Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Oct 9;66(Pt 11):o2738. doi: 10.1107/S1600536810039358

7-Methoxy-1-{[(Z)-3-nitrophenylimino](phenyl)methyl}-2-naphthol

Atsushi Nagasawa a, Akiko Okamoto a, Noriyuki Yonezawa a,*
PMCID: PMC3009002  PMID: 21588945

Abstract

In the title compound, C24H18N2O4, the phenyl and benzene rings are both oriented almost perpendicular to the naphthalene ring system at dihedral angles of 70.97 (5) and 84.64 (5)°. The former rings make a dihedral angle of 87.15 (6)°. The mol­ecule has a Z configuration about the C=N bond. In the crystal, mol­ecules are connected by a pair of inter­molecular O—H⋯O hydrogen bonds between the hy­droxy and the nitro group, forming centrosymmetric dimers. Inter­molecular C—H⋯O inter­actions also occur.

Related literature

For the structures of closely related compounds, see: Hijikata et al. (2010); Watanabe et al. (2010); Mitsui et al. (2008); Nagasawa et al. (2010a ,b ).graphic file with name e-66-o2738-scheme1.jpg

Experimental

Crystal data

  • C24H18N2O4

  • M r = 398.40

  • Triclinic, Inline graphic

  • a = 9.6709 (10) Å

  • b = 9.8345 (10) Å

  • c = 10.397 (1) Å

  • α = 88.640 (3)°

  • β = 89.194 (3)°

  • γ = 82.126 (3)°

  • V = 979.19 (16) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 193 K

  • 0.50 × 0.30 × 0.20 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: numerical (NUMABS; Higashi, 1999) T min = 0.955, T max = 0.982

  • 15901 measured reflections

  • 4475 independent reflections

  • 3923 reflections with I > 2σ(I)

  • R int = 0.014

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043

  • wR(F 2) = 0.156

  • S = 1.13

  • 4475 reflections

  • 277 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.40 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810039358/pk2274sup1.cif

e-66-o2738-sup1.cif (21.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810039358/pk2274Isup2.hkl

e-66-o2738-Isup2.hkl (214.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O3i 0.83 (2) 2.05 (2) 2.8559 (17) 163 (18)
C19—H19⋯O1 0.95 2.56 3.3241 (16) 138

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors would express their gratitude to Professor Keiichi Noguchi, Instrumentation Analysis Center, Tokyo University of Agriculture & Technology, for technical advice.

supplementary crystallographic information

Comment

Recently, we reported crystal structures of several 1-monoaroylnaphthalene derivatives exemplified by 2-(2,7-dimethoxy-1-naphthoyl)benzoic acid (Hijikata et al., 2010), 2,7-dimethoxy-1-(4-nitrobenzoyl)-naphthalene (Watanabe et al., 2010) and (4-chlorophenyl)(2-hydroxy-7-methoxynaphthalen-1-yl)methanone (Mitsui et al., 2008). Furthermore, we also reported the crystal structure of 1-[(4-chlorophenyl)(phenylimino)methyl]-7-methoxy-2-naphthol-1,4-diazabicyclo[2.2.2]octane (2/1) (Nagasawa et al., 2010a) that formed 2:1 comolecular unit of triarylimine and 1,4-diazabicyclo[2.2.2]octane (DABCO). As a part of the continuous study on the molecular structures of this kind of homologous molecules, we have investigated imination reaction of aroylated naphthalene. The title compound was prepared from (2-hydroxy-7-methoxynaphthalen-1-yl)(phenyl)methanone (Nagasawa et al., 2010b) and 3-nitroaniline in the presence of TiCl4 and DABCO.

An ORTEPIII (Burnett & Johnson, 1996) plot is shown in Fig. 1. In the molecule, interplanar angles of the least-squares plane of the benzene ring (C12–C17) attached to nitrogen atom (N1) and benzene ring (C18–C23) attached to carbon atom (C11) of imine moiety against the naphthalene ring (C1–C10) are 70.97 (5) and 84.64 (5)°, respectively. Furthermore, the interplanar angle between two benzene rings is 87.15 (6)°. The molecule has a Z configuration for the imine vector.

In the crystal structure, the molecular packing is mainly stabilized by intermolecular hydrogen bond and van der Waals interactions. The intermolecular O—H···O hydrogen bond between the hydorxy and nitro groups on the naphthalene ring and the N-aryl group along the c axis, is observed [H1···O3 = 2.05 (2) Å] (Fig. 2). The carbon atom in the naphthalene ring interacts with an oxygen atom in the nitro groups [C8···O4 = 3.079 (2) Å] along the c axis (Fig. 3). One hydrogen atom on a phenyl group has a close contact with the hydrogen atom on the phenyl group of the next molecule [H16···H17 = 2.27 Å], roughly along the a axis.

Experimental

To a solution of (2-hydroxy-7-methoxynaphthalen-1- yl)(phenyl)methanone (0.2 mmol, 56 mg) in chlorobenzene (1 ml), a mixture of 3-nitroaniline (0.22 mmol, 30 mg), TiCl4 (0.33 mmol, 62.4 mg), DABCO (1.32 mmol, 148.0 mg) and chlorobenzene (1 ml) was added by portions at 363 K under nitrogen atmosphere. After the reaction mixture was stirred at 398 K for 1.5 h, the resulting solution was filtered to remove the precipitate. The solvent was removed under reduced pressure to give crude material. The crude material thus obtained was subjected to crystallization from CHCl3/hexane to give compind (I) as yellow platelets (m.p. 508.5–509.0 K, yield 28 mg, 35%).

Spectroscopic Data: 1H NMR (300 MHz, DMSO-d6) δ; 10.23, (s, 1H), 7.69–7.60 (m, 6H), 7.49–7.38 (m, 3H), 7.30–7.26 (m, 2H), 6.97 (d, 1H), 6.84 (dd, 1H), 6.54 (d, 1H), 3.66 (s, 3H); 13C NMR (75 MHz, DMSO-d6) 168.5, 158.7, 154.1, 152.8, 148.0, 138.3, 132.5, 131.9, 131.0, 130.5, 130.1, 129.2, 128.7, 126.6, 123.1, 118.7, 115.6, 115.2, 114.8, 114.2, 102.6, 55.6; IR (KBr): 3416, 3073, 1626, 1614, 1511, 1341, 1210; HRMS (m/z): [M + H]+ calcd for C24H19N2O4, 399.1345; found, 399.1349.

Refinement

All the H-atoms could be located in difference Fourier maps. The O—H hydrogen atom was freely refined: O1—H1 = 0.89 (2) Å. The C-bound H-atoms were subsequently refined as riding atoms, with C—H = 0.95 (aromatic) and 0.98 (methyl) Å, and Uiso(H) = 1.2Ueq(C). Rigid bond restraints were applied to the Uij values of the naphthalene ring (C6 and C7) [1 restraint with the DELU command in SHELXL97].

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title compound, showing 50% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

A partial crystal packing diagram of the compound, viewed down the b axis. Intermolecular O—H···O hydrogen bonds are shown as dashed lines.

Fig. 3.

Fig. 3.

A partial crystal packing diagram of the compound, viewed down the b axis. Intermolecular N≐O···C interactions are shown as dashed lines.

Crystal data

C24H18N2O4 Z = 2
Mr = 398.40 F(000) = 416
Triclinic, P1 Dx = 1.351 Mg m3
Hall symbol: -P 1 Melting point = 509.0–508.5 K
a = 9.6709 (10) Å Mo Kα radiation, λ = 0.71075 Å
b = 9.8345 (10) Å Cell parameters from 11810 reflections
c = 10.397 (1) Å θ = 3.2–27.4°
α = 88.640 (3)° µ = 0.09 mm1
β = 89.194 (3)° T = 193 K
γ = 82.126 (3)° Platelet, yellow
V = 979.19 (16) Å3 0.50 × 0.30 × 0.20 mm

Data collection

Rigaku R-AXIS RAPID diffractometer 4475 independent reflections
Radiation source: rotating anode 3923 reflections with I > 2σ(I)
graphite Rint = 0.014
Detector resolution: 10.00 pixels mm-1 θmax = 27.4°, θmin = 3.2°
ω scans h = −12→12
Absorption correction: numerical (NUMABS; Higashi, 1999) k = −12→12
Tmin = 0.955, Tmax = 0.982 l = −12→13
15901 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.156 w = 1/[σ2(Fo2) + (0.098P)2 + 0.153P] where P = (Fo2 + 2Fc2)/3
S = 1.13 (Δ/σ)max < 0.001
4475 reflections Δρmax = 0.40 e Å3
277 parameters Δρmin = −0.40 e Å3
1 restraint Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.039 (6)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.51816 (11) 0.18118 (11) 0.75931 (11) 0.0491 (3)
O2 1.18407 (11) 0.40281 (11) 0.59012 (12) 0.0531 (3)
O3 0.64352 (12) −0.1348 (2) 1.01592 (12) 0.0759 (5)
O4 0.82233 (15) −0.1964 (2) 1.12868 (14) 0.0907 (6)
N1 0.81213 (10) 0.03212 (10) 0.59401 (9) 0.0280 (2)
N2 0.76948 (13) −0.15267 (13) 1.02938 (11) 0.0411 (3)
C1 0.73411 (13) 0.24880 (12) 0.70311 (10) 0.0289 (3)
C2 0.61980 (15) 0.25958 (13) 0.78516 (12) 0.0367 (3)
C3 0.61168 (17) 0.34798 (16) 0.89160 (13) 0.0469 (4)
H3 0.5344 0.3522 0.9495 0.056*
C4 0.71436 (18) 0.42664 (15) 0.91081 (13) 0.0470 (4)
H4 0.7078 0.4854 0.9825 0.056*
C5 0.83046 (16) 0.42299 (13) 0.82655 (12) 0.0395 (3)
C6 0.93661 (19) 0.50761 (15) 0.84159 (16) 0.0516 (4)
H6 0.9286 0.5711 0.9096 0.062*
C7 1.04946 (18) 0.50021 (16) 0.76113 (18) 0.0522 (4)
H7 1.1184 0.5588 0.7727 0.063*
C8 1.06394 (15) 0.40493 (13) 0.66003 (14) 0.0400 (3)
C9 0.96183 (13) 0.32336 (12) 0.63937 (12) 0.0314 (3)
H9 0.9710 0.2620 0.5696 0.038*
C10 0.84274 (13) 0.33059 (12) 0.72195 (11) 0.0302 (3)
C11 0.74138 (11) 0.15216 (11) 0.59275 (10) 0.0261 (2)
C12 0.66388 (11) 0.20074 (12) 0.47405 (11) 0.0273 (3)
C13 0.63505 (14) 0.34105 (13) 0.44511 (12) 0.0360 (3)
H13 0.6636 0.4057 0.5021 0.043*
C14 0.56463 (16) 0.38643 (15) 0.33290 (13) 0.0437 (3)
H14 0.5462 0.4819 0.3129 0.052*
C15 0.52155 (14) 0.29251 (17) 0.25059 (13) 0.0427 (3)
H15 0.4724 0.3237 0.1747 0.051*
C16 0.54984 (13) 0.15291 (16) 0.27845 (13) 0.0404 (3)
H16 0.5210 0.0888 0.2211 0.048*
C17 0.62029 (12) 0.10671 (13) 0.39009 (12) 0.0337 (3)
H17 0.6388 0.0111 0.4093 0.040*
C18 0.87584 (12) −0.02373 (11) 0.70917 (11) 0.0270 (2)
C19 0.79334 (12) −0.05397 (12) 0.81420 (11) 0.0297 (3)
H19 0.6947 −0.0306 0.8122 0.036*
C20 0.85794 (13) −0.11863 (12) 0.92129 (11) 0.0311 (3)
C21 1.00158 (14) −0.15383 (14) 0.93041 (13) 0.0377 (3)
H21 1.0431 −0.1963 1.0061 0.045*
C22 1.08160 (13) −0.12449 (14) 0.82466 (14) 0.0399 (3)
H22 1.1801 −0.1482 0.8273 0.048*
C23 1.02033 (13) −0.06076 (13) 0.71432 (12) 0.0339 (3)
H23 1.0771 −0.0425 0.6424 0.041*
C24 1.20954 (18) 0.30536 (19) 0.4914 (2) 0.0579 (4)
H24A 1.3023 0.3094 0.4536 0.069*
H24B 1.1387 0.3261 0.4247 0.069*
H24C 1.2052 0.2131 0.5276 0.069*
H1 0.464 (3) 0.185 (3) 0.822 (2) 0.076 (7)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0450 (6) 0.0501 (6) 0.0521 (6) −0.0085 (5) 0.0258 (5) −0.0018 (5)
O2 0.0429 (6) 0.0436 (6) 0.0771 (8) −0.0202 (5) 0.0011 (5) −0.0073 (5)
O3 0.0408 (6) 0.1428 (14) 0.0451 (7) −0.0213 (7) 0.0094 (5) 0.0244 (8)
O4 0.0673 (9) 0.1390 (15) 0.0587 (8) −0.0001 (9) 0.0038 (6) 0.0621 (9)
N1 0.0285 (5) 0.0284 (5) 0.0273 (5) −0.0052 (4) 0.0036 (3) −0.0012 (4)
N2 0.0428 (6) 0.0427 (6) 0.0377 (6) −0.0076 (5) 0.0058 (5) 0.0080 (5)
C1 0.0369 (6) 0.0261 (5) 0.0224 (5) 0.0000 (4) 0.0039 (4) 0.0015 (4)
C2 0.0445 (7) 0.0319 (6) 0.0314 (6) 0.0015 (5) 0.0110 (5) 0.0039 (5)
C3 0.0622 (9) 0.0442 (7) 0.0285 (6) 0.0119 (7) 0.0167 (6) 0.0015 (5)
C4 0.0715 (10) 0.0383 (7) 0.0258 (6) 0.0129 (7) −0.0007 (6) −0.0076 (5)
C5 0.0565 (8) 0.0299 (6) 0.0291 (6) 0.0059 (6) −0.0090 (5) −0.0040 (5)
C6 0.0715 (10) 0.0347 (7) 0.0476 (8) 0.0000 (7) −0.0208 (7) −0.0152 (6)
C7 0.0567 (9) 0.0362 (7) 0.0656 (10) −0.0102 (6) −0.0183 (7) −0.0121 (7)
C8 0.0427 (7) 0.0298 (6) 0.0486 (8) −0.0076 (5) −0.0098 (6) −0.0006 (5)
C9 0.0377 (6) 0.0259 (5) 0.0312 (6) −0.0058 (5) −0.0049 (5) −0.0018 (4)
C10 0.0411 (6) 0.0249 (5) 0.0232 (5) 0.0007 (5) −0.0048 (4) 0.0014 (4)
C11 0.0263 (5) 0.0278 (5) 0.0251 (5) −0.0078 (4) 0.0066 (4) 0.0001 (4)
C12 0.0247 (5) 0.0315 (6) 0.0259 (5) −0.0054 (4) 0.0051 (4) 0.0009 (4)
C13 0.0440 (7) 0.0334 (6) 0.0308 (6) −0.0067 (5) −0.0003 (5) 0.0029 (5)
C14 0.0515 (8) 0.0416 (7) 0.0361 (7) −0.0009 (6) −0.0021 (6) 0.0098 (5)
C15 0.0349 (6) 0.0617 (9) 0.0299 (6) −0.0011 (6) −0.0027 (5) 0.0047 (6)
C16 0.0299 (6) 0.0542 (8) 0.0377 (7) −0.0068 (6) −0.0041 (5) −0.0073 (6)
C17 0.0275 (5) 0.0367 (6) 0.0376 (6) −0.0065 (5) −0.0002 (5) −0.0027 (5)
C18 0.0299 (5) 0.0230 (5) 0.0284 (5) −0.0040 (4) 0.0024 (4) −0.0026 (4)
C19 0.0258 (5) 0.0303 (6) 0.0333 (6) −0.0050 (4) 0.0025 (4) 0.0001 (4)
C20 0.0339 (6) 0.0282 (5) 0.0315 (6) −0.0060 (5) 0.0043 (4) 0.0019 (4)
C21 0.0365 (6) 0.0346 (6) 0.0404 (7) −0.0006 (5) −0.0043 (5) 0.0072 (5)
C22 0.0272 (6) 0.0418 (7) 0.0483 (8) 0.0025 (5) 0.0015 (5) 0.0046 (6)
C23 0.0293 (6) 0.0343 (6) 0.0373 (6) −0.0019 (5) 0.0079 (5) 0.0003 (5)
C24 0.0444 (8) 0.0529 (9) 0.0798 (12) −0.0189 (7) 0.0171 (8) −0.0103 (8)

Geometric parameters (Å, °)

O1—C2 1.3630 (18) C11—C12 1.4876 (15)
O1—H1 0.83 (3) C12—C13 1.3963 (17)
O2—C8 1.3597 (19) C12—C17 1.3965 (17)
O2—C24 1.417 (2) C13—C14 1.3923 (18)
O3—N2 1.2162 (17) C13—H13 0.9500
O4—N2 1.2023 (17) C14—C15 1.383 (2)
N1—C11 1.2807 (15) C14—H14 0.9500
N1—C18 1.4184 (14) C15—C16 1.387 (2)
N2—C20 1.4630 (16) C15—H15 0.9500
C1—C2 1.3809 (17) C16—C17 1.3893 (18)
C1—C10 1.4261 (18) C16—H16 0.9500
C1—C11 1.5020 (15) C17—H17 0.9500
C2—C3 1.418 (2) C18—C19 1.3938 (16)
C3—C4 1.359 (2) C18—C23 1.3963 (16)
C3—H3 0.9500 C19—C20 1.3825 (17)
C4—C5 1.412 (2) C19—H19 0.9500
C4—H4 0.9500 C20—C21 1.3888 (18)
C5—C6 1.420 (2) C21—C22 1.3832 (19)
C5—C10 1.4269 (17) C21—H21 0.9500
C6—C7 1.361 (3) C22—C23 1.3940 (18)
C6—H6 0.9500 C22—H22 0.9500
C7—C8 1.417 (2) C23—H23 0.9500
C7—H7 0.9500 C24—H24A 0.9800
C8—C9 1.3770 (17) C24—H24B 0.9800
C9—C10 1.4217 (18) C24—H24C 0.9800
C9—H9 0.9500
C2—O1—H1 107.8 (17) C17—C12—C11 120.44 (10)
C8—O2—C24 117.74 (11) C14—C13—C12 120.17 (12)
C11—N1—C18 120.16 (10) C14—C13—H13 119.9
O4—N2—O3 121.85 (12) C12—C13—H13 119.9
O4—N2—C20 119.64 (12) C15—C14—C13 119.99 (13)
O3—N2—C20 118.51 (11) C15—C14—H14 120.0
C2—C1—C10 120.16 (11) C13—C14—H14 120.0
C2—C1—C11 119.33 (11) C14—C15—C16 120.26 (12)
C10—C1—C11 120.51 (10) C14—C15—H15 119.9
O1—C2—C1 116.99 (12) C16—C15—H15 119.9
O1—C2—C3 122.55 (12) C15—C16—C17 120.13 (12)
C1—C2—C3 120.45 (13) C15—C16—H16 119.9
C4—C3—C2 120.05 (13) C17—C16—H16 119.9
C4—C3—H3 120.0 C16—C17—C12 120.05 (12)
C2—C3—H3 120.0 C16—C17—H17 120.0
C3—C4—C5 121.45 (12) C12—C17—H17 120.0
C3—C4—H4 119.3 C19—C18—C23 119.36 (11)
C5—C4—H4 119.3 C19—C18—N1 119.97 (10)
C4—C5—C6 122.65 (13) C23—C18—N1 120.40 (10)
C4—C5—C10 119.09 (13) C20—C19—C18 118.63 (11)
C6—C5—C10 118.26 (14) C20—C19—H19 120.7
C7—C6—C5 121.75 (13) C18—C19—H19 120.7
C7—C6—H6 119.1 C19—C20—C21 123.33 (11)
C5—C6—H6 119.1 C19—C20—N2 117.89 (11)
C6—C7—C8 119.90 (14) C21—C20—N2 118.78 (11)
C6—C7—H7 120.1 C22—C21—C20 117.21 (12)
C8—C7—H7 120.1 C22—C21—H21 121.4
O2—C8—C9 125.18 (13) C20—C21—H21 121.4
O2—C8—C7 114.36 (13) C21—C22—C23 121.21 (11)
C9—C8—C7 120.46 (14) C21—C22—H22 119.4
C8—C9—C10 120.30 (12) C23—C22—H22 119.4
C8—C9—H9 119.9 C22—C23—C18 120.24 (11)
C10—C9—H9 119.9 C22—C23—H23 119.9
C9—C10—C1 122.02 (10) C18—C23—H23 119.9
C9—C10—C5 119.27 (12) O2—C24—H24A 109.5
C1—C10—C5 118.71 (12) O2—C24—H24B 109.5
N1—C11—C12 118.34 (10) H24A—C24—H24B 109.5
N1—C11—C1 123.99 (10) O2—C24—H24C 109.5
C12—C11—C1 117.66 (9) H24A—C24—H24C 109.5
C13—C12—C17 119.39 (11) H24B—C24—H24C 109.5
C13—C12—C11 120.16 (10)
C10—C1—C2—O1 178.22 (10) C10—C1—C11—N1 81.52 (14)
C11—C1—C2—O1 −0.66 (17) C2—C1—C11—C12 81.77 (13)
C10—C1—C2—C3 −2.39 (19) C10—C1—C11—C12 −97.11 (12)
C11—C1—C2—C3 178.72 (11) N1—C11—C12—C13 −153.41 (11)
O1—C2—C3—C4 −178.23 (13) C1—C11—C12—C13 25.30 (15)
C1—C2—C3—C4 2.4 (2) N1—C11—C12—C17 26.07 (15)
C2—C3—C4—C5 0.1 (2) C1—C11—C12—C17 −155.22 (11)
C3—C4—C5—C6 177.66 (13) C17—C12—C13—C14 −0.60 (18)
C3—C4—C5—C10 −2.5 (2) C11—C12—C13—C14 178.89 (11)
C4—C5—C6—C7 178.39 (14) C12—C13—C14—C15 0.8 (2)
C10—C5—C6—C7 −1.4 (2) C13—C14—C15—C16 −0.9 (2)
C5—C6—C7—C8 −0.8 (2) C14—C15—C16—C17 0.7 (2)
C24—O2—C8—C9 −2.7 (2) C15—C16—C17—C12 −0.54 (19)
C24—O2—C8—C7 176.88 (14) C13—C12—C17—C16 0.47 (18)
C6—C7—C8—O2 −177.06 (14) C11—C12—C17—C16 −179.01 (10)
C6—C7—C8—C9 2.6 (2) C11—N1—C18—C19 65.82 (14)
O2—C8—C9—C10 177.50 (12) C11—N1—C18—C23 −120.21 (12)
C7—C8—C9—C10 −2.1 (2) C23—C18—C19—C20 0.75 (17)
C8—C9—C10—C1 179.41 (11) N1—C18—C19—C20 174.77 (10)
C8—C9—C10—C5 −0.16 (18) C18—C19—C20—C21 0.78 (19)
C2—C1—C10—C9 −179.62 (11) C18—C19—C20—N2 −178.51 (10)
C11—C1—C10—C9 −0.75 (17) O4—N2—C20—C19 −172.65 (16)
C2—C1—C10—C5 −0.05 (17) O3—N2—C20—C19 6.9 (2)
C11—C1—C10—C5 178.82 (10) O4—N2—C20—C21 8.0 (2)
C4—C5—C10—C9 −177.95 (11) O3—N2—C20—C21 −172.45 (15)
C6—C5—C10—C9 1.88 (18) C19—C20—C21—C22 −1.5 (2)
C4—C5—C10—C1 2.47 (17) N2—C20—C21—C22 177.76 (12)
C6—C5—C10—C1 −177.70 (11) C20—C21—C22—C23 0.8 (2)
C18—N1—C11—C12 −173.57 (9) C21—C22—C23—C18 0.7 (2)
C18—N1—C11—C1 7.81 (16) C19—C18—C23—C22 −1.47 (18)
C2—C1—C11—N1 −99.60 (14) N1—C18—C23—C22 −175.47 (11)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1···O3i 0.83 (2) 2.05 (2) 2.8559 (17) 163 (18)
C19—H19···O1 0.95 2.56 3.3241 (16) 138

Symmetry codes: (i) −x+1, −y, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2274).

References

  1. Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst.38, 381–388.
  2. Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory. Tennessee, USA.
  3. Higashi, T. (1999). NUMABS Rigaku Corporation, Tokyo, Japan.
  4. Hijikata, D., Nakaema, K., Watanabe, S., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o713. [DOI] [PMC free article] [PubMed]
  5. Mitsui, R., Nakaema, K., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o2497. [DOI] [PMC free article] [PubMed]
  6. Nagasawa, A., Mitsui, R., Kato, Y., Okamoto, A. & Yonezawa, N. (2010a). Acta Cryst. E66, o2498. [DOI] [PMC free article] [PubMed]
  7. Nagasawa, A., Mitsui, R., Kato, Y., Okamoto, A. & Yonezawa, N. (2010b). Acta Cryst. E66, o2677. [DOI] [PMC free article] [PubMed]
  8. Rigaku (1998). PROCESS-AUTO Rigaku Corporation, Tokyo, Japan.
  9. Rigaku/MSC (2004). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Watanabe, S., Nakaema, K., Nishijima, T., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o615. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810039358/pk2274sup1.cif

e-66-o2738-sup1.cif (21.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810039358/pk2274Isup2.hkl

e-66-o2738-Isup2.hkl (214.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES