Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Oct 20;66(Pt 11):m1419. doi: 10.1107/S1600536810040857

Poly[[μ10-2,3-bis(carboxymethyl)butanedioato]disodium]

Jiang Wu a, Hong-lin Zhu a,*
PMCID: PMC3008981  PMID: 21588846

Abstract

The asymmetric unit of the title compound, [Na2(C8H8O8)]n, contains one Na+ ion and half of a 2,3-bis(carboxymethyl)butanedioate (H2BTC2−) dianion, which lies on a center of symmetry. The dianion exhibits a μ10-bridging mode. Each Na atom lies in a NaO6 octa­hedron defined by six O atoms from five dianions. Adjacent NaO6 octa­hedra share a common O—O edge, generating a biocta­hedron; adjacent biocta­hedra are O—O edge-connected to one another, building up a chain along [001]. The chains are connected by adjacent H2BTC2− anions into a three-dimensional framework. The structure is further stabilized by O—H⋯O hydrogen bonds.

Related literature

For related structures, see: Delgado et al. (2007); Liu et al. (2008); Wang et al. (2005); Zheng et al. (2004); Zhu & Zheng (2010).graphic file with name e-66-m1419-scheme1.jpg

Experimental

Crystal data

  • [Na2(C8H8O8)]

  • M r = 278.12

  • Orthorhombic, Inline graphic

  • a = 8.9053 (18) Å

  • b = 8.6395 (17) Å

  • c = 12.527 (3) Å

  • V = 963.8 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 293 K

  • 0.44 × 0.36 × 0.32 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995) T min = 0.900, T max = 0.925

  • 8610 measured reflections

  • 1097 independent reflections

  • 1000 reflections with I > 2σ(I)

  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038

  • wR(F 2) = 0.111

  • S = 1.10

  • 1097 reflections

  • 86 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks ptcLa, I. DOI: 10.1107/S1600536810040857/ng5044sup1.cif

e-66-m1419-sup1.cif (14.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810040857/ng5044Isup2.hkl

e-66-m1419-Isup2.hkl (54.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2C⋯O4i 0.85 (2) 1.67 (3) 2.5097 (18) 177 (2)

Symmetry code: (i) Inline graphic.

Acknowledgments

This project was supported by the National Natural Science Foundation of China (grant No. 20072022), the Expert Project of Key Basic Research of the Ministry of Science and Technology of China (grant No. 2003CCA00800), the Science and Technology Department of Zhejiang Province (grant No. 2006 C21105) and the Education Department of Zhejiang Province. Thanks are also extended to the K. C. Wong Magna Fund of Ningbo University.

supplementary crystallographic information

Comment

Recently, the aliphatic multi-carboxylic acids have attractived considerable attention due to both its conformational flexibility and a variety of coordination fashions (Wang et al., 2005; Zheng et al., 2004).The butane-1,2,3,4-tetracarboxylic acid (H4BTC) ligand possesses four ionizable protons that can be removed gradually to form a series of deprotonated anions such as H3BTC-, H2BTC2-, HBTC3-, BTC4-, which have allowed the preparation of a variety of complexes with differents metals (Delgado et al., 2007; Liu et al., 2008; Zhu et al., 2010). In this contribution, we report the synthesis and crystal structure of the title compound.

The asymmetric unit of the title compound contains one Na+ ion and half a H2BTC2- anion(Figure 1). The H2BTC2-ligand is diprotonated, which is crystallographically imposed by symmetry of center with inversion centers at the midpoints of the central C3—C3i bond with the Wyckoff 4b site. Each H2BTC2- anions coordinate ten sodium ions through eight carboxyl oxygen atoms. The carboxylate group and carboxylic group all coordinates to two metal atoms in a syn/anti µ2η2 bridging fashion, and two seven-membered chelating rings are concomitantly formed. Each Na atom is in a distorted octahedra NaO6 gemetry defined by six O atoms from five H2BTC2- ligands, the Na—O contact distances are all within the normal ranges. The adjacent two NaO6 octahedra are fused via common edge O1—O1 and O3—O3, generating a one-dimensional sodium-oxide chains (Figure 2), and the resulting chains are further interlinked by H2BTC2- anions into three-dimensional frameworks (Figure 3).

Experimental

All chemicals were obtained from commerical sources and were used as obtained. NaOH (0.079 g, 1.98 mmol) was added to a stirred mixture solution of butane-1,2,3,4-tetracarboxylic acid (0.1173 g, 0.50 mmol) in 10 ml H2O and 10 ml me thanol, and the resulting mixture was stirred for 5 min. Colorless crystals were obtained from the solution (pH = 7.13) after standing at room temperature for five weeks.

Refinement

H atoms bonded to C atoms were palced in geometrically calculated position and were refined using a riding model, with Uiso(H) = 1.2 Ueq(C). H atoms attached to O atoms were found in a difference Fourier synthesis and refined with the O—H distance restranied to 0.83 (1) Å.

Figures

Fig. 1.

Fig. 1.

The content of asymmetric unit showing the atomic numbering and 45% probability dispalcement ellipsoids.[Symmetry codes: (i) -x + 2, -y + 1, -z + 1. (ii) -x + 2, -y, -z + 1. (iii) -x + 2, y, -z + 1.5. (iv) x - 1/2,y - 1/2, -z + 1.5. (v) x - 1/2, -y + 1/2, -z + 1.]

Fig. 2.

Fig. 2.

The one-dimensional sodium-oxide chains with the common edges O1—O1 and O3—O3.

Fig. 3.

Fig. 3.

The three-dimensional metal-organic framework in the title compound.

Crystal data

[Na2(C8H8O8)] F(000) = 568
Mr = 278.12 Dx = 1.917 Mg m3
Orthorhombic, Pbcn Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2ab Cell parameters from 7116 reflections
a = 8.9053 (18) Å θ = 3.3–27.4°
b = 8.6395 (17) Å µ = 0.24 mm1
c = 12.527 (3) Å T = 293 K
V = 963.8 (3) Å3 Block, colorless
Z = 4 0.44 × 0.36 × 0.32 mm

Data collection

Rigaku R-AXIS RAPID diffractometer 1097 independent reflections
Radiation source: fine-focus sealed tube 1000 reflections with I > 2σ(I)
graphite Rint = 0.021
Detector resolution: 0 pixels mm-1 θmax = 27.4°, θmin = 3.3°
ω scan h = −11→11
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) k = −11→11
Tmin = 0.900, Tmax = 0.925 l = −16→16
8610 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111 H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0658P)2 + 0.5154P] where P = (Fo2 + 2Fc2)/3
1097 reflections (Δ/σ)max < 0.001
86 parameters Δρmax = 0.43 e Å3
1 restraint Δρmin = −0.22 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Na 0.91916 (8) 0.06655 (8) 0.62976 (5) 0.0292 (2)
O1 1.12521 (17) 0.21959 (14) 0.69249 (10) 0.0391 (4)
O2 1.30500 (16) 0.37558 (13) 0.75029 (10) 0.0325 (3)
C1 1.19167 (19) 0.34236 (18) 0.68752 (12) 0.0243 (3)
C2 1.15019 (18) 0.46906 (17) 0.61037 (11) 0.0219 (3)
H2A 1.2386 0.4963 0.5692 0.026*
H2B 1.1207 0.5598 0.6508 0.026*
C3 1.02287 (16) 0.42768 (14) 0.53277 (10) 0.0161 (3)
H3A 0.9358 0.3927 0.5741 0.019*
C4 1.07185 (16) 0.29671 (16) 0.45770 (11) 0.0177 (3)
O3 1.01257 (15) 0.16760 (12) 0.46431 (9) 0.0300 (3)
O4 1.17325 (15) 0.33112 (14) 0.39020 (10) 0.0300 (3)
H2C 1.310 (4) 0.308 (3) 0.7989 (19) 0.088 (11)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Na 0.0336 (4) 0.0244 (4) 0.0296 (4) −0.0038 (3) 0.0023 (3) −0.0031 (2)
O1 0.0481 (8) 0.0278 (7) 0.0415 (7) −0.0062 (6) −0.0172 (6) 0.0104 (5)
O2 0.0432 (7) 0.0262 (6) 0.0282 (6) 0.0011 (5) −0.0177 (5) 0.0041 (5)
C1 0.0305 (8) 0.0216 (7) 0.0208 (7) 0.0046 (6) −0.0054 (6) −0.0007 (5)
C2 0.0278 (7) 0.0185 (7) 0.0194 (7) 0.0020 (6) −0.0054 (6) 0.0003 (5)
C3 0.0208 (7) 0.0137 (6) 0.0138 (6) 0.0032 (5) 0.0005 (5) 0.0002 (5)
C4 0.0212 (7) 0.0160 (6) 0.0159 (6) 0.0039 (5) −0.0012 (5) −0.0008 (5)
O3 0.0448 (7) 0.0166 (5) 0.0286 (6) −0.0050 (5) 0.0081 (5) −0.0041 (4)
O4 0.0340 (6) 0.0247 (6) 0.0314 (6) −0.0026 (5) 0.0148 (5) −0.0082 (5)

Geometric parameters (Å, °)

Na—O4i 2.3748 (15) O2—H2C 0.843 (10)
Na—O1 2.3943 (15) C1—C2 1.506 (2)
Na—O3 2.3978 (13) C2—C3 1.536 (2)
Na—O3ii 2.4188 (13) C2—H2A 0.9700
Na—O2iii 2.4522 (14) C2—H2B 0.9700
Na—O1iv 2.6196 (15) C3—C4 1.5346 (18)
Na—Naiv 3.3388 (14) C3—C3vi 1.550 (2)
Na—Naii 3.7369 (14) C3—H3A 0.9800
O1—C1 1.216 (2) C4—O3 1.2368 (18)
O1—Naiv 2.6196 (15) C4—O4 1.2723 (19)
O2—C1 1.311 (2) O3—Naii 2.4188 (13)
O2—Nav 2.4522 (14) O4—Navii 2.3748 (15)
O4i—Na—O1 122.39 (5) C1—O1—Na 146.90 (11)
O4i—Na—O3 95.36 (5) C1—O1—Naiv 123.86 (11)
O1—Na—O3 79.44 (5) Na—O1—Naiv 83.38 (5)
O4i—Na—O3ii 119.46 (5) C1—O2—Nav 146.49 (11)
O1—Na—O3ii 115.41 (6) C1—O2—H2C 109 (2)
O3—Na—O3ii 78.24 (5) Nav—O2—H2C 90 (2)
O4i—Na—O2iii 86.14 (5) O1—C1—O2 122.32 (14)
O1—Na—O2iii 119.22 (5) O1—C1—C2 123.18 (14)
O3—Na—O2iii 156.69 (5) O2—C1—C2 114.49 (14)
O3ii—Na—O2iii 80.80 (5) C1—C2—C3 114.71 (13)
O4i—Na—O1iv 76.26 (5) C1—C2—H2A 108.6
O1—Na—O1iv 63.76 (7) C3—C2—H2A 108.6
O3—Na—O1iv 127.10 (5) C1—C2—H2B 108.6
O3ii—Na—O1iv 150.95 (5) C3—C2—H2B 108.6
O2iii—Na—O1iv 75.89 (5) H2A—C2—H2B 107.6
O4i—Na—Naiv 119.52 (4) C4—C3—C2 110.47 (11)
O1—Na—Naiv 51.20 (4) C4—C3—C3vi 110.16 (13)
O3—Na—Naiv 129.07 (5) C2—C3—C3vi 109.98 (14)
O3ii—Na—Naiv 109.34 (4) C4—C3—H3A 108.7
O2iii—Na—Naiv 68.03 (4) C2—C3—H3A 108.7
O1iv—Na—Naiv 45.42 (3) C3vi—C3—H3A 108.7
O4i—Na—Naii 112.22 (4) O3—C4—O4 123.93 (13)
O1—Na—Naii 99.22 (5) O3—C4—C3 120.17 (12)
O3—Na—Naii 39.32 (3) O4—C4—C3 115.89 (12)
O3ii—Na—Naii 38.92 (3) C4—O3—Na 122.30 (9)
O2iii—Na—Naii 119.06 (4) C4—O3—Naii 127.90 (10)
O1iv—Na—Naii 162.35 (5) Na—O3—Naii 101.76 (5)
Naiv—Na—Naii 128.23 (4) C4—O4—Navii 144.24 (11)

Symmetry codes: (i) x−1/2, −y+1/2, −z+1; (ii) −x+2, −y, −z+1; (iii) x−1/2, y−1/2, −z+3/2; (iv) −x+2, y, −z+3/2; (v) x+1/2, y+1/2, −z+3/2; (vi) −x+2, −y+1, −z+1; (vii) x+1/2, −y+1/2, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O2—H2C···O4viii 0.85 (2) 1.67 (3) 2.5097 (18) 177 (2)

Symmetry codes: (viii) −x+5/2, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG5044).

References

  1. Delgado, L. C., Fabelo, O., Pasàn, J., Delgado, F. S., Lloret, F., Julve, M. & Ruiz-Pérez, C. (2007). Inorg. Chem.46, 7458–7465. [DOI] [PubMed]
  2. Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  3. Liu, Y. Y., Ma, J. F., Yang, J., Ma, J. C. & Su, Z. M. (2008). CrystEngComm, 10, 894–904.
  4. Rigaku (1998). RAPID-AUTO Rigaku Corporation, Tokyo, Japan.
  5. Rigaku/MSC (2004). CrystalStructure Rigaku/MSC Inc., The Woodlands, Texas, USA.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Wang, M. S., Guo, G. C., Fu, M. L., Xu, L., Cai, L. Z. & Huang, J. S. (2005). J. Chem. Soc. Dalton Trans. pp. 2899–2907. [DOI] [PubMed]
  8. Zheng, Y. Q., Lin, J. L. & Kong, Z. P. (2004). Inorg. Chem.43, 2590–2596. [DOI] [PubMed]
  9. Zhu, H. L. & Zheng, Y. Q. (2010). J. Mol. Struct.970, 27–35.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks ptcLa, I. DOI: 10.1107/S1600536810040857/ng5044sup1.cif

e-66-m1419-sup1.cif (14.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810040857/ng5044Isup2.hkl

e-66-m1419-Isup2.hkl (54.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES