(000) = 680
Mr = 317.39 Dx = 1.229 Mg m3
Monoclinic, P21/c Cu Kα radiation, λ = 1.54180 Å
a = 11.0787 (16) Å Cell parameters from 25 reflections
b = 9.8428 (8) Å θ = 20–30°
c = 16.3289 (18) Å µ = 0.68 mm1
β = 105.602 (9)° T = 293 K
V = 1715.0 (3) Å3 Block, colourless
Z = 4 0.30 × 0.20 × 0.20 mm

Data collection

Enraf–Nonius CAD-4 Diffractometer 2166 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.029
graphite θmax = 64.9°, θmin = 4.1°
ω–2τ scan h = 0→13
Absorption correction: ψ scan North et al. (1968) k = 0→11
Tmin = 0.821, Tmax = 0.876 l = −19→18
3030 measured reflections 2 standard reflections every 60 min
2868 independent reflections intensity decay: none

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.123 w = 1/[σ2(Fo2) + (0.0676P)2 + 0.2107P] where P = (Fo2 + 2Fc2)/3
S = 1.08 (Δ/σ)max < 0.001
2868 reflections Δρmax = 0.19 e Å3
226 parameters Δρmin = −0.17 e Å3
6 restraints Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0246 (12)

Special details

Experimental. Number of psi-scan sets used was 5 Theta correction was applied. Averaged transmission function was used. No Fourier smoothing was applied.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 1.10619 (16) 0.09615 (18) 0.08555 (11) 0.0519 (4)
H1 1.0554 0.0218 0.0878 0.062*
C2 1.23425 (18) 0.0845 (2) 0.11690 (12) 0.0609 (5)
H2 1.2692 0.0026 0.1400 0.073*
C3 1.31051 (18) 0.1935 (2) 0.11417 (12) 0.0655 (6)
H3 1.3970 0.1855 0.1354 0.079*
C4 1.25803 (18) 0.3152 (2) 0.07964 (12) 0.0623 (5)
H4 1.3094 0.3893 0.0779 0.075*
C5 1.13010 (17) 0.32727 (17) 0.04779 (11) 0.0509 (4)
H5 1.0956 0.4092 0.0242 0.061*
C6 1.05207 (15) 0.21742 (16) 0.05067 (10) 0.0429 (4)
C7 0.91650 (15) 0.23322 (16) 0.01343 (10) 0.0430 (4)
C8 0.71432 (16) 0.23090 (19) −0.00821 (11) 0.0529 (5)
C9 0.58650 (18) 0.2091 (3) 0.00312 (15) 0.0772 (6)
H9A 0.5689 0.1124 0.0005 0.093*
H9B 0.5856 0.2406 0.0592 0.093*
C10 0.4853 (2) 0.2794 (3) −0.06124 (19) 0.1100 (10)
H10A 0.5027 0.3750 −0.0600 0.165*
H10B 0.4066 0.2646 −0.0486 0.165*
H10C 0.4813 0.2441 −0.1167 0.165*
C11 0.83527 (17) 0.11825 (17) 0.12819 (10) 0.0496 (4)
H11A 0.7754 0.1576 0.1551 0.060*
H11B 0.9185 0.1359 0.1648 0.060*
C12 0.81484 (18) −0.03413 (18) 0.12166 (11) 0.0571 (5)
H12A 0.8667 −0.0732 0.0884 0.069*
H12B 0.7279 −0.0529 0.0925 0.069*
C13 0.8473 (2) −0.0997 (2) 0.20926 (13) 0.0658 (5)
H13A 0.7918 −0.0643 0.2411 0.079*
H13B 0.8335 −0.1969 0.2029 0.079*
C14 1.0814 (2) −0.1225 (2) 0.23923 (13) 0.0618 (5)
H14 1.0804 −0.1814 0.1945 0.074*
C15 1.1436 (2) 0.0064 (2) 0.34639 (14) 0.0700 (6)
H15 1.1959 0.0543 0.3912 0.084*
C16 1.0180 (2) 0.0092 (2) 0.32597 (12) 0.0655 (5)
H16 0.9685 0.0584 0.3532 0.079*
N1 0.86819 (13) 0.29858 (15) −0.05759 (9) 0.0524 (4)
N2 0.73910 (14) 0.29737 (16) −0.07142 (10) 0.0572 (4)
N3 0.82282 (12) 0.18678 (13) 0.04670 (8) 0.0455 (4)
N4 0.97689 (15) −0.07477 (15) 0.25699 (9) 0.0564 (4)
N5 1.18406 (17) −0.07686 (18) 0.29187 (11) 0.0692 (5)
O1 0.60569 (16) 0.10016 (18) 0.26136 (10) 0.0807 (5)
O2 0.43707 (15) −0.11055 (19) 0.28415 (13) 0.0920 (6)
H1A 0.554 (2) 0.030 (2) 0.2642 (16) 0.127 (11)*
H1B 0.650 (2) 0.121 (3) 0.3147 (9) 0.134 (11)*
H2A 0.3579 (13) −0.096 (2) 0.2882 (17) 0.105 (9)*
H2B 0.444 (2) −0.2016 (12) 0.277 (2) 0.154 (14)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0520 (10) 0.0489 (10) 0.0551 (10) −0.0035 (8) 0.0146 (8) 0.0050 (8)
C2 0.0562 (11) 0.0673 (12) 0.0575 (11) 0.0090 (9) 0.0124 (8) 0.0122 (9)
C3 0.0467 (11) 0.0881 (15) 0.0583 (11) −0.0024 (10) 0.0086 (8) −0.0020 (10)
C4 0.0537 (11) 0.0680 (12) 0.0668 (12) −0.0186 (9) 0.0190 (9) −0.0075 (10)
C5 0.0543 (11) 0.0451 (9) 0.0560 (10) −0.0047 (8) 0.0193 (8) −0.0015 (8)
C6 0.0464 (10) 0.0417 (8) 0.0423 (8) −0.0029 (7) 0.0152 (7) −0.0023 (7)
C7 0.0455 (9) 0.0376 (8) 0.0483 (9) −0.0039 (7) 0.0169 (7) −0.0005 (7)
C8 0.0472 (10) 0.0528 (10) 0.0598 (10) −0.0034 (8) 0.0163 (8) 0.0020 (8)
C9 0.0505 (12) 0.0929 (16) 0.0929 (15) −0.0052 (11) 0.0271 (11) 0.0124 (13)
C10 0.0514 (14) 0.151 (3) 0.131 (2) 0.0045 (15) 0.0297 (14) 0.031 (2)
C11 0.0578 (10) 0.0464 (9) 0.0489 (9) −0.0042 (8) 0.0218 (8) −0.0010 (7)
C12 0.0665 (12) 0.0479 (10) 0.0615 (11) −0.0122 (8) 0.0252 (9) −0.0007 (8)
C13 0.0780 (14) 0.0530 (11) 0.0757 (13) −0.0041 (10) 0.0366 (11) 0.0124 (10)
C14 0.0839 (15) 0.0492 (10) 0.0594 (11) 0.0147 (10) 0.0314 (11) 0.0078 (9)
C15 0.0886 (16) 0.0605 (12) 0.0631 (12) 0.0040 (11) 0.0240 (11) 0.0049 (10)
C16 0.0951 (16) 0.0532 (11) 0.0590 (11) 0.0097 (10) 0.0394 (11) 0.0041 (9)
N1 0.0461 (8) 0.0548 (9) 0.0562 (8) −0.0011 (7) 0.0137 (6) 0.0098 (7)
N2 0.0439 (9) 0.0624 (9) 0.0638 (9) −0.0005 (7) 0.0121 (7) 0.0096 (8)
N3 0.0477 (8) 0.0424 (7) 0.0485 (7) −0.0045 (6) 0.0163 (6) 0.0002 (6)
N4 0.0741 (11) 0.0474 (8) 0.0559 (8) 0.0066 (7) 0.0314 (8) 0.0092 (7)
N5 0.0786 (12) 0.0630 (11) 0.0704 (10) 0.0143 (9) 0.0278 (9) 0.0130 (9)
O1 0.0767 (11) 0.0899 (12) 0.0706 (10) −0.0057 (9) 0.0114 (8) 0.0019 (8)
O2 0.0619 (10) 0.0805 (12) 0.1268 (15) 0.0036 (8) 0.0135 (9) −0.0038 (10)

Geometric parameters (Å, °)

C1—C2 1.377 (2) C11—N3 1.465 (2)
C1—C6 1.387 (2) C11—C12 1.516 (2)
C1—H1 0.9300 C11—H11A 0.9700
C2—C3 1.373 (3) C11—H11B 0.9700
C2—H2 0.9300 C12—C13 1.522 (3)
C3—C4 1.384 (3) C12—H12A 0.9700
C3—H3 0.9300 C12—H12B 0.9700
C4—C5 1.377 (3) C13—N4 1.459 (2)
C4—H4 0.9300 C13—H13A 0.9700
C5—C6 1.393 (2) C13—H13B 0.9700
C5—H5 0.9300 C14—N5 1.307 (3)
C6—C7 1.469 (2) C14—N4 1.352 (2)
C7—N1 1.308 (2) C14—H14 0.9300
C7—N3 1.373 (2) C15—C16 1.341 (3)
C8—N2 1.312 (2) C15—N5 1.371 (3)
C8—N3 1.363 (2) C15—H15 0.9300
C8—C9 1.492 (3) C16—N4 1.372 (2)
C9—C10 1.485 (3) C16—H16 0.9300
C9—H9A 0.9700 N1—N2 1.387 (2)
C9—H9B 0.9700 O1—H1A 0.906 (10)
C10—H10A 0.9600 O1—H1B 0.902 (10)
C10—H10B 0.9600 O2—H2A 0.909 (9)
C10—H10C 0.9600 O2—H2B 0.910 (10)
C2—C1—C6 120.80 (16) N3—C11—H11A 108.6
C2—C1—H1 119.6 C12—C11—H11A 108.6
C6—C1—H1 119.6 N3—C11—H11B 108.6
C3—C2—C1 120.29 (18) C12—C11—H11B 108.6
C3—C2—H2 119.9 H11A—C11—H11B 107.6
C1—C2—H2 119.9 C11—C12—C13 111.13 (15)
C2—C3—C4 119.64 (18) C11—C12—H12A 109.4
C2—C3—H3 120.2 C13—C12—H12A 109.4
C4—C3—H3 120.2 C11—C12—H12B 109.4
C5—C4—C3 120.35 (18) C13—C12—H12B 109.4
C5—C4—H4 119.8 H12A—C12—H12B 108.0
C3—C4—H4 119.8 N4—C13—C12 112.37 (15)
C4—C5—C6 120.35 (17) N4—C13—H13A 109.1
C4—C5—H5 119.8 C12—C13—H13A 109.1
C6—C5—H5 119.8 N4—C13—H13B 109.1
C1—C6—C5 118.56 (16) C12—C13—H13B 109.1
C1—C6—C7 122.80 (14) H13A—C13—H13B 107.9
C5—C6—C7 118.59 (15) N5—C14—N4 112.54 (18)
N1—C7—N3 110.00 (14) N5—C14—H14 123.7
N1—C7—C6 123.22 (14) N4—C14—H14 123.7
N3—C7—C6 126.76 (14) C16—C15—N5 110.43 (19)
N2—C8—N3 110.02 (15) C16—C15—H15 124.8
N2—C8—C9 125.15 (17) N5—C15—H15 124.8
N3—C8—C9 124.82 (17) C15—C16—N4 106.56 (17)
C10—C9—C8 113.94 (19) C15—C16—H16 126.7
C10—C9—H9A 108.8 N4—C16—H16 126.7
C8—C9—H9A 108.8 C7—N1—N2 107.35 (13)
C10—C9—H9B 108.8 C8—N2—N1 107.52 (13)
C8—C9—H9B 108.8 C8—N3—C7 105.09 (14)
H9A—C9—H9B 107.7 C8—N3—C11 126.52 (14)
C9—C10—H10A 109.5 C7—N3—C11 128.05 (14)
C9—C10—H10B 109.5 C14—N4—C16 105.73 (17)
H10A—C10—H10B 109.5 C14—N4—C13 127.14 (17)
C9—C10—H10C 109.5 C16—N4—C13 127.00 (17)
H10A—C10—H10C 109.5 C14—N5—C15 104.73 (18)
H10B—C10—H10C 109.5 H1A—O1—H1B 108.4 (14)
N3—C11—C12 114.56 (14) H2A—O2—H2B 106.5 (14)
C6—C1—C2—C3 0.1 (3) C6—C7—N3—C8 177.38 (15)
C1—C2—C3—C4 −0.1 (3) N1—C7—N3—C11 −174.85 (15)
C2—C3—C4—C5 −0.3 (3) C6—C7—N3—C11 3.7 (3)
C3—C4—C5—C6 0.6 (3) C12—C11—N3—C8 84.7 (2)
C2—C1—C6—C5 0.2 (3) C12—C11—N3—C7 −102.89 (19)
C2—C1—C6—C7 177.55 (16) N5—C14—N4—C16 0.8 (2)
C4—C5—C6—C1 −0.5 (2) N5—C14—N4—C13 176.98 (15)
C4—C5—C6—C7 −177.98 (15) C15—C16—N4—C14 −0.6 (2)
C1—C6—C7—N1 −137.55 (18) C15—C16—N4—C13 −176.81 (16)
C5—C6—C7—N1 39.8 (2) C12—C13—N4—C14 −67.3 (2)
C1—C6—C7—N3 44.1 (2) C12—C13—N4—C16 108.1 (2)
C5—C6—C7—N3 −138.58 (17) N4—C14—N5—C15 −0.6 (2)
N2—C8—C9—C10 −4.5 (3) C16—C15—N5—C14 0.2 (2)
N3—C8—C9—C10 174.1 (2) C7—N3—C11—C12 −102.89 (19)
N3—C11—C12—C13 172.00 (15) C6—C7—N3—C11 3.7 (3)
C11—C12—C13—N4 −58.7 (2) C6—C7—N3—C8 177.38 (15)
N5—C15—C16—N4 0.3 (2) N1—C7—N3—C11 −174.85 (15)
N3—C7—N1—N2 0.85 (18) N2—C8—N3—C11 174.88 (15)
C6—C7—N1—N2 −177.79 (14) C9—C8—N3—C11 −3.9 (3)
N3—C8—N2—N1 −0.6 (2) C5—C6—C7—N1 39.8 (2)
C9—C8—N2—N1 178.21 (19) N1—C7—C6—C1 −137.55 (18)
C7—N1—N2—C8 −0.15 (19) N3—C7—C6—C1 44.1 (2)
N2—C8—N3—C7 1.09 (19) N2—C8—C9—C10 −4.5 (3)
C9—C8—N3—C7 −177.73 (19) C10—C9—C8—N3 174.1 (2)
N2—C8—N3—C11 174.88 (15) N4—C13—C12—C11 −58.7 (2)
C9—C8—N3—C11 −3.9 (3) N3—C11—C12—C13 172.00 (15)
N1—C7—N3—C8 −1.19 (18)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1A···O2 0.91 (1) 1.98 (1) 2.882 (3) 172 (3)
O1—H1B···N2i 0.90 (1) 2.02 (1) 2.913 (2) 170 (3)
O2—H2A···N5ii 0.91 (1) 1.95 (1) 2.859 (3) 176 (2)
O2—H2B···O1iii 0.91 (1) 2.08 (2) 2.949 (3) 160 (3)

Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) x−1, y, z; (iii) −x+1, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2213).

References

  1. Dolzhenko, A. V., Tan, G. K., Koh, L. L., Dolzhenko, A. V. & Chui, W. K. (2010). Acta Cryst. E66, o425. [DOI] [PMC free article] [PubMed]
  2. Enraf–Nonius (1994). CAD-4 EXPRESS Enraf–Nonius, Delft, The Netherlands.
  3. Fair, C. K. (1990). MolEN Enraf–Nonius, Delft, The Netherlands.
  4. Kalkan, H., Ustabaş, R., Sancak, K., Ünver, Y. & Vázquez-López, E. M. (2007). Acta Cryst. E63, o2449–o2451.
  5. Köysal, Y., Işık, Ş., Sancak, K. & Ünver, Y. (2006). Acta Cryst. E62, o3907–o3909.
  6. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  7. Ocak Ískeleli, N., Işık, S., Sancak, K., Şaşmaz, S., Ünver, Y. & Er, M. (2005). Acta Cryst. C61, o363–o365. [DOI] [PubMed]
  8. Rizzoli, C., Marku, E. & Greci, L. (2009). Acta Cryst. E65, o663. [DOI] [PMC free article] [PubMed]
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Thenmozhi, M., Kavitha, T., Reddy, B. P., Vijayakumar, V. & Ponnuswamy, M. N. (2010). Acta Cryst. E66, o558. [DOI] [PMC free article] [PubMed]
  11. Ünver, Y., Köysal, Y., Tanak, H., Ünlüer, D. & Işık, Ş. (2010). Acta Cryst. E66, o1294. [DOI] [PMC free article] [PubMed]
  12. Ünver, Y., Sancak, K., Tanak, H., Değirmencioğlu, I., Düğdü, E., Er, M. & Işık, Ş. (2009). J. Mol. Struct.936, 46–55.
  13. Zsolnai, L. (1997). ZORTEP University of Heidelberg, Germany.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053681003936X/jh2213sup1.cif

e-66-o2777-sup1.cif (20.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053681003936X/jh2213Isup2.hkl

e-66-o2777-Isup2.hkl (140.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES