Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Oct 23;66(Pt 11):o2921. doi: 10.1107/S1600536810042042

5-Chloro-2-hy­droxy­benzoic acid

Abdul Rauf Raza a, Bushra Nisar a, M Nawaz Tahir b,*, Ahmad Raza a
PMCID: PMC3008994  PMID: 21589095

Abstract

The asymmetric unit of the title compound, C7H5ClO3, contains two mol­ecules; both feature an intra­molecular O—H⋯O hydrogen bond, which generates an S(6) ring. In the crystal, both mol­ecules form inversion dimers linked by pairs of O—H⋯O hydrogen bonds with R 2 2(8) ring motifs. The dimers are inter­linked by C—H⋯O inter­actions.

Related literature

For biological background, see: Bright et al. (2010): Fattorusso et al. (2005); Miki et al. (2002). For a related structure, see: Raza et al. (2010). For graph-set notation, see: Bernstein et al. (1995).graphic file with name e-66-o2921-scheme1.jpg

Experimental

Crystal data

  • C7H5ClO3

  • M r = 172.56

  • Monoclinic, Inline graphic

  • a = 23.526 (2) Å

  • b = 3.7972 (4) Å

  • c = 16.7321 (16) Å

  • β = 104.852 (5)°

  • V = 1444.8 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.48 mm−1

  • T = 296 K

  • 0.34 × 0.12 × 0.10 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.879, T max = 0.888

  • 14048 measured reflections

  • 3697 independent reflections

  • 2444 reflections with I > 2σ(I)

  • R int = 0.047

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042

  • wR(F 2) = 0.138

  • S = 1.03

  • 3697 reflections

  • 211 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.50 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810042042/hb5691sup1.cif

e-66-o2921-sup1.cif (17.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810042042/hb5691Isup2.hkl

e-66-o2921-Isup2.hkl (177.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.83 (3) 1.88 (3) 2.710 (2) 171 (3)
O3—H3⋯O2 0.80 (3) 1.92 (3) 2.620 (2) 146 (3)
O4—H4A⋯O5ii 0.93 (3) 1.76 (3) 2.694 (2) 175 (2)
O6—H6⋯O5 0.87 (3) 1.80 (3) 2.606 (2) 154 (3)
C5—H5⋯O6iii 0.93 2.55 3.311 (3) 139

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors acknowledge the provision of funds for the purchase of the diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan. ARR also acknowledges the Higher Education Commission, Government of Pakistan, for generous support of a research project (20–819).

supplementary crystallographic information

Comment

The benzoxazepines have a plethora of biological activities ranging from anti-inflammatory effect (Miki et al., 2002) to degenerative diseases like AIDS (Fattorusso et al., 2005) and cancer (Bright et al., 2010). Salicylic acid is an attractive substrate for the synthesis of 4,1-benzoxazepine. The objective of this work is to synthesize a variety of substituted salicylic acid derivatives as precursors for the asymmetric synthesis of 4,1-benzoxazepines by chiral-pool strategy.

We have reported the crystal structure of 2-methylamino-5-nitrobenzoic acid (Raza et al., 2010) and in continuation to synthesize substituted benzoic acid, the title compound (I, Fig. 1) is being reported.

The title compound consists of two molecules in the crystallographic asymmetric unit which differ from each other geometrically. Both molecules, A (C1—C7/O1/O2/O3/CL1) and B (C8—C14/O4/O5/O6/CL2) are close to planar with r. m. s deviations of 0.023 and 0.007 Å, respectively. The dihedral angle between A/B is 1.77 (4)°. In each molecule, there exists an S(6) ring motif (Bernstein et al., 1995) due to intramolecular H-bonding of O—H···O type (Table 1, Fig. 1). The molecules form dimers with themselves due to intermolecular H-bondings of O—H···O type (Table 1, Fig. 2) with R22(8) ring motifs. These dimers are interlinked with each other due to H-bonding of C—H···O type (Fig. 2).

Experimental

A solution of Cu2Cl2 (3.46 g, 0.0375 mol) in HCl (10 ml) was added as drops to the diazonium salt of 5-amino-2-hydroxybenzioc acid (3.825 g, 0.025 mol), which was prepared by adding ice chilled aqueous solution of NaNO2 (2.58 g, 0.0375 mol) to the solution of 5-amino-2-hydroxybenzoic acid in EtOAc and H2SO4 (2.8 ml, 4.9 g, 0.05 mol). The temperature of the reaction mixture was controlled below 268 K. After the complete addition of Cu2Cl2, the reaction mixture was refluxed for one hour, cooled to room temperature, neutralized with aqueous NaHCO3 (10%) and extracted with EtOAc (3 × 25 ml). The organic layer was combined, dried over anhydrous Na2SO4, filtered, concentrated under reduced pressure and left for 48 h to afford light yellow needles of (I).

Refinement

The coordinates of hydroxy H-atoms are refined. The aryl H-atoms were positioned geometrically with (C—H = 0.93 Å) and refined as riding with Uiso(H) = xUeq(C, O), where x = 1.2 for all H atoms.

Figures

Fig. 1.

Fig. 1.

View of the title compound with displacement ellipsoids drawn at the 50% probability level. H-atoms are shown by small circles of arbitrary radius. The dotted lines indicate the intramolecular H-bonds.

Fig. 2.

Fig. 2.

The partial packing (PLATON; Spek, 2009) which shows that molecules form dimers and are interlinked.

Crystal data

C7H5ClO3 F(000) = 704
Mr = 172.56 Dx = 1.587 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 931 reflections
a = 23.526 (2) Å θ = 2.8–26.0°
b = 3.7972 (4) Å µ = 0.48 mm1
c = 16.7321 (16) Å T = 296 K
β = 104.852 (5)° Needle, light yellow
V = 1444.8 (2) Å3 0.34 × 0.12 × 0.10 mm
Z = 8

Data collection

Bruker Kappa APEXII CCD diffractometer 3697 independent reflections
Radiation source: fine-focus sealed tube 2444 reflections with I > 2σ(I)
graphite Rint = 0.047
Detector resolution: 7.40 pixels mm-1 θmax = 28.7°, θmin = 3.6°
ω scans h = −31→31
Absorption correction: multi-scan (SADABS; Bruker, 2005) k = −4→5
Tmin = 0.879, Tmax = 0.888 l = −22→22
14048 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138 H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.073P)2] where P = (Fo2 + 2Fc2)/3
3697 reflections (Δ/σ)max < 0.001
211 parameters Δρmax = 0.38 e Å3
0 restraints Δρmin = −0.50 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.37512 (3) 0.69966 (16) 0.07736 (3) 0.0501 (2)
O1 0.49060 (7) 0.6286 (5) 0.38781 (10) 0.0531 (6)
O2 0.43512 (7) 0.3536 (5) 0.45885 (9) 0.0497 (5)
O3 0.32656 (7) 0.1864 (5) 0.38353 (10) 0.0504 (6)
C1 0.44188 (9) 0.4711 (6) 0.39317 (12) 0.0372 (6)
C2 0.39581 (8) 0.4495 (5) 0.31555 (11) 0.0325 (6)
C3 0.34043 (9) 0.3106 (5) 0.31526 (13) 0.0363 (6)
C4 0.29691 (10) 0.3000 (6) 0.24180 (14) 0.0427 (7)
C5 0.30768 (9) 0.4181 (6) 0.16973 (13) 0.0425 (7)
C6 0.36245 (9) 0.5504 (5) 0.16965 (12) 0.0359 (6)
C7 0.40631 (9) 0.5677 (5) 0.24125 (12) 0.0355 (6)
Cl2 0.13798 (3) 0.73267 (17) 0.21674 (4) 0.0624 (3)
O4 0.01191 (7) 0.1719 (5) 0.39980 (11) 0.0604 (6)
O5 0.06701 (7) 0.1273 (5) 0.52956 (10) 0.0553 (6)
O6 0.17545 (7) 0.3485 (5) 0.56545 (10) 0.0538 (6)
C8 0.06128 (9) 0.2160 (6) 0.45705 (14) 0.0402 (7)
C9 0.10935 (9) 0.3749 (5) 0.42825 (12) 0.0349 (6)
C10 0.16403 (9) 0.4322 (6) 0.48436 (13) 0.0383 (7)
C11 0.20911 (9) 0.5788 (6) 0.45616 (14) 0.0447 (7)
C12 0.20146 (10) 0.6683 (6) 0.37478 (15) 0.0453 (8)
C13 0.14736 (10) 0.6137 (6) 0.31970 (13) 0.0413 (7)
C14 0.10148 (9) 0.4679 (6) 0.34525 (13) 0.0397 (7)
H1 0.5163 (12) 0.635 (7) 0.4326 (18) 0.0636*
H3 0.3557 (12) 0.189 (7) 0.4210 (18) 0.0604*
H4 0.25996 0.21164 0.24137 0.0512*
H5 0.27810 0.40924 0.12074 0.0510*
H7 0.44297 0.65761 0.24065 0.0425*
H4A −0.0156 (12) 0.058 (8) 0.4222 (16) 0.0725*
H6 0.1424 (13) 0.258 (7) 0.5696 (19) 0.0646*
H11 0.24542 0.61752 0.49328 0.0536*
H12 0.23233 0.76478 0.35677 0.0543*
H14 0.06536 0.43138 0.30750 0.0476*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0588 (4) 0.0597 (4) 0.0332 (3) −0.0012 (3) 0.0142 (3) 0.0039 (2)
O1 0.0349 (9) 0.0858 (13) 0.0354 (9) −0.0154 (8) 0.0034 (7) 0.0057 (8)
O2 0.0443 (9) 0.0749 (11) 0.0300 (8) −0.0096 (8) 0.0096 (7) 0.0028 (7)
O3 0.0427 (10) 0.0719 (11) 0.0399 (9) −0.0131 (8) 0.0167 (7) 0.0048 (8)
C1 0.0340 (11) 0.0433 (12) 0.0359 (10) −0.0004 (9) 0.0119 (9) −0.0002 (9)
C2 0.0314 (10) 0.0349 (10) 0.0318 (10) 0.0006 (8) 0.0092 (8) −0.0018 (8)
C3 0.0356 (11) 0.0370 (11) 0.0395 (11) −0.0004 (9) 0.0153 (9) −0.0010 (8)
C4 0.0324 (11) 0.0477 (13) 0.0473 (13) −0.0058 (9) 0.0091 (10) −0.0004 (9)
C5 0.0358 (12) 0.0474 (13) 0.0405 (12) −0.0017 (10) 0.0028 (9) −0.0011 (9)
C6 0.0408 (11) 0.0353 (10) 0.0319 (10) 0.0017 (9) 0.0098 (9) −0.0008 (8)
C7 0.0331 (11) 0.0386 (11) 0.0358 (10) −0.0009 (9) 0.0109 (8) −0.0028 (8)
Cl2 0.0825 (5) 0.0671 (5) 0.0442 (3) −0.0108 (3) 0.0284 (3) 0.0069 (3)
O4 0.0345 (9) 0.0962 (14) 0.0511 (10) −0.0143 (9) 0.0121 (8) 0.0148 (9)
O5 0.0414 (9) 0.0852 (13) 0.0429 (9) −0.0100 (8) 0.0173 (7) 0.0136 (8)
O6 0.0402 (9) 0.0821 (12) 0.0387 (9) −0.0076 (9) 0.0093 (7) 0.0030 (8)
C8 0.0313 (11) 0.0481 (13) 0.0447 (12) 0.0001 (9) 0.0159 (10) 0.0023 (9)
C9 0.0326 (11) 0.0374 (11) 0.0386 (11) 0.0008 (9) 0.0163 (9) 0.0002 (8)
C10 0.0357 (11) 0.0429 (12) 0.0378 (11) 0.0017 (9) 0.0123 (9) −0.0023 (9)
C11 0.0317 (11) 0.0528 (14) 0.0499 (13) −0.0065 (10) 0.0113 (10) −0.0034 (10)
C12 0.0413 (13) 0.0420 (12) 0.0597 (15) −0.0090 (10) 0.0261 (11) −0.0056 (10)
C13 0.0517 (14) 0.0385 (11) 0.0400 (11) −0.0019 (10) 0.0230 (10) −0.0004 (9)
C14 0.0374 (11) 0.0450 (12) 0.0386 (11) −0.0018 (9) 0.0130 (9) 0.0005 (9)

Geometric parameters (Å, °)

Cl1—C6 1.741 (2) C4—C5 1.370 (3)
Cl2—C13 1.740 (2) C5—C6 1.383 (3)
O1—C1 1.316 (3) C6—C7 1.368 (3)
O2—C1 1.234 (3) C4—H4 0.9300
O3—C3 1.351 (3) C5—H5 0.9300
O1—H1 0.83 (3) C7—H7 0.9300
O3—H3 0.80 (3) C8—C9 1.468 (3)
O4—C8 1.313 (3) C9—C14 1.399 (3)
O5—C8 1.233 (3) C9—C10 1.402 (3)
O6—C10 1.352 (3) C10—C11 1.383 (3)
O4—H4A 0.93 (3) C11—C12 1.370 (3)
O6—H6 0.87 (3) C12—C13 1.382 (3)
C1—C2 1.465 (3) C13—C14 1.375 (3)
C2—C7 1.402 (3) C11—H11 0.9300
C2—C3 1.404 (3) C12—H12 0.9300
C3—C4 1.384 (3) C14—H14 0.9300
C1—O1—H1 113.3 (19) C6—C7—H7 120.00
C3—O3—H3 108 (2) C2—C7—H7 120.00
C8—O4—H4A 109.9 (16) O5—C8—C9 122.4 (2)
C10—O6—H6 103 (2) O4—C8—C9 115.14 (19)
O1—C1—C2 115.11 (17) O4—C8—O5 122.4 (2)
O2—C1—C2 122.3 (2) C8—C9—C14 120.85 (19)
O1—C1—O2 122.58 (19) C8—C9—C10 119.74 (18)
C1—C2—C7 120.64 (18) C10—C9—C14 119.4 (2)
C3—C2—C7 119.43 (18) O6—C10—C11 117.7 (2)
C1—C2—C3 119.93 (17) O6—C10—C9 123.2 (2)
C2—C3—C4 119.24 (19) C9—C10—C11 119.09 (19)
O3—C3—C4 117.2 (2) C10—C11—C12 121.5 (2)
O3—C3—C2 123.58 (19) C11—C12—C13 119.3 (2)
C3—C4—C5 120.7 (2) Cl2—C13—C12 118.86 (18)
C4—C5—C6 120.2 (2) Cl2—C13—C14 120.14 (17)
Cl1—C6—C7 119.94 (17) C12—C13—C14 121.0 (2)
C5—C6—C7 120.69 (19) C9—C14—C13 119.7 (2)
Cl1—C6—C5 119.37 (16) C10—C11—H11 119.00
C2—C7—C6 119.77 (19) C12—C11—H11 119.00
C5—C4—H4 120.00 C11—C12—H12 120.00
C3—C4—H4 120.00 C13—C12—H12 120.00
C4—C5—H5 120.00 C9—C14—H14 120.00
C6—C5—H5 120.00 C13—C14—H14 120.00
O1—C1—C2—C3 −175.24 (19) O4—C8—C9—C10 −179.8 (2)
O1—C1—C2—C7 4.5 (3) O4—C8—C9—C14 −0.2 (3)
O2—C1—C2—C3 4.0 (3) O5—C8—C9—C10 −0.4 (3)
O2—C1—C2—C7 −176.3 (2) O5—C8—C9—C14 179.1 (2)
C1—C2—C3—O3 −1.1 (3) C8—C9—C10—O6 −0.1 (3)
C1—C2—C3—C4 178.4 (2) C8—C9—C10—C11 179.3 (2)
C7—C2—C3—O3 179.12 (19) C14—C9—C10—O6 −179.7 (2)
C7—C2—C3—C4 −1.3 (3) C14—C9—C10—C11 −0.2 (3)
C1—C2—C7—C6 −178.98 (19) C8—C9—C14—C13 −179.5 (2)
C3—C2—C7—C6 0.8 (3) C10—C9—C14—C13 0.1 (3)
O3—C3—C4—C5 −179.4 (2) O6—C10—C11—C12 179.4 (2)
C2—C3—C4—C5 1.0 (3) C9—C10—C11—C12 −0.1 (3)
C3—C4—C5—C6 −0.1 (3) C10—C11—C12—C13 0.5 (3)
C4—C5—C6—Cl1 −179.91 (18) C11—C12—C13—Cl2 179.34 (18)
C4—C5—C6—C7 −0.5 (3) C11—C12—C13—C14 −0.7 (3)
Cl1—C6—C7—C2 179.56 (15) Cl2—C13—C14—C9 −179.65 (17)
C5—C6—C7—C2 0.2 (3) C12—C13—C14—C9 0.4 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1···O2i 0.83 (3) 1.88 (3) 2.710 (2) 171 (3)
O3—H3···O2 0.80 (3) 1.92 (3) 2.620 (2) 146 (3)
O4—H4A···O5ii 0.93 (3) 1.76 (3) 2.694 (2) 175 (2)
O6—H6···O5 0.87 (3) 1.80 (3) 2.606 (2) 154 (3)
C5—H5···O6iii 0.93 2.55 3.311 (3) 139

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x, −y, −z+1; (iii) x, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5691).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  2. Bright, S. A., McElligott, A. M., OConnell, J. W., OConnor, L., Carroll, P., Campiani, G., Deininger, M. W., Conneally, E., Lawler, M., Williams, D. C. & Zisterer, D. M. (2010). Br. J. Cancer, 102, 1474–1482. [DOI] [PMC free article] [PubMed]
  3. Bruker (2005). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  6. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  7. Fattorusso, C., Gemma, S., Butini, S., Huleatt, P., Catalanotti, B., Persico, M., Angelis, M. D., Fiorini, I., Nacci, V., Ramunno, A., Rodriquez, M., Greco, G., Novellino, E., Bergamini, A., Marini, S., Coletta, M., Maga, G., Spadari, S. & Campiani, G. (2005). J. Med. Chem.48, 7153–7165. [DOI] [PubMed]
  8. Miki, T., Kori, M., Mabuchi, H., Tozawa, R. I., Nishimoto, T., Sugiyama, Y., Teshima, K. & Yukimasa, H. (2002). J. Med. Chem.45, 4571–4580. [DOI] [PubMed]
  9. Raza, A. R., Rubab, S. L. & Tahir, M. N. (2010). Acta Cryst. E66, o1484. [DOI] [PMC free article] [PubMed]
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810042042/hb5691sup1.cif

e-66-o2921-sup1.cif (17.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810042042/hb5691Isup2.hkl

e-66-o2921-Isup2.hkl (177.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES