Skip to main content
Molecular Biology of the Cell logoLink to Molecular Biology of the Cell
. 1993 Jan;4(1):71–78. doi: 10.1091/mbc.4.1.71

Association of a purine-analogue-sensitive protein kinase activity with p75 nerve growth factor receptors.

C Volonté 1, A H Ross 1, L A Greene 1
PMCID: PMC300901  PMID: 7680248

Abstract

Purine analogues are protein kinase inhibitors, and they block with varying potency and specificity certain of the biological actions of nerve growth factor (NGF). The analogue 6-thioguanine (6-TG) has been shown to inhibit with high specificity protein kinase N (PKN), a serine/threonine protein kinase activated by NGF in several cellular systems. In the present work, immunoprecipitates of p75 NGF receptors from PC12 cells (+/-NGF treatment) were assayed for protein kinase activity using the substrate myelin basic protein under phosphorylating conditions optimal for PKN and in the presence or absence of purine analogues. An NGF-inducible activity was detected, and approximately 80% was inhibited by purine analogues. This activity was maximally stimulated by NGF within 5-10 min, partially decreased by 60 min, and returned to basal levels after 15 h of NGF treatment. The analogue 6-TG inhibited the NGF-inducible p75-associated kinase activity with an IC50 in the range of 15-35 microM. In mutant PC12 nnr-5 cells that lack the Trk NGF receptor, the purine-analogue-sensitive p75-associated kinase activity was not inducible by NFG. In normal PC12 cells, cyclic AMP analogues and epidermal growth factor failed to induce the same activity. Application of either 2-aminopurine or 6-TG to intact cells only slightly inhibit the NGF-dependent induction of the purine-analogue-inhibited p75-associated kinase activity. This activity shares many similarities but also displays some significant differences with cytosolic PKN. Our findings therefore indicate the association of a purine-analogue-sensitive protein kinase with p75 NGF receptors.

Full text

PDF
71

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barde Y. A. Trophic factors and neuronal survival. Neuron. 1989 Jun;2(6):1525–1534. doi: 10.1016/0896-6273(89)90040-8. [DOI] [PubMed] [Google Scholar]
  2. Batistatou A., Volonté C., Greene L. A. Nerve growth factor employs multiple pathways to induce primary response genes in PC12 cells. Mol Biol Cell. 1992 Mar;3(3):363–371. doi: 10.1091/mbc.3.3.363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Berg M. M., Sternberg D. W., Hempstead B. L., Chao M. V. The low-affinity p75 nerve growth factor (NGF) receptor mediates NGF-induced tyrosine phosphorylation. Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):7106–7110. doi: 10.1073/pnas.88.16.7106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Blenis J., Erikson R. L. Regulation of protein kinase activities in PC12 pheochromocytoma cells. EMBO J. 1986 Dec 20;5(13):3441–3447. doi: 10.1002/j.1460-2075.1986.tb04667.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bothwell M. Keeping track of neurotrophin receptors. Cell. 1991 Jun 14;65(6):915–918. doi: 10.1016/0092-8674(91)90540-f. [DOI] [PubMed] [Google Scholar]
  6. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  7. Burstein D. E., Greene L. A. Nerve growth factor has both mitogenic and antimitogenic activity. Dev Biol. 1982 Dec;94(2):477–482. doi: 10.1016/0012-1606(82)90364-5. [DOI] [PubMed] [Google Scholar]
  8. Chandler C. E., Parsons L. M., Hosang M., Shooter E. M. A monoclonal antibody modulates the interaction of nerve growth factor with PC12 cells. J Biol Chem. 1984 Jun 10;259(11):6882–6889. [PubMed] [Google Scholar]
  9. Cooper J. A., Sefton B. M., Hunter T. Detection and quantification of phosphotyrosine in proteins. Methods Enzymol. 1983;99:387–402. doi: 10.1016/0076-6879(83)99075-4. [DOI] [PubMed] [Google Scholar]
  10. Drinkwater C. C., Suter U., Angst C., Shooter E. M. Mutation of tryptophan-21 in mouse nerve growth factor (NGF) affects binding to the fast NGF receptor but not induction of neurites on PC12 cells. Proc Biol Sci. 1991 Dec 23;246(1317):307–313. doi: 10.1098/rspb.1991.0159. [DOI] [PubMed] [Google Scholar]
  11. Ettehadieh E., Sanghera J. S., Pelech S. L., Hess-Bienz D., Watts J., Shastri N., Aebersold R. Tyrosyl phosphorylation and activation of MAP kinases by p56lck. Science. 1992 Feb 14;255(5046):853–855. doi: 10.1126/science.1311128. [DOI] [PubMed] [Google Scholar]
  12. Green S. H., Rydel R. E., Connolly J. L., Greene L. A. PC12 cell mutants that possess low- but not high-affinity nerve growth factor receptors neither respond to nor internalize nerve growth factor. J Cell Biol. 1986 Mar;102(3):830–843. doi: 10.1083/jcb.102.3.830. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Greene L. A., Rukenstein A. Regulation of acetylcholinesterase activity by nerve growth factor. Role of transcription and dissociation from effects on proliferation and neurite outgrowth. J Biol Chem. 1981 Jun 25;256(12):6363–6367. [PubMed] [Google Scholar]
  14. Greene L. A., Tischler A. S. Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc Natl Acad Sci U S A. 1976 Jul;73(7):2424–2428. doi: 10.1073/pnas.73.7.2424. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Greene L. A., Volonté C., Chalazonitis A. Purine analogs inhibit nerve growth factor-promoted neurite outgrowth by sympathetic and sensory neurons. J Neurosci. 1990 May;10(5):1479–1485. doi: 10.1523/JNEUROSCI.10-05-01479.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hempstead B. L., Martin-Zanca D., Kaplan D. R., Parada L. F., Chao M. V. High-affinity NGF binding requires coexpression of the trk proto-oncogene and the low-affinity NGF receptor. Nature. 1991 Apr 25;350(6320):678–683. doi: 10.1038/350678a0. [DOI] [PubMed] [Google Scholar]
  17. Hempstead B. L., Schleifer L. S., Chao M. V. Expression of functional nerve growth factor receptors after gene transfer. Science. 1989 Jan 20;243(4889):373–375. doi: 10.1126/science.2536190. [DOI] [PubMed] [Google Scholar]
  18. Hosang M., Shooter E. M. Molecular characteristics of nerve growth factor receptors on PC12 cells. J Biol Chem. 1985 Jan 10;260(1):655–662. [PubMed] [Google Scholar]
  19. Ibáez C. F., Ebendal T., Barbany G., Murray-Rust J., Blundell T. L., Persson H. Disruption of the low affinity receptor-binding site in NGF allows neuronal survival and differentiation by binding to the trk gene product. Cell. 1992 Apr 17;69(2):329–341. doi: 10.1016/0092-8674(92)90413-7. [DOI] [PubMed] [Google Scholar]
  20. Johnson D., Lanahan A., Buck C. R., Sehgal A., Morgan C., Mercer E., Bothwell M., Chao M. Expression and structure of the human NGF receptor. Cell. 1986 Nov 21;47(4):545–554. doi: 10.1016/0092-8674(86)90619-7. [DOI] [PubMed] [Google Scholar]
  21. Kaplan D. R., Hempstead B. L., Martin-Zanca D., Chao M. V., Parada L. F. The trk proto-oncogene product: a signal transducing receptor for nerve growth factor. Science. 1991 Apr 26;252(5005):554–558. doi: 10.1126/science.1850549. [DOI] [PubMed] [Google Scholar]
  22. Kaplan D. R., Morrison D. K., Wong G., McCormick F., Williams L. T. PDGF beta-receptor stimulates tyrosine phosphorylation of GAP and association of GAP with a signaling complex. Cell. 1990 Apr 6;61(1):125–133. doi: 10.1016/0092-8674(90)90220-9. [DOI] [PubMed] [Google Scholar]
  23. Klein R., Jing S. Q., Nanduri V., O'Rourke E., Barbacid M. The trk proto-oncogene encodes a receptor for nerve growth factor. Cell. 1991 Apr 5;65(1):189–197. doi: 10.1016/0092-8674(91)90419-y. [DOI] [PubMed] [Google Scholar]
  24. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  25. Levi-Montalcini R., Angeletti P. U. Nerve growth factor. Physiol Rev. 1968 Jul;48(3):534–569. doi: 10.1152/physrev.1968.48.3.534. [DOI] [PubMed] [Google Scholar]
  26. Levi-Montalcini R. The nerve growth factor 35 years later. Science. 1987 Sep 4;237(4819):1154–1162. doi: 10.1126/science.3306916. [DOI] [PubMed] [Google Scholar]
  27. Levi A., Alemà S. The mechanism of action of nerve growth factor. Annu Rev Pharmacol Toxicol. 1991;31:205–228. doi: 10.1146/annurev.pa.31.040191.001225. [DOI] [PubMed] [Google Scholar]
  28. Loeb D. M., Maragos J., Martin-Zanca D., Chao M. V., Parada L. F., Greene L. A. The trk proto-oncogene rescues NGF responsiveness in mutant NGF-nonresponsive PC12 cell lines. Cell. 1991 Sep 6;66(5):961–966. doi: 10.1016/0092-8674(91)90441-z. [DOI] [PubMed] [Google Scholar]
  29. Loeb D. M., Tsao H., Cobb M. H., Greene L. A. NGF and other growth factors induce an association between ERK1 and the NGF receptor, gp140prototrk. Neuron. 1992 Dec;9(6):1053–1065. doi: 10.1016/0896-6273(92)90065-l. [DOI] [PubMed] [Google Scholar]
  30. Meakin S. O., Shooter E. M. Molecular investigations on the high-affinity nerve growth factor receptor. Neuron. 1991 Jan;6(1):153–163. doi: 10.1016/0896-6273(91)90130-r. [DOI] [PubMed] [Google Scholar]
  31. Meakin S. O., Shooter E. M. The nerve growth factor family of receptors. Trends Neurosci. 1992 Sep;15(9):323–331. doi: 10.1016/0166-2236(92)90047-c. [DOI] [PubMed] [Google Scholar]
  32. Meakin S. O., Suter U., Drinkwater C. C., Welcher A. A., Shooter E. M. The rat trk protooncogene product exhibits properties characteristic of the slow nerve growth factor receptor. Proc Natl Acad Sci U S A. 1992 Mar 15;89(6):2374–2378. doi: 10.1073/pnas.89.6.2374. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Mobley W. C., Schenker A., Shooter E. M. Characterization and isolation of proteolytically modified nerve growth factor. Biochemistry. 1976 Dec 14;15(25):5543–5552. doi: 10.1021/bi00670a019. [DOI] [PubMed] [Google Scholar]
  34. Morrison D. K., Kaplan D. R., Escobedo J. A., Rapp U. R., Roberts T. M., Williams L. T. Direct activation of the serine/threonine kinase activity of Raf-1 through tyrosine phosphorylation by the PDGF beta-receptor. Cell. 1989 Aug 25;58(4):649–657. doi: 10.1016/0092-8674(89)90100-1. [DOI] [PubMed] [Google Scholar]
  35. Muñoz G., Marshall S. H. An alternative method for a fast separation of phosphotyrosine. Anal Biochem. 1990 Nov 1;190(2):233–237. doi: 10.1016/0003-2697(90)90185-c. [DOI] [PubMed] [Google Scholar]
  36. Northwood I. C., Gonzalez F. A., Wartmann M., Raden D. L., Davis R. J. Isolation and characterization of two growth factor-stimulated protein kinases that phosphorylate the epidermal growth factor receptor at threonine 669. J Biol Chem. 1991 Aug 15;266(23):15266–15276. [PubMed] [Google Scholar]
  37. Ohmichi M., Decker S. J., Saltiel A. R. Nerve growth factor induces the association of a 130-Kd phosphoprotein with its receptor in PC-12 pheochromocytoma cells. Cell Regul. 1991 Sep;2(9):691–697. doi: 10.1091/mbc.2.9.691. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Radeke M. J., Feinstein S. C. Analytical purification of the slow, high affinity NGF receptor: identification of a novel 135 kd polypeptide. Neuron. 1991 Jul;7(1):141–150. doi: 10.1016/0896-6273(91)90082-b. [DOI] [PubMed] [Google Scholar]
  39. Radeke M. J., Misko T. P., Hsu C., Herzenberg L. A., Shooter E. M. Gene transfer and molecular cloning of the rat nerve growth factor receptor. Nature. 1987 Feb 12;325(6105):593–597. doi: 10.1038/325593a0. [DOI] [PubMed] [Google Scholar]
  40. Ross A. H. Identification of tyrosine kinase Trk as a nerve growth factor receptor. Cell Regul. 1991 Sep;2(9):685–690. doi: 10.1091/mbc.2.9.685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Rowland-Gagné E., Greene L. A. Multiple pathways of N-kinase activation in PC12 cells. J Neurochem. 1990 Feb;54(2):423–433. doi: 10.1111/j.1471-4159.1990.tb01890.x. [DOI] [PubMed] [Google Scholar]
  42. Rowland E. A., Müller T. H., Goldstein M., Greene L. A. Cell-free detection and characterization of a novel nerve growth factor-activated protein kinase in PC12 cells. J Biol Chem. 1987 Jun 5;262(16):7504–7513. [PubMed] [Google Scholar]
  43. Soppet D., Escandon E., Maragos J., Middlemas D. S., Reid S. W., Blair J., Burton L. E., Stanton B. R., Kaplan D. R., Hunter T. The neurotrophic factors brain-derived neurotrophic factor and neurotrophin-3 are ligands for the trkB tyrosine kinase receptor. Cell. 1991 May 31;65(5):895–903. doi: 10.1016/0092-8674(91)90396-g. [DOI] [PubMed] [Google Scholar]
  44. Taniuchi M., Johnson E. M., Jr, Roach P. J., Lawrence J. C., Jr Phosphorylation of nerve growth factor receptor proteins in sympathetic neurons and PC12 cells. In vitro phosphorylation by the cAMP-independent protein kinase FA/GSK-3. J Biol Chem. 1986 Oct 5;261(28):13342–13349. [PubMed] [Google Scholar]
  45. Thoenen H., Bandtlow C., Heumann R. The physiological function of nerve growth factor in the central nervous system: comparison with the periphery. Rev Physiol Biochem Pharmacol. 1987;109:145–178. doi: 10.1007/BFb0031026. [DOI] [PubMed] [Google Scholar]
  46. Vetter M. L., Martin-Zanca D., Parada L. F., Bishop J. M., Kaplan D. R. Nerve growth factor rapidly stimulates tyrosine phosphorylation of phospholipase C-gamma 1 by a kinase activity associated with the product of the trk protooncogene. Proc Natl Acad Sci U S A. 1991 Jul 1;88(13):5650–5654. doi: 10.1073/pnas.88.13.5650. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Volonté C., Greene L. A. 6-Methylmercaptopurine riboside is a potent and selective inhibitor of nerve growth factor-activated protein kinase N. J Neurochem. 1992 Feb;58(2):700–708. doi: 10.1111/j.1471-4159.1992.tb09774.x. [DOI] [PubMed] [Google Scholar]
  48. Volonté C., Greene L. A. Induction of ornithine decarboxylase by nerve growth factor in PC12 cells: dissection by purine analogues. J Biol Chem. 1990 Jul 5;265(19):11050–11055. [PubMed] [Google Scholar]
  49. Volonté C., Greene L. A. Nerve growth factor (NGF) responses by non-neuronal cells: detection by assay of a novel NGF-activated protein kinase. Growth Factors. 1990;2(4):321–331. doi: 10.3109/08977199009167027. [DOI] [PubMed] [Google Scholar]
  50. Volonté C., Greene L. A. Nerve growth factor-activated protein kinase N. Characterization and rapid near homogeneity purification by nucleotide affinity-exchange chromatography. J Biol Chem. 1992 Oct 25;267(30):21663–21670. [PubMed] [Google Scholar]
  51. Volonté C., Nichols R. A., Greene L. A. Rapid measurement of protein kinase and phosphatase activities by slot-filtration. Biotechniques. 1992 Jun;12(6):854-8, 860-3. [PubMed] [Google Scholar]
  52. Volonté C., Rukenstein A., Loeb D. M., Greene L. A. Differential inhibition of nerve growth factor responses by purine analogues: correlation with inhibition of a nerve growth factor-activated protein kinase. J Cell Biol. 1989 Nov;109(5):2395–2403. doi: 10.1083/jcb.109.5.2395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Whittemore S. R., Seiger A. The expression, localization and functional significance of beta-nerve growth factor in the central nervous system. Brain Res. 1987 Nov;434(4):439–464. doi: 10.1016/0165-0173(87)90008-7. [DOI] [PubMed] [Google Scholar]
  54. Yan H., Schlessinger J., Chao M. V. Chimeric NGF-EGF receptors define domains responsible for neuronal differentiation. Science. 1991 Apr 26;252(5005):561–563. doi: 10.1126/science.1850551. [DOI] [PubMed] [Google Scholar]

Articles from Molecular Biology of the Cell are provided here courtesy of American Society for Cell Biology

RESOURCES