Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Oct 9;66(Pt 11):o2771–o2772. doi: 10.1107/S1600536810039541

9-(4-Chloro­phen­oxy­carbon­yl)-10-methyl­acridinium trifluoro­methane­sulfonate

Damian Trzybiński a, Karol Krzymiński a, Jerzy Błażejowski a,*,
PMCID: PMC3009014  PMID: 21588972

Abstract

In the crystal of the title compound, C21H15ClNO2 +·CF3SO3 , adjacent cations are linked through C—H⋯π and π–π inter­actions [centroid–centroid distance = 3.987 (2) Å], and neighboring cations and anions via C—H⋯O and C—F⋯π inter­actions. The acridine ring system and benzene ring are oriented at a dihedral angle of 1.0 (1)° while the carboxyl group is twisted at an angle of 85.0 (1)° relative to the acridine skeleton. The mean planes of adjacent acridine units are either parallel or inclined at an angle of 78.2 (1)° in the crystal structure.

Related literature

For background to the chemiluminogenic properties of 9-phen­oxy­carbonyl-10-methyl­acridinium trifluoro­methane­sulfonates, see: Brown et al. (2009); King et al. (2007); Rak et al. (1999); Roda et al. (2003); Zomer & Jacquemijns (2001). For related structures, see: Sikorski et al. (2005); Trzybiński et al. (2010). For inter­molecular inter­actions, see: Dorn et al. (2005); Hunter et al. (2001); Novoa et al. (2006); Takahashi et al. (2001). For the synthesis, see: Sato (1996); Trzybiński et al. (2010).graphic file with name e-66-o2771-scheme1.jpg

Experimental

Crystal data

  • C21H15ClNO2 +·CF3SO3

  • M r = 497.87

  • Monoclinic, Inline graphic

  • a = 13.3025 (11) Å

  • b = 8.6750 (9) Å

  • c = 19.6191 (18) Å

  • β = 106.577 (10)°

  • V = 2169.9 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 295 K

  • 0.35 × 0.28 × 0.06 mm

Data collection

  • Oxford Diffraction Gemini R Ultra Ruby CCD diffractometer

  • 11162 measured reflections

  • 3777 independent reflections

  • 2679 reflections with I > 2σ(I)

  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050

  • wR(F 2) = 0.112

  • S = 1.08

  • 3777 reflections

  • 299 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810039541/xu5039sup1.cif

e-66-o2771-sup1.cif (21.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810039541/xu5039Isup2.hkl

e-66-o2771-Isup2.hkl (185.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg4 is the centroid of the C18–C23 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O28i 0.93 2.59 3.328 (5) 136
C4—H4⋯O28 0.93 2.45 3.370 (4) 171
C5—H5⋯O27ii 0.93 2.39 3.258 (4) 154
C6—H6⋯O29ii 0.93 2.54 3.304 (5) 140
C8—H8⋯O29iii 0.93 2.59 3.332 (4) 137
C19—H19⋯O29iii 0.93 2.44 3.349 (4) 165
C25—H25C⋯O27 0.96 2.51 3.387 (4) 152
C25—H25BCg4iv 0.96 2.65 3.519 (4) 151

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Table 2. C–F⋯π inter­actions (Å,°).

Cg1 and Cg3 are the centroids of the C9/N10/C11–C14 and C5–C8/C13/C14 rings, respectively.

X I J IJ XJ XIJ
C30 F31 Cg1ii 3.570 (3) 3.916 (4) 94.4 (2)
C30 F32 Cg1ii 3.337 (3) 3.916 (4) 105.8 (2)
C30 F33 Cg3ii 3.387 (3) 4.073 (4) 111.9 (2)

Symmetry code: (ii) Inline graphic.

Acknowledgments

This study was financed by the State Funds for Scientific Research (grant DS/8220-4-0087-0).

supplementary crystallographic information

Comment

The long-known chemiluminescence of 9-(phenoxycarbonyl)-10-methylacridinium salts has been used as chemiluminescent indicators and labels that are widely applied in assays of biologically and environmentally important entities such as antigens, antibodies, enzymes or DNA fragments (Zomer & Jacquemijns, 2001; Roda et al., 2003; King et al., 2007; Brown et al., 2009). The cations of these salts are oxidized by H2O2 in alkaline media, a reaction that is accompanied by the removal of the phenoxycarbonyl fragment and the conversion of the remaining part of the molecules to electronically excited, light-emitting 10-methyl-9-acridinone (Rak et al., 1999). The efficiency of chemiluminescence – crucial for analytical applications – is affected by the constitution of the phenyl fragment (Zomer & Jacquemijns, 2001). In continuing our investigations on the latter aspect, we synthesized 9-(4-chlorophenoxycarbonyl)-10-methylacridinium trifluoromethanesulfonate, whose crystal structure is presented here.

In the cation of the title compound (Fig. 1), the bond lengths and angles characterizing the geometry of the acridinium moiety are typical of acridine-based derivatives (Sikorski et al., 2005; Trzybiński et al., 2010). With respective average deviations from planarity of 0.0412 (3) Å and 0.0034 (3) Å, the acridine and benzene ring systems are almost parallel (are oriented at a dihedral angle of 1.0 (1)°). The carboxyl group is twisted at an angle of 85.0 (1)° relative to the acridine skeleton. The mean planes of the adjacent acridine moieties are parallel (remain at an angle 0.0 (1)°) or inclined at an angle of 78.2 (1)° in the crystal lattice.

In the crystal structure, the adjacent cations are linked by C–H···π (Table 1, Fig. 2) and π-π (Table 3, Fig.2) contacts, and the cations and neighboring anions via C–H···O (Table 1, Figs. 1 and 2) and C–F···π (Table 2, Fig. 2) interactions. The C–H···O interactions are of the hydrogen bond type (Novoa et al. 2006). The C–H···π (Takahashi et al., 2001), C–F···π (Dorn et al., 2005) and π–π (Hunter et al., 2001) interactions should be of an attractive nature. The crystal structure is stabilized by a network of these short-range specific interactions and by long-range electrostatic interactions between ions.

Experimental

4-Chlorophenylacridine-9-carboxylate was synthesized by esterification of 9-(chlorocarbonyl)acridine (obtained by treating acridine-9-carboxylic acid with a tenfold molar excess of thionyl chloride) with 4-chlorophenol in anhydrous dichloromethane in the presence of N,N-diethylethanamine and a catalytic amount of N,N-dimethyl-4-pyridinamine (room temperature, 15h) (Sato, 1996). The product was purified chromatographically (SiO2, cyclohexane/ethyl acetate, 1/1 v/v) and subsequently quaternarized with a fivefold molar excess of methyl trifluoromethanesulfonate dissolved in anhydrous dichloromethane. The crude 9-(4-chlorophenoxycarbonyl)-10-methylacridinium trifluoromethanesulfonate was dissolved in a small amount of ethanol, filtered and precipitated with a 20 v/v excess of diethyl ether. Yellow crystals suitable for X-ray investigations were grown from absolute ethanol solution (m.p. 488–489 K).

Refinement

H atoms were positioned geometrically, with C—H = 0.93 Å and 0.96 Å for the aromatic and methyl H atoms, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C), where x = 1.2 for the aromatic and x = 1.5 for the methyl H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 25% probability level and H atoms are shown as small spheres of arbitrary radius. Cg1, Cg2, Cg3 and Cg4 denote the ring centroids. The C–H···O interactions are represented by dashed lines.

Fig. 2.

Fig. 2.

The arrangement of the ions in the crystal structure. The C–H···O interactions are represented by dashed lines, the C–H···π, C–F···π, and π–π contacts by dotted lines. H atoms not involved in interactions have been omitted. [Symmetry codes: (i) –x + 2, –y + 1, –z + 1; (ii) –x + 3/2, y – 1/2, –z + 1/2; (iii) x – 1, y, z; (iv) –x + 1, –y + 1, –z + 1; (v) –x + 1, –y + 2, –z + 1.]

Crystal data

C21H15ClNO2+·CF3SO3 F(000) = 1016
Mr = 497.87 Dx = 1.524 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 1665 reflections
a = 13.3025 (11) Å θ = 3.0–29.1°
b = 8.6750 (9) Å µ = 0.33 mm1
c = 19.6191 (18) Å T = 295 K
β = 106.577 (10)° Plate, yellow
V = 2169.9 (4) Å3 0.35 × 0.28 × 0.06 mm
Z = 4

Data collection

Oxford Diffraction Gemini R Ultra Ruby CCD diffractometer 2679 reflections with I > 2σ(I)
Radiation source: Enhanced (Mo) X-ray Source Rint = 0.031
graphite θmax = 25.1°, θmin = 3.2°
Detector resolution: 10.4002 pixels mm-1 h = −15→15
ω scans k = −10→8
11162 measured reflections l = −23→23
3777 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112 H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0386P)2 + 1.4339P] where P = (Fo2 + 2Fc2)/3
3777 reflections (Δ/σ)max < 0.001
299 parameters Δρmax = 0.24 e Å3
0 restraints Δρmin = −0.29 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.6412 (3) 0.7757 (4) 0.51159 (16) 0.0551 (8)
H1 0.5968 0.8280 0.5327 0.066*
C2 0.7459 (3) 0.7893 (4) 0.53941 (18) 0.0655 (9)
H2 0.7736 0.8503 0.5794 0.079*
C3 0.8127 (3) 0.7105 (4) 0.50748 (19) 0.0642 (9)
H3 0.8848 0.7193 0.5274 0.077*
C4 0.7761 (2) 0.6220 (4) 0.44874 (17) 0.0545 (8)
H4 0.8226 0.5731 0.4284 0.065*
C5 0.4792 (3) 0.3888 (4) 0.27537 (17) 0.0610 (9)
H5 0.5241 0.3355 0.2551 0.073*
C6 0.3742 (3) 0.3699 (5) 0.2497 (2) 0.0827 (12)
H6 0.3480 0.3034 0.2116 0.099*
C7 0.3035 (3) 0.4472 (5) 0.2787 (2) 0.0811 (12)
H7 0.2316 0.4327 0.2597 0.097*
C8 0.3403 (2) 0.5423 (4) 0.33414 (19) 0.0610 (9)
H8 0.2933 0.5927 0.3536 0.073*
C9 0.4901 (2) 0.6658 (3) 0.42070 (14) 0.0407 (7)
N10 0.62580 (17) 0.5155 (3) 0.35967 (12) 0.0408 (5)
C11 0.5976 (2) 0.6831 (3) 0.45086 (14) 0.0408 (7)
C12 0.6666 (2) 0.6045 (3) 0.41855 (15) 0.0416 (7)
C13 0.4494 (2) 0.5676 (3) 0.36378 (15) 0.0426 (7)
C14 0.5202 (2) 0.4893 (3) 0.33286 (14) 0.0421 (7)
C15 0.4160 (2) 0.7658 (3) 0.44662 (15) 0.0451 (7)
O16 0.39162 (15) 0.7040 (2) 0.50208 (10) 0.0497 (5)
O17 0.3831 (2) 0.8846 (3) 0.41934 (13) 0.0785 (8)
C18 0.3180 (2) 0.7867 (3) 0.52827 (14) 0.0410 (7)
C19 0.2135 (2) 0.7596 (4) 0.49788 (15) 0.0503 (8)
H19 0.1910 0.6928 0.4594 0.060*
C20 0.1421 (2) 0.8339 (4) 0.52579 (16) 0.0566 (8)
H20 0.0706 0.8176 0.5063 0.068*
C21 0.1776 (3) 0.9314 (4) 0.58220 (15) 0.0535 (8)
C22 0.2823 (3) 0.9565 (4) 0.61275 (15) 0.0558 (8)
H22 0.3049 1.0220 0.6516 0.067*
C23 0.3544 (2) 0.8829 (3) 0.58496 (15) 0.0484 (7)
H23 0.4259 0.8987 0.6045 0.058*
Cl24 0.08737 (9) 1.02661 (14) 0.61618 (5) 0.0951 (4)
C25 0.6984 (2) 0.4487 (4) 0.32249 (17) 0.0568 (8)
H25A 0.6590 0.4126 0.2763 0.085*
H25B 0.7360 0.3641 0.3497 0.085*
H25C 0.7473 0.5262 0.3173 0.085*
S26 0.99146 (6) 0.51449 (9) 0.33370 (4) 0.0456 (2)
O27 0.91136 (17) 0.6102 (2) 0.28913 (11) 0.0578 (6)
O28 0.96649 (17) 0.4501 (3) 0.39381 (11) 0.0709 (7)
O29 1.09667 (17) 0.5708 (3) 0.34719 (12) 0.0704 (7)
C30 0.9908 (3) 0.3493 (4) 0.27794 (18) 0.0641 (9)
F31 0.89748 (18) 0.2801 (2) 0.25860 (13) 0.0971 (7)
F32 1.01300 (19) 0.3885 (3) 0.21805 (11) 0.0974 (8)
F33 1.06074 (19) 0.2433 (3) 0.30961 (12) 0.0989 (8)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.056 (2) 0.0547 (19) 0.0543 (19) 0.0055 (16) 0.0160 (16) 0.0022 (16)
C2 0.064 (2) 0.065 (2) 0.059 (2) −0.0006 (19) 0.0042 (18) −0.0015 (17)
C3 0.0434 (19) 0.072 (2) 0.071 (2) 0.0002 (18) 0.0048 (17) 0.0125 (19)
C4 0.0419 (19) 0.0549 (19) 0.069 (2) 0.0081 (15) 0.0189 (16) 0.0107 (17)
C5 0.057 (2) 0.058 (2) 0.076 (2) −0.0016 (17) 0.0320 (18) −0.0180 (18)
C6 0.063 (3) 0.088 (3) 0.098 (3) −0.015 (2) 0.024 (2) −0.044 (2)
C7 0.043 (2) 0.094 (3) 0.108 (3) −0.013 (2) 0.024 (2) −0.034 (2)
C8 0.0386 (18) 0.065 (2) 0.086 (2) 0.0017 (16) 0.0285 (17) −0.0115 (19)
C9 0.0458 (18) 0.0348 (15) 0.0479 (16) 0.0071 (13) 0.0235 (14) 0.0073 (13)
N10 0.0377 (13) 0.0403 (13) 0.0514 (13) 0.0090 (11) 0.0240 (11) 0.0084 (11)
C11 0.0454 (18) 0.0338 (15) 0.0455 (16) 0.0060 (13) 0.0167 (14) 0.0081 (12)
C12 0.0377 (17) 0.0388 (16) 0.0512 (17) 0.0065 (13) 0.0172 (13) 0.0121 (14)
C13 0.0396 (17) 0.0387 (15) 0.0554 (17) 0.0060 (13) 0.0227 (14) 0.0039 (13)
C14 0.0396 (17) 0.0370 (15) 0.0560 (17) 0.0045 (13) 0.0237 (14) 0.0027 (13)
C15 0.0490 (18) 0.0407 (17) 0.0517 (17) 0.0095 (14) 0.0239 (15) 0.0049 (14)
O16 0.0550 (13) 0.0479 (12) 0.0560 (12) 0.0168 (10) 0.0316 (10) 0.0107 (9)
O17 0.110 (2) 0.0622 (15) 0.0876 (17) 0.0457 (15) 0.0674 (15) 0.0311 (13)
C18 0.0443 (18) 0.0428 (16) 0.0401 (15) 0.0089 (13) 0.0188 (14) 0.0044 (13)
C19 0.053 (2) 0.0585 (19) 0.0414 (16) −0.0012 (15) 0.0157 (15) −0.0035 (14)
C20 0.0387 (18) 0.081 (2) 0.0514 (18) 0.0058 (16) 0.0144 (15) 0.0060 (17)
C21 0.057 (2) 0.068 (2) 0.0418 (16) 0.0242 (17) 0.0241 (15) 0.0113 (15)
C22 0.068 (2) 0.057 (2) 0.0411 (16) 0.0115 (17) 0.0140 (16) −0.0056 (14)
C23 0.0401 (17) 0.0562 (19) 0.0464 (16) 0.0050 (15) 0.0081 (14) 0.0026 (15)
Cl24 0.0976 (8) 0.1281 (9) 0.0771 (6) 0.0595 (7) 0.0531 (6) 0.0170 (6)
C25 0.0459 (19) 0.069 (2) 0.066 (2) 0.0127 (16) 0.0333 (16) 0.0015 (16)
S26 0.0369 (4) 0.0554 (5) 0.0466 (4) −0.0024 (4) 0.0151 (3) −0.0039 (4)
O27 0.0521 (13) 0.0545 (13) 0.0673 (14) 0.0069 (11) 0.0176 (11) 0.0104 (11)
O28 0.0590 (15) 0.1053 (19) 0.0566 (13) 0.0177 (13) 0.0296 (11) 0.0210 (13)
O29 0.0442 (13) 0.0904 (17) 0.0758 (15) −0.0218 (12) 0.0157 (11) −0.0182 (13)
C30 0.053 (2) 0.069 (2) 0.063 (2) 0.0070 (19) 0.0048 (17) −0.0033 (18)
F31 0.0796 (16) 0.0704 (14) 0.1195 (18) −0.0186 (12) −0.0069 (14) −0.0203 (13)
F32 0.1092 (19) 0.130 (2) 0.0568 (12) 0.0208 (15) 0.0297 (12) −0.0186 (13)
F33 0.0931 (17) 0.0805 (15) 0.1065 (17) 0.0384 (13) 0.0016 (14) −0.0116 (13)

Geometric parameters (Å, °)

C1—C2 1.349 (4) C13—C14 1.428 (4)
C1—C11 1.417 (4) C15—O17 1.186 (3)
C1—H1 0.9300 C15—O16 1.334 (3)
C2—C3 1.402 (5) O16—C18 1.423 (3)
C2—H2 0.9300 C18—C23 1.364 (4)
C3—C4 1.354 (5) C18—C19 1.367 (4)
C3—H3 0.9300 C19—C20 1.384 (4)
C4—C12 1.415 (4) C19—H19 0.9300
C4—H4 0.9300 C20—C21 1.366 (4)
C5—C6 1.353 (5) C20—H20 0.9300
C5—C14 1.407 (4) C21—C22 1.368 (4)
C5—H5 0.9300 C21—Cl24 1.739 (3)
C6—C7 1.401 (5) C22—C23 1.386 (4)
C6—H6 0.9300 C22—H22 0.9300
C7—C8 1.341 (5) C23—H23 0.9300
C7—H7 0.9300 C25—H25A 0.9600
C8—C13 1.418 (4) C25—H25B 0.9600
C8—H8 0.9300 C25—H25C 0.9600
C9—C13 1.386 (4) S26—O28 1.427 (2)
C9—C11 1.391 (4) S26—O29 1.434 (2)
C9—C15 1.506 (4) S26—O27 1.434 (2)
N10—C12 1.367 (4) S26—C30 1.801 (4)
N10—C14 1.372 (3) C30—F33 1.330 (4)
N10—C25 1.485 (3) C30—F31 1.333 (4)
C11—C12 1.429 (4) C30—F32 1.335 (4)
C2—C1—C11 121.2 (3) C5—C14—C13 118.9 (3)
C2—C1—H1 119.4 O17—C15—O16 125.0 (3)
C11—C1—H1 119.4 O17—C15—C9 122.7 (3)
C1—C2—C3 119.3 (3) O16—C15—C9 112.2 (2)
C1—C2—H2 120.4 C15—O16—C18 116.4 (2)
C3—C2—H2 120.4 C23—C18—C19 122.7 (3)
C4—C3—C2 122.5 (3) C23—C18—O16 118.8 (3)
C4—C3—H3 118.8 C19—C18—O16 118.3 (2)
C2—C3—H3 118.8 C18—C19—C20 118.3 (3)
C3—C4—C12 119.6 (3) C18—C19—H19 120.8
C3—C4—H4 120.2 C20—C19—H19 120.8
C12—C4—H4 120.2 C21—C20—C19 119.5 (3)
C6—C5—C14 119.7 (3) C21—C20—H20 120.3
C6—C5—H5 120.1 C19—C20—H20 120.3
C14—C5—H5 120.1 C20—C21—C22 121.8 (3)
C5—C6—C7 122.2 (3) C20—C21—Cl24 119.2 (3)
C5—C6—H6 118.9 C22—C21—Cl24 119.0 (2)
C7—C6—H6 118.9 C21—C22—C23 119.1 (3)
C8—C7—C6 119.4 (3) C21—C22—H22 120.4
C8—C7—H7 120.3 C23—C22—H22 120.4
C6—C7—H7 120.3 C18—C23—C22 118.6 (3)
C7—C8—C13 121.5 (3) C18—C23—H23 120.7
C7—C8—H8 119.3 C22—C23—H23 120.7
C13—C8—H8 119.3 N10—C25—H25A 109.5
C13—C9—C11 121.7 (2) N10—C25—H25B 109.5
C13—C9—C15 118.9 (3) H25A—C25—H25B 109.5
C11—C9—C15 119.1 (3) N10—C25—H25C 109.5
C12—N10—C14 122.3 (2) H25A—C25—H25C 109.5
C12—N10—C25 118.6 (2) H25B—C25—H25C 109.5
C14—N10—C25 119.1 (2) O28—S26—O29 115.20 (14)
C9—C11—C1 122.9 (3) O28—S26—O27 115.00 (13)
C9—C11—C12 118.2 (3) O29—S26—O27 115.57 (14)
C1—C11—C12 118.9 (3) O28—S26—C30 103.23 (17)
N10—C12—C4 121.8 (3) O29—S26—C30 102.62 (16)
N10—C12—C11 119.6 (3) O27—S26—C30 102.48 (14)
C4—C12—C11 118.6 (3) F33—C30—F31 107.0 (3)
C9—C13—C8 122.9 (3) F33—C30—F32 106.6 (3)
C9—C13—C14 118.8 (3) F31—C30—F32 106.6 (3)
C8—C13—C14 118.3 (3) F33—C30—S26 112.6 (2)
N10—C14—C5 122.0 (2) F31—C30—S26 112.0 (2)
N10—C14—C13 119.1 (2) F32—C30—S26 111.6 (3)
C11—C1—C2—C3 0.1 (5) C6—C5—C14—C13 1.1 (5)
C1—C2—C3—C4 0.9 (5) C9—C13—C14—N10 −1.0 (4)
C2—C3—C4—C12 −1.3 (5) C8—C13—C14—N10 178.3 (3)
C14—C5—C6—C7 −0.3 (6) C9—C13—C14—C5 179.6 (3)
C5—C6—C7—C8 −0.6 (7) C8—C13—C14—C5 −1.1 (4)
C6—C7—C8—C13 0.6 (6) C13—C9—C15—O17 −82.2 (4)
C13—C9—C11—C1 −176.2 (3) C11—C9—C15—O17 92.9 (4)
C15—C9—C11—C1 8.8 (4) C13—C9—C15—O16 96.9 (3)
C13—C9—C11—C12 4.3 (4) C11—C9—C15—O16 −88.0 (3)
C15—C9—C11—C12 −170.7 (2) O17—C15—O16—C18 1.9 (4)
C2—C1—C11—C9 179.9 (3) C9—C15—O16—C18 −177.1 (2)
C2—C1—C11—C12 −0.6 (4) C15—O16—C18—C23 −96.8 (3)
C14—N10—C12—C4 175.5 (2) C15—O16—C18—C19 86.8 (3)
C25—N10—C12—C4 −6.3 (4) C23—C18—C19—C20 0.4 (4)
C14—N10—C12—C11 −4.7 (4) O16—C18—C19—C20 176.7 (3)
C25—N10—C12—C11 173.5 (2) C18—C19—C20—C21 0.1 (5)
C3—C4—C12—N10 −179.4 (3) C19—C20—C21—C22 −0.9 (5)
C3—C4—C12—C11 0.8 (4) C19—C20—C21—Cl24 179.1 (2)
C9—C11—C12—N10 −0.1 (4) C20—C21—C22—C23 1.1 (5)
C1—C11—C12—N10 −179.6 (2) Cl24—C21—C22—C23 −178.9 (2)
C9—C11—C12—C4 179.7 (2) C19—C18—C23—C22 −0.2 (4)
C1—C11—C12—C4 0.2 (4) O16—C18—C23—C22 −176.4 (2)
C11—C9—C13—C8 177.0 (3) C21—C22—C23—C18 −0.6 (4)
C15—C9—C13—C8 −8.0 (4) O28—S26—C30—F33 −60.1 (3)
C11—C9—C13—C14 −3.8 (4) O29—S26—C30—F33 60.0 (3)
C15—C9—C13—C14 171.2 (2) O27—S26—C30—F33 −179.9 (3)
C7—C8—C13—C9 179.5 (3) O28—S26—C30—F31 60.5 (3)
C7—C8—C13—C14 0.3 (5) O29—S26—C30—F31 −179.4 (2)
C12—N10—C14—C5 −175.4 (3) O27—S26—C30—F31 −59.2 (3)
C25—N10—C14—C5 6.4 (4) O28—S26—C30—F32 180.0 (2)
C12—N10—C14—C13 5.2 (4) O29—S26—C30—F32 −60.0 (3)
C25—N10—C14—C13 −173.0 (2) O27—S26—C30—F32 60.2 (3)
C6—C5—C14—N10 −178.3 (3)

Hydrogen-bond geometry (Å, °)

Cg4 is the centroid of the C18–C23 ring.
D—H···A D—H H···A D···A D—H···A
C3—H3···O28i 0.93 2.59 3.328 (5) 136
C4—H4···O28 0.93 2.45 3.370 (4) 171
C5—H5···O27ii 0.93 2.39 3.258 (4) 154
C6—H6···O29ii 0.93 2.54 3.304 (5) 140
C8—H8···O29iii 0.93 2.59 3.332 (4) 137
C19—H19···O29iii 0.93 2.44 3.349 (4) 165
C25—H25C···O27 0.96 2.51 3.387 (4) 152
C25—H25B···Cg4iv 0.96 2.65 3.519 (4) 151

Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) −x+3/2, y−1/2, −z+1/2; (iii) x−1, y, z; (iv) −x+1, −y+1, −z+1.

Table 2 C–F···π interactions (Å,°).

Cg1 and Cg3 are the centroids of the C9/N10/C11–C14 and C5–C8/C13/C14 rings, respectively.

X I J I···J X···J XI···J
C30 F31 Cg1ii 3.570 (3) 3.916 (4) 94.4 (2)
C30 F32 Cg1ii 3.337 (3) 3.916 (4) 105.8 (2)
C30 F33 Cg3ii 3.387 (3) 4.073 (4) 111.9 (2)

Symmetry code: (ii) -x + 3/2, y - 1/2, -z + 1/2.

Table 3 π–π interactions (Å,°).

I J CgI···CgJ Dihedral angle CgI_Perp CgI_Offset
2 4v 3.987 (2) 2.96 (15) 3.477 (2) 1.951 (2)

Symmetry code: (v) –x + 1, –y + 2, –z + 1.Notes: Cg2 and Cg4 are the centroids of the C1–C4/C11/C12 and C18–C23 rings, respectively. CgI···CgJ is the distance between ring centroids. The dihedral angle is that between the planes of the rings I and J. CgI_Perp is the perpendicular distance of CgI from ring J. CgI_Offset is the distance between CgI and perpendicular projection of CgJ on ring I.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5039).

References

  1. Brown, R. C., Li, Z., Rutter, A. J., Mu, X., Weeks, O. H., Smith, K. & Weeks, I. (2009). Org. Biomol. Chem.7, 386–394. [DOI] [PubMed]
  2. Dorn, T., Janiak, C. & Abu-Shandi, K. (2005). CrystEngComm, 7, 633–641.
  3. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  4. Hunter, C. A., Lawson, K. R., Perkins, J. & Urch, C. J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 651–669.
  5. King, D. W., Cooper, W. J., Rusak, S. A., Peake, B. M., Kiddle, J. J., O’Sullivan, D. W., Melamed, M. L., Morgan, C. R. & Theberge, S. M. (2007). Anal. Chem.79, 4169–4176. [DOI] [PubMed]
  6. Novoa, J. J., Mota, F. & D’Oria, E. (2006). Hydrogen Bonding – New Insights, edited by S. Grabowski, pp. 193–244. The Netherlands: Springer.
  7. Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.
  8. Rak, J., Skurski, P. & Błażejowski, J. (1999). J. Org. Chem.64, 3002–3008. [DOI] [PubMed]
  9. Roda, A., Guardigli, M., Michelini, E., Mirasoli, M. & Pasini, P. (2003). Anal. Chem.75, 462–470. [PubMed]
  10. Sato, N. (1996). Tetrahedron Lett.37, 8519–8522.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Sikorski, A., Krzymiński, K., Konitz, A. & Błażejowski, J. (2005). Acta Cryst. C61, o227–o230. [DOI] [PubMed]
  13. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  14. Takahashi, O., Kohno, Y., Iwasaki, S., Saito, K., Iwaoka, M., Tomada, S., Umezawa, Y., Tsuboyama, S. & Nishio, M. (2001). Bull. Chem. Soc. Jpn.74, 2421–2430.
  15. Trzybiński, D., Krzymiński, K., Sikorski, A. & Błażejowski, J. (2010). Acta Cryst. E66, o1313–o1314. [DOI] [PMC free article] [PubMed]
  16. Zomer, G. & Jacquemijns, M. (2001). Chemiluminescence in Analytical Chemistry, edited by A. M. Garcia-Campana & W. R. G. Baeyens, pp. 529–549. New York: Marcel Dekker.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810039541/xu5039sup1.cif

e-66-o2771-sup1.cif (21.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810039541/xu5039Isup2.hkl

e-66-o2771-Isup2.hkl (185.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES