Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Oct 9;66(Pt 11):m1361. doi: 10.1107/S1600536810038973

Bis[4-(4-chloro­benzo­yl)-3-methyl-1-phenyl-1H-pyrazol-5-olato-κ2 O,O′]bis­(methanol-κO)nickel(II)

Xin Zhang a,*, Meng Huang a, Cong Du a, Junjing Han a
PMCID: PMC3008993  PMID: 21588804

Abstract

The mol­ecular structure of the neutral mononuclear title complex, [Ni(C17H12ClN2O2)2(CH3OH)2], is centrosymmetric. The NiII atom, which is located on an inversion center, is in a distorted octahedral coordination, defined by four O atoms from two ligands as well as two O atoms from two methanol mol­ecules. Inter­molecular O—H⋯N hydrogen bonds between the hy­droxy group of methanol and a pyrazole N atom link the mol­ecules, forming a two-dimensional network parallel to (100).

Related literature

For general background to Schiff base compounds in coordin­ation chemistry, see: Harrop et al. (2003); Yu et al. (1993); Wu et al. (1993). For the anti­bacterial properties of Schiff bases derived from 4-acyl-5-pyrazolo­nes and their metal complexes, see: Li et al. (1997, 2004).graphic file with name e-66-m1361-scheme1.jpg

Experimental

Crystal data

  • [Ni(C17H12ClN2O2)2(CH4O)2]

  • M r = 746.27

  • Monoclinic, Inline graphic

  • a = 11.8398 (7) Å

  • b = 12.3162 (7) Å

  • c = 13.2104 (8) Å

  • β = 114.706 (1)°

  • V = 1750.03 (18) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.76 mm−1

  • T = 296 K

  • 0.24 × 0.22 × 0.18 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999) T min = 0.834, T max = 0.872

  • 8808 measured reflections

  • 3089 independent reflections

  • 2534 reflections with I > 2σ(I)

  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034

  • wR(F 2) = 0.094

  • S = 1.03

  • 3089 reflections

  • 225 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.34 e Å−3

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810038973/bh2312sup1.cif

e-66-m1361-sup1.cif (19.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810038973/bh2312Isup2.hkl

e-66-m1361-Isup2.hkl (151.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯N2i 0.85 2.00 2.795 (2) 156

Symmetry code: (i) Inline graphic.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 20771083).

supplementary crystallographic information

Comment

In recent years, Schiff base complexes with metals have generated a wide interest because they possess a large spectrum of biological, pharmaceutical and catalytic properties, such as antitumor and antioxidative activities, as well as the inhibition of lipid peroxidation, among others (Harrop et al., 2003; Yu et al., 1993; Wu et al., 1993). The Schiff bases derived from 4-acyl-5-pyrazolones and their metal complexes have also been widely studied for their high antibacterial activity (Li et al., 1997, 2004). In this paper, we report the synthesis and crystal structure of the title compound, (I), containing a β-ketoamine ligand with organic chlorine, based on a pyrazolone derivative.

The molecular structure of (I) reveals a neutral centrosymmetric mononuclear complex, with the asymmetric unit comprising a half molecule (Fig. 1). The distorted octahedral NiII center, which locates on a crystallographic inversion center, is coordinated to four O donors from a couple of ligands, and two O atoms from two methanol molecules. The equatorial Ni—O bond lengths are comparable with an average value of 2.0345 (6) Å, which are significantly shorter than that of the axial Ni—O distance of 2.0651 (16) Å. The cis bond angles around the NiII center range from 88.47 (7) to 91.53 (7)°. Intermolecular hydrogen bonds (Table 1) link the molecules together, forming a two-dimensional network (Fig. 2).

Experimental

A mixture of Ni(OAc)2.4H2O (24.8 mg, 0.10 mmol), 4(Z)-4-((4-chlorophenyl)(hydroxy)methylene)-3-methyl-1-phenyl-1H-pyrazol-5(4H)-one (62.6 mg, 0.20 mmol) and methanol (12 ml) was heated at 433 K for 2 days in a sealed Teflon-lined stainless steel vessel (20 mL) under autogenous pressure. After the reaction system was slowly cooled down to the room temperature, it was placed to stand at room temperature for a period of four weeks, affording green block crystals in 60% yield.

Refinement

Although all H atoms were visible in difference maps, they were placed in geometrically calculated positions, with C—H distances in the range 0.93–0.96 Å, and O—H = 0.85 Å. Isotropic displacement parameters were calculated as Uiso(H)=1.2 or 1.5Ueq(carrier atom).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), with anisotropic displacement ellipsoids drawn at the 30° probability level. [Symmetry code:(i)1-x,-y,-z.]

Fig. 2.

Fig. 2.

The two-dimensional supra-molecular network of (I) produced by the inter-molecular O-H···N weak hydrogen-bonding interactions.

Crystal data

[Ni(C17H12ClN2O2)2(CH4O)2] F(000) = 772
Mr = 746.27 Dx = 1.416 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 3041 reflections
a = 11.8398 (7) Å θ = 2.4–25.4°
b = 12.3162 (7) Å µ = 0.76 mm1
c = 13.2104 (8) Å T = 296 K
β = 114.706 (1)° Block, green
V = 1750.03 (18) Å3 0.24 × 0.22 × 0.18 mm
Z = 2

Data collection

Bruker SMART CCD area-detector diffractometer 3089 independent reflections
Radiation source: fine-focus sealed tube 2534 reflections with I > 2σ(I)
graphite Rint = 0.021
φ and ω scans θmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 1999) h = −14→8
Tmin = 0.834, Tmax = 0.872 k = −14→14
8808 measured reflections l = −15→15

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0466P)2 + 0.7427P] where P = (Fo2 + 2Fc2)/3
3089 reflections (Δ/σ)max < 0.001
225 parameters Δρmax = 0.37 e Å3
0 restraints Δρmin = −0.34 e Å3
0 constraints

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ni1 0.5000 0.0000 0.0000 0.03539 (14)
Cl1 0.04928 (8) 0.55881 (7) −0.33203 (7) 0.0790 (3)
O1 0.39759 (15) 0.13217 (12) −0.07861 (12) 0.0421 (4)
O2 0.61693 (14) 0.09579 (12) 0.12531 (12) 0.0423 (4)
O3 0.39208 (16) −0.01739 (13) 0.08784 (14) 0.0476 (4)
H3A 0.3970 −0.0784 0.1196 0.071*
C1 0.1856 (2) 0.2801 (2) −0.1767 (2) 0.0613 (7)
H1 0.1567 0.2100 −0.1765 0.074*
C2 0.1060 (3) 0.3578 (2) −0.2451 (3) 0.0667 (8)
H2 0.0234 0.3406 −0.2893 0.080*
C3 0.1491 (3) 0.4595 (2) −0.2474 (2) 0.0529 (6)
C4 0.2709 (3) 0.4855 (2) −0.1845 (2) 0.0609 (8)
H4 0.3006 0.5545 −0.1887 0.073*
C5 0.3491 (2) 0.4082 (2) −0.1151 (2) 0.0553 (7)
H5 0.4317 0.4258 −0.0716 0.066*
C6 0.3072 (2) 0.30524 (18) −0.10879 (18) 0.0407 (5)
C7 0.3925 (2) 0.22122 (17) −0.03395 (18) 0.0379 (5)
C8 0.4653 (2) 0.24382 (18) 0.08010 (18) 0.0403 (5)
C9 0.4556 (2) 0.32600 (19) 0.1533 (2) 0.0457 (6)
N2 0.54567 (19) 0.31717 (16) 0.25322 (17) 0.0483 (5)
N1 0.61951 (18) 0.22984 (15) 0.24962 (15) 0.0427 (5)
C11 0.5709 (2) 0.17991 (17) 0.14723 (18) 0.0376 (5)
C10 0.3568 (3) 0.4093 (2) 0.1350 (2) 0.0698 (9)
H10A 0.3632 0.4354 0.2056 0.105*
H10B 0.2764 0.3771 0.0947 0.105*
H10C 0.3674 0.4687 0.0928 0.105*
C12 0.7225 (2) 0.19863 (18) 0.34771 (19) 0.0429 (6)
C13 0.7201 (3) 0.2167 (2) 0.4506 (2) 0.0538 (7)
H13 0.6501 0.2468 0.4548 0.065*
C14 0.8222 (3) 0.1898 (2) 0.5459 (2) 0.0695 (9)
H14 0.8211 0.2023 0.6149 0.083*
C15 0.9255 (3) 0.1449 (3) 0.5412 (2) 0.0766 (10)
H15 0.9942 0.1273 0.6063 0.092*
C16 0.9266 (3) 0.1260 (3) 0.4383 (3) 0.0714 (9)
H16 0.9963 0.0949 0.4345 0.086*
C17 0.8256 (2) 0.1529 (2) 0.3416 (2) 0.0543 (7)
H17 0.8270 0.1402 0.2727 0.065*
C20 0.2607 (3) −0.0031 (2) 0.0339 (3) 0.0652 (8)
H20A 0.2394 0.0676 0.0512 0.098*
H20B 0.2207 −0.0576 0.0595 0.098*
H20C 0.2335 −0.0097 −0.0452 0.098*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ni1 0.0489 (3) 0.0260 (2) 0.0311 (2) 0.00240 (17) 0.01650 (18) −0.00093 (16)
Cl1 0.0751 (5) 0.0799 (6) 0.0691 (5) 0.0358 (4) 0.0176 (4) 0.0205 (4)
O1 0.0575 (10) 0.0310 (8) 0.0355 (8) 0.0043 (7) 0.0170 (7) −0.0009 (7)
O2 0.0486 (9) 0.0340 (8) 0.0383 (9) 0.0065 (7) 0.0124 (7) −0.0067 (7)
O3 0.0580 (11) 0.0439 (10) 0.0459 (10) 0.0027 (8) 0.0266 (8) 0.0103 (7)
C1 0.0505 (16) 0.0468 (16) 0.0721 (19) −0.0082 (12) 0.0114 (14) 0.0034 (13)
C2 0.0428 (15) 0.067 (2) 0.0699 (19) −0.0032 (13) 0.0034 (14) 0.0038 (15)
C3 0.0528 (16) 0.0539 (16) 0.0483 (15) 0.0150 (13) 0.0173 (13) 0.0065 (12)
C4 0.0630 (18) 0.0404 (15) 0.0701 (19) 0.0015 (12) 0.0187 (15) 0.0158 (13)
C5 0.0474 (15) 0.0422 (14) 0.0627 (17) −0.0024 (12) 0.0096 (13) 0.0075 (12)
C6 0.0470 (14) 0.0345 (12) 0.0400 (13) 0.0002 (10) 0.0175 (11) −0.0025 (10)
C7 0.0440 (13) 0.0309 (12) 0.0397 (12) −0.0017 (9) 0.0186 (10) 0.0005 (9)
C8 0.0500 (14) 0.0307 (12) 0.0375 (12) 0.0033 (10) 0.0155 (11) −0.0027 (10)
C9 0.0525 (15) 0.0374 (13) 0.0437 (13) 0.0047 (11) 0.0165 (12) −0.0054 (11)
N2 0.0574 (13) 0.0392 (11) 0.0458 (12) 0.0072 (9) 0.0191 (10) −0.0108 (9)
N1 0.0508 (12) 0.0353 (10) 0.0380 (10) 0.0050 (9) 0.0147 (9) −0.0063 (8)
C11 0.0464 (13) 0.0319 (11) 0.0348 (12) −0.0017 (10) 0.0174 (10) −0.0035 (9)
C10 0.080 (2) 0.0624 (18) 0.0577 (18) 0.0262 (16) 0.0197 (16) −0.0109 (14)
C12 0.0522 (14) 0.0317 (12) 0.0372 (12) −0.0025 (10) 0.0112 (11) −0.0012 (10)
C13 0.0681 (18) 0.0466 (15) 0.0426 (14) 0.0009 (13) 0.0192 (13) −0.0045 (11)
C14 0.099 (2) 0.0566 (18) 0.0400 (15) 0.0049 (17) 0.0166 (16) −0.0028 (13)
C15 0.084 (2) 0.065 (2) 0.0479 (17) 0.0118 (17) −0.0044 (16) −0.0003 (14)
C16 0.0635 (19) 0.072 (2) 0.0637 (19) 0.0156 (16) 0.0115 (15) 0.0039 (16)
C17 0.0572 (16) 0.0520 (16) 0.0481 (15) 0.0063 (13) 0.0166 (13) 0.0006 (12)
C20 0.0612 (19) 0.0661 (19) 0.079 (2) 0.0106 (14) 0.0405 (16) 0.0183 (15)

Geometric parameters (Å, °)

Ni1—O2 2.0330 (15) C8—C9 1.438 (3)
Ni1—O2i 2.0330 (15) C9—N2 1.309 (3)
Ni1—O1 2.0361 (15) C9—C10 1.497 (3)
Ni1—O1i 2.0361 (15) N2—N1 1.399 (3)
Ni1—O3i 2.0651 (16) N1—C11 1.374 (3)
Ni1—O3 2.0651 (16) N1—C12 1.411 (3)
Cl1—C3 1.744 (3) C10—H10A 0.9600
O1—C7 1.259 (3) C10—H10B 0.9600
O2—C11 1.259 (3) C10—H10C 0.9600
O3—C20 1.425 (3) C12—C17 1.378 (3)
O3—H3A 0.8505 C12—C13 1.389 (3)
C1—C6 1.376 (3) C13—C14 1.373 (4)
C1—C2 1.382 (4) C13—H13 0.9300
C1—H1 0.9300 C14—C15 1.367 (4)
C2—C3 1.357 (4) C14—H14 0.9300
C2—H2 0.9300 C15—C16 1.385 (4)
C3—C4 1.368 (4) C15—H15 0.9300
C4—C5 1.377 (4) C16—C17 1.376 (4)
C4—H4 0.9300 C16—H16 0.9300
C5—C6 1.376 (3) C17—H17 0.9300
C5—H5 0.9300 C20—H20A 0.9600
C6—C7 1.494 (3) C20—H20B 0.9600
C7—C8 1.416 (3) C20—H20C 0.9600
C8—C11 1.429 (3)
O2—Ni1—O2i 180.00 (10) C7—C8—C9 132.1 (2)
O2—Ni1—O1 90.52 (6) C11—C8—C9 105.41 (19)
O2i—Ni1—O1 89.48 (6) N2—C9—C8 111.0 (2)
O2—Ni1—O1i 89.48 (6) N2—C9—C10 118.2 (2)
O2i—Ni1—O1i 90.52 (6) C8—C9—C10 130.6 (2)
O1—Ni1—O1i 180.00 (5) C9—N2—N1 106.68 (18)
O2—Ni1—O3i 91.53 (7) C11—N1—N2 111.53 (18)
O2i—Ni1—O3i 88.47 (7) C11—N1—C12 128.86 (19)
O1—Ni1—O3i 90.39 (6) N2—N1—C12 119.36 (18)
O1i—Ni1—O3i 89.61 (6) O2—C11—N1 123.5 (2)
O2—Ni1—O3 88.47 (7) O2—C11—C8 131.4 (2)
O2i—Ni1—O3 91.53 (7) N1—C11—C8 105.20 (18)
O1—Ni1—O3 89.61 (6) C9—C10—H10A 109.5
O1i—Ni1—O3 90.39 (6) C9—C10—H10B 109.5
O3i—Ni1—O3 180.00 (6) H10A—C10—H10B 109.5
C7—O1—Ni1 126.33 (14) C9—C10—H10C 109.5
C11—O2—Ni1 116.87 (14) H10A—C10—H10C 109.5
C20—O3—Ni1 120.58 (16) H10B—C10—H10C 109.5
C20—O3—H3A 101.0 C17—C12—C13 120.3 (2)
Ni1—O3—H3A 116.0 C17—C12—N1 120.3 (2)
C6—C1—C2 120.9 (3) C13—C12—N1 119.4 (2)
C6—C1—H1 119.6 C14—C13—C12 119.2 (3)
C2—C1—H1 119.6 C14—C13—H13 120.4
C3—C2—C1 119.5 (3) C12—C13—H13 120.4
C3—C2—H2 120.2 C15—C14—C13 121.1 (3)
C1—C2—H2 120.2 C15—C14—H14 119.4
C2—C3—C4 120.9 (2) C13—C14—H14 119.4
C2—C3—Cl1 120.0 (2) C14—C15—C16 119.3 (3)
C4—C3—Cl1 119.0 (2) C14—C15—H15 120.4
C3—C4—C5 119.1 (2) C16—C15—H15 120.4
C3—C4—H4 120.4 C17—C16—C15 120.6 (3)
C5—C4—H4 120.4 C17—C16—H16 119.7
C6—C5—C4 121.3 (2) C15—C16—H16 119.7
C6—C5—H5 119.4 C16—C17—C12 119.4 (3)
C4—C5—H5 119.4 C16—C17—H17 120.3
C5—C6—C1 118.2 (2) C12—C17—H17 120.3
C5—C6—C7 121.1 (2) O3—C20—H20A 109.5
C1—C6—C7 120.6 (2) O3—C20—H20B 109.5
O1—C7—C8 122.9 (2) H20A—C20—H20B 109.5
O1—C7—C6 116.40 (19) O3—C20—H20C 109.5
C8—C7—C6 120.69 (19) H20A—C20—H20C 109.5
C7—C8—C11 122.5 (2) H20B—C20—H20C 109.5
O2—Ni1—O1—C7 −22.71 (18) C6—C7—C8—C9 18.3 (4)
O2i—Ni1—O1—C7 157.29 (18) C7—C8—C9—N2 −179.0 (2)
O3i—Ni1—O1—C7 −114.24 (18) C11—C8—C9—N2 1.7 (3)
O3—Ni1—O1—C7 65.76 (18) C7—C8—C9—C10 6.5 (5)
O1—Ni1—O2—C11 30.69 (16) C11—C8—C9—C10 −172.8 (3)
O1i—Ni1—O2—C11 −149.31 (16) C8—C9—N2—N1 0.8 (3)
O3i—Ni1—O2—C11 121.10 (16) C10—C9—N2—N1 176.1 (2)
O3—Ni1—O2—C11 −58.90 (16) C9—N2—N1—C11 −3.2 (3)
O2—Ni1—O3—C20 132.23 (18) C9—N2—N1—C12 −177.8 (2)
O2i—Ni1—O3—C20 −47.77 (18) Ni1—O2—C11—N1 155.00 (18)
O1—Ni1—O3—C20 41.70 (18) Ni1—O2—C11—C8 −25.3 (3)
O1i—Ni1—O3—C20 −138.30 (18) N2—N1—C11—O2 −176.1 (2)
C6—C1—C2—C3 1.6 (5) C12—N1—C11—O2 −2.0 (4)
C1—C2—C3—C4 1.3 (5) N2—N1—C11—C8 4.1 (3)
C1—C2—C3—Cl1 −179.2 (2) C12—N1—C11—C8 178.1 (2)
C2—C3—C4—C5 −2.5 (5) C7—C8—C11—O2 −2.6 (4)
Cl1—C3—C4—C5 178.1 (2) C9—C8—C11—O2 176.8 (2)
C3—C4—C5—C6 0.7 (5) C7—C8—C11—N1 177.1 (2)
C4—C5—C6—C1 2.1 (4) C9—C8—C11—N1 −3.4 (3)
C4—C5—C6—C7 179.5 (3) C11—N1—C12—C17 36.5 (4)
C2—C1—C6—C5 −3.3 (4) N2—N1—C12—C17 −149.9 (2)
C2—C1—C6—C7 179.3 (3) C11—N1—C12—C13 −145.0 (2)
Ni1—O1—C7—C8 3.6 (3) N2—N1—C12—C13 28.7 (3)
Ni1—O1—C7—C6 −178.18 (14) C17—C12—C13—C14 0.8 (4)
C5—C6—C7—O1 −126.5 (2) N1—C12—C13—C14 −177.7 (2)
C1—C6—C7—O1 50.9 (3) C12—C13—C14—C15 −0.4 (4)
C5—C6—C7—C8 51.8 (3) C13—C14—C15—C16 −0.3 (5)
C1—C6—C7—C8 −130.8 (3) C14—C15—C16—C17 0.6 (5)
O1—C7—C8—C11 15.7 (4) C15—C16—C17—C12 −0.2 (5)
C6—C7—C8—C11 −162.5 (2) C13—C12—C17—C16 −0.5 (4)
O1—C7—C8—C9 −163.6 (2) N1—C12—C17—C16 178.0 (3)

Symmetry codes: (i) −x+1, −y, −z.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O3—H3A···N2ii 0.85 2.00 2.795 (2) 156

Symmetry codes: (ii) −x+1, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2312).

References

  1. Bruker (1999). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Harrop, T. C., Olmstead, M. M. & Mascharak, P. K. (2003). Chem. Commun. pp. 410–411. [DOI] [PubMed]
  3. Li, J.-Z., Jiang, L. & An, Y.-M. (2004). Chin. J. Appl. Chem.21, 150–153.
  4. Li, J.-Z., Yu, W.-J. & Du, X.-Y. (1997). Chin. J. Appl. Chem.14, 98–100.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Wu, J. G., Deng, R. W. & Chen, Z. N. (1993). Transition Met. Chem.18, 23–26.
  7. Yu, S. Y. , Wang, S. X., Luo, Q. H., Wang, L. F, Peng, Z. R. & Gao, X. (1993). Polyhedron, 12, 1093–1096.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810038973/bh2312sup1.cif

e-66-m1361-sup1.cif (19.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810038973/bh2312Isup2.hkl

e-66-m1361-Isup2.hkl (151.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES