Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Oct 23;66(Pt 11):m1443–m1444. doi: 10.1107/S1600536810042054

Diaqua­bis­(4-carb­oxy-2-propyl-1H-imidazole-5-carboxyl­ato-κ2 N 3,O 4)cobalt(II) N,N-dimethyl­formamide disolvate

Shi-Jie Li a, Li-Li Ji a, Wen-Dong Song b,*, Shi-Wei Hu a, Pei-Wen Qin c
PMCID: PMC3009030  PMID: 21588865

Abstract

In the title complex, [Co(C8H9N2O4)2(H2O)2]·2C3H7NO, the CoII cation (site symmetry Inline graphic) is six-coordinated by two 5-carb­oxy-2-propyl-1H-imidazole-4-carboxyl­ate ligands and two water mol­ecules in a distorted octa­hedral environment. In the crystal structure, the complex mol­ecules and dimethyl­formamide solvent mol­ecules are linked by extensive O—H⋯O and N—H⋯O hydrogen bonding into sheets lying parallel to (21Inline graphic).

Related literature

For our past work based on the 2-propyl-1H-imidazole-4,5-carboxyl­ate (H3pimda) ligand, see: Yan et al. (2010); Li et al. (2010a ,b ,c ,d ); Song et al. (2010); He et al. (2010); Fan et al. (2010). For Co complexes of a similar ligand, see: Lu et al. (2008); Wang et al. (2004).graphic file with name e-66-m1443-scheme1.jpg

Experimental

Crystal data

  • [Co(C8H9N2O4)2(H2O)2]·2C3H7NO

  • M r = 635.50

  • Triclinic, Inline graphic

  • a = 7.3325 (7) Å

  • b = 9.330 (1) Å

  • c = 11.2255 (12) Å

  • α = 76.930 (1)°

  • β = 87.564 (2)°

  • γ = 68.857 (1)°

  • V = 697.06 (12) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.69 mm−1

  • T = 298 K

  • 0.28 × 0.16 × 0.12 mm

Data collection

  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007) T min = 0.831, T max = 0.922

  • 3602 measured reflections

  • 2393 independent reflections

  • 1785 reflections with I > 2σ(I)

  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046

  • wR(F 2) = 0.120

  • S = 1.06

  • 2393 reflections

  • 191 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.52 e Å−3

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810042054/jh2216sup1.cif

e-66-m1443-sup1.cif (19.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810042054/jh2216Isup2.hkl

e-66-m1443-Isup2.hkl (117.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5D⋯O4i 0.83 2.12 2.946 (3) 174
O5—H5C⋯O4ii 0.83 1.94 2.773 (3) 175
O2—H2A⋯O3 0.82 1.66 2.478 (3) 177
N2—H2⋯O6iii 0.86 1.84 2.685 (4) 166

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The work was supported by the Nonprofit Industry Foundation of the National Ocean Administration of China (grant No. 2000905021), the Guangdong Oceanic Fisheries Technology Promotion Project [grant No. A2009003–018(c)], the Guangdong Chinese Academy of Science comprehensive strategic cooperation project (grant No. 2009B091300121), the Guangdong Province key project in the field of social development [grant No. A2009011–007(c)], the Science and Technology Department of Guangdong Province Project (grant No. 00087061110314018) and the Guangdong Natural Science Fundation (No. 9252408801000002)

supplementary crystallographic information

Comment

Design of a metal-organic framework via deliberate selection of metals and multifunctional ligands is one of the most attractive topics because of the fascinating structural diversity and potential applications in catalysis, chirality, conductivity, luminescence, magnetism, sensors, nonlinear optics, and porosity. 2-propyl-1H-imidazole-4,5-carboxylate(H3pimda) ligand as one derivative of H3IDC with efficient N,O-donors has been used to obtain new metal-organic complexes by our research group, such as poly[diaquabis(5-carboxy-2-propyl-1H-imidazole-4-carboxylato-k3 N3, O4,O5)calcium(II)](Song et al., 2010), [diaquabis(5-carboxy-2-propyl-1H-imidazole-4-carboxylato-k2N3,O4) manganese(II)]N,N-dimethylformamide(Yan et al., 2010), [Diaquabis(5-carboxy-2-propyl-1H-imidazole-4-carboxylato-k2N3,O4)nickle(II)]N,N-dimethylformamide disolvate(Li et al., 2010a), Diaquabis(4-carboxy-2-propyl-1H-imidazole-5-carboxylato- k2N3,O4)copper(II) N,N-dimethylformamide disolvate(He et al., 2010), Diaquabis(5-carboxy-2-propyl-1H-imidazole- 4-carboxylato-k2N3,O4)nickle(II) tetrahedrate(Fan et al., 2010), Diaquabis(5-carboxy-2-propyl-1H-imidazole-4-carboxylato- k2N3,O4)-manganese(II) 3.5-hydrate(Li et al. 2010c), Diaquabis (5-carboxy-2-propyl-1H-imidazole-4-carboxylato-K2N3,O4)zinc(II) 3.5-hydrate(Li et al. 2010b), Diaquabis(5-carboxy-2-propyl-1H- imidazole-4-carboxylato-k2N3,O4)cadmium(II) 3.5-hydrate (Li et al. 2010d), In this paper, we will report the synthesis and structure of a new CoII complex based the same ligand.

As illustrated in figure 1, the title complex molecule is isomorphous with Ni(II), Mn(II) and Cu(II) analogs (Li et al., 2010a,b,c,d; Yan et al., 2010; He et al., 2010), Similar structural description applies to the present isomorphous complex.the CoII cation lying on the inversion center, is six-coordinated CoN2O4 in a slightly distorted octahedral geometry, constructed by the two pairs of N and O atoms from H2pimda in the equatorial plane, and two coordinate water O atoms occipying the axial position. The Co—O bond lengths and Co—N bond lengths, all of which are within the range of those observed for other Co complexes based on the similar ligand (Lu et al., 2008; Wang et al., 2004). Each H3pimda adopts bidentate coordination mode to chelate CoII atom through imidazole N atom and O atom from the protonated carboxyl group, the complex molecules and dimethylformamide solvent molecules are linked by extensive O—H···O and N—H···O hydrogen bonds into a two-dimensional supramolecular network parallel to (001).

Experimental

A mixture of Co(NO3)2 (0.5 mmol, 0.06 g) and 2-propyl-1H-imidazole-4,5-dicarboxylic acid(0.5 mmol, 0.99 g) in 15 ml of DMF solution was sealed in an autoclave equipped with a Teflon liner (20 ml) and then heated at 413k for 3 days. Crystals of the title compound were obtained by slow evaporation of the solvent at room temperature.

Refinement

Water H atoms were located in a difference Fourier map and were allowed to ride on the parent atom, with Uiso(H) = 1.5Ueq(O). Carboxyl H atoms were located in a difference map and refined with distance restraints, Uiso(H) = 1.5Ueq(O). Other H atoms were placed at calculated positions and were treated as riding on parent atoms with C—H = 0.96 (methyl), 0.97 (methylene) and N—H = 0.86 Å, Uiso(H) = 1.2 or 1.5Ueq(C,N).

Figures

Fig. 1.

Fig. 1.

The structure of the title compound, showing the atomic numbering scheme. Non-H atoms are shown with 30% probability displacement ellipsoids. (Symmetry codes: (i)1 - x,1 - y,1 - z;)

Fig. 2.

Fig. 2.

A view of the infinite two-dimensional structure. (H atoms are omitted for clarity)

Crystal data

[Co(C8H9N2O4)2(H2O)2]·2C3H7NO Z = 1
Mr = 635.50 F(000) = 333
Triclinic, P1 Dx = 1.514 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.3325 (7) Å Cell parameters from 1702 reflections
b = 9.330 (1) Å θ = 2.5–25.9°
c = 11.2255 (12) Å µ = 0.69 mm1
α = 76.930 (1)° T = 298 K
β = 87.564 (2)° Cubic, purple
γ = 68.857 (1)° 0.28 × 0.16 × 0.12 mm
V = 697.06 (12) Å3

Data collection

Bruker SMART 1000 CCD area-detector diffractometer 2393 independent reflections
Radiation source: fine-focus sealed tube 1785 reflections with I > 2σ(I)
graphite Rint = 0.025
φ and ω scans θmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2007) h = −8→8
Tmin = 0.831, Tmax = 0.922 k = −11→10
3602 measured reflections l = −13→12

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0593P)2 + 0.0702P] where P = (Fo2 + 2Fc2)/3
2393 reflections (Δ/σ)max = 0.001
191 parameters Δρmax = 0.37 e Å3
0 restraints Δρmin = −0.52 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Co1 0.5000 0.5000 0.5000 0.0276 (2)
N1 0.6372 (4) 0.2538 (3) 0.5508 (2) 0.0262 (6)
N2 0.8031 (4) −0.0015 (3) 0.6076 (2) 0.0299 (7)
H2 0.8735 −0.0911 0.6524 0.036*
N3 0.1217 (5) 0.4898 (4) 0.8633 (3) 0.0431 (8)
O1 0.4446 (3) 0.4305 (3) 0.3378 (2) 0.0342 (6)
O2 0.4995 (4) 0.2241 (3) 0.2558 (2) 0.0410 (6)
H2A 0.5618 0.1289 0.2735 0.061*
O3 0.6877 (4) −0.0632 (3) 0.3176 (2) 0.0422 (6)
O4 0.8630 (4) −0.2427 (3) 0.4793 (2) 0.0415 (6)
O5 0.2300 (3) 0.4898 (3) 0.5643 (2) 0.0393 (6)
H5C 0.2094 0.4117 0.5526 0.047*
H5D 0.1309 0.5698 0.5403 0.047*
O6 0.0385 (4) 0.7471 (3) 0.7696 (3) 0.0600 (8)
C1 0.5195 (5) 0.2858 (4) 0.3436 (3) 0.0300 (8)
C2 0.6307 (5) 0.1832 (4) 0.4565 (3) 0.0257 (7)
C3 0.7326 (5) 0.0238 (4) 0.4905 (3) 0.0274 (7)
C4 0.7665 (5) −0.1054 (4) 0.4262 (3) 0.0325 (8)
C5 0.7426 (5) 0.1391 (4) 0.6406 (3) 0.0288 (8)
C6 0.7851 (6) 0.1544 (4) 0.7649 (3) 0.0380 (9)
H6A 0.7434 0.2655 0.7652 0.046*
H6B 0.9254 0.1081 0.7822 0.046*
C7 0.6851 (7) 0.0760 (5) 0.8653 (3) 0.0535 (11)
H7A 0.7339 −0.0364 0.8688 0.064*
H7B 0.5458 0.1168 0.8449 0.064*
C8 0.7158 (7) 0.1009 (6) 0.9906 (3) 0.0587 (12)
H8A 0.8492 0.0418 1.0192 0.088*
H8B 0.6301 0.0656 1.0467 0.088*
H8C 0.6876 0.2110 0.9853 0.088*
C9 0.0104 (6) 0.6217 (5) 0.7892 (4) 0.0482 (10)
H9 −0.0967 0.6196 0.7490 0.058*
C10 0.2965 (6) 0.4851 (5) 0.9218 (4) 0.0659 (13)
H10A 0.4092 0.4333 0.8796 0.099*
H10B 0.3077 0.4281 1.0055 0.099*
H10C 0.2887 0.5907 0.9190 0.099*
C11 0.0896 (9) 0.3443 (6) 0.8724 (5) 0.0855 (17)
H11A −0.0306 0.3653 0.8290 0.128*
H11B 0.0817 0.2973 0.9570 0.128*
H11C 0.1962 0.2733 0.8375 0.128*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Co1 0.0338 (4) 0.0169 (4) 0.0301 (4) −0.0063 (3) −0.0011 (3) −0.0059 (3)
N1 0.0333 (16) 0.0169 (15) 0.0287 (15) −0.0088 (12) −0.0018 (12) −0.0059 (12)
N2 0.0349 (17) 0.0144 (14) 0.0346 (16) −0.0038 (12) −0.0030 (13) −0.0019 (12)
N3 0.049 (2) 0.0271 (18) 0.0475 (19) −0.0089 (16) −0.0012 (16) −0.0055 (15)
O1 0.0437 (15) 0.0207 (13) 0.0315 (13) −0.0046 (11) −0.0077 (11) −0.0025 (10)
O2 0.0544 (18) 0.0285 (14) 0.0357 (14) −0.0071 (13) −0.0098 (12) −0.0098 (12)
O3 0.0545 (17) 0.0317 (15) 0.0424 (16) −0.0108 (13) 0.0002 (13) −0.0197 (12)
O4 0.0462 (16) 0.0189 (14) 0.0572 (17) −0.0063 (12) −0.0018 (13) −0.0125 (12)
O5 0.0390 (15) 0.0270 (14) 0.0549 (16) −0.0118 (12) 0.0054 (12) −0.0158 (12)
O6 0.066 (2) 0.0279 (16) 0.070 (2) −0.0047 (14) −0.0209 (16) 0.0049 (14)
C1 0.033 (2) 0.027 (2) 0.0322 (19) −0.0115 (16) 0.0004 (15) −0.0091 (16)
C2 0.0293 (18) 0.0177 (16) 0.0285 (17) −0.0072 (14) 0.0001 (14) −0.0043 (14)
C3 0.0319 (19) 0.0228 (18) 0.0295 (18) −0.0119 (15) 0.0023 (15) −0.0067 (14)
C4 0.030 (2) 0.025 (2) 0.045 (2) −0.0092 (16) 0.0079 (17) −0.0144 (17)
C5 0.034 (2) 0.0179 (18) 0.0322 (19) −0.0084 (15) −0.0024 (15) −0.0016 (15)
C6 0.046 (2) 0.030 (2) 0.036 (2) −0.0113 (17) −0.0087 (17) −0.0054 (16)
C7 0.068 (3) 0.061 (3) 0.040 (2) −0.029 (2) 0.009 (2) −0.019 (2)
C8 0.065 (3) 0.068 (3) 0.039 (2) −0.019 (3) 0.006 (2) −0.014 (2)
C9 0.043 (2) 0.050 (3) 0.048 (2) −0.011 (2) −0.0044 (19) −0.012 (2)
C10 0.049 (3) 0.055 (3) 0.071 (3) −0.004 (2) −0.017 (2) 0.009 (2)
C11 0.126 (5) 0.045 (3) 0.094 (4) −0.043 (3) 0.017 (4) −0.016 (3)

Geometric parameters (Å, °)

Co1—N1i 2.098 (3) O6—C9 1.230 (5)
Co1—N1 2.098 (3) C1—C2 1.471 (5)
Co1—O5i 2.105 (2) C2—C3 1.372 (4)
Co1—O5 2.105 (2) C3—C4 1.482 (4)
Co1—O1i 2.165 (2) C5—C6 1.491 (4)
Co1—O1 2.165 (2) C6—C7 1.513 (5)
N1—C5 1.319 (4) C6—H6A 0.9700
N1—C2 1.377 (4) C6—H6B 0.9700
N2—C5 1.357 (4) C7—C8 1.515 (5)
N2—C3 1.371 (4) C7—H7A 0.9700
N2—H2 0.8600 C7—H7B 0.9700
N3—C9 1.320 (5) C8—H8A 0.9600
N3—C11 1.440 (5) C8—H8B 0.9600
N3—C10 1.447 (5) C8—H8C 0.9600
O1—C1 1.248 (4) C9—H9 0.9300
O2—C1 1.286 (4) C10—H10A 0.9600
O2—H2A 0.8200 C10—H10B 0.9600
O3—C4 1.286 (4) C10—H10C 0.9600
O4—C4 1.238 (4) C11—H11A 0.9600
O5—H5C 0.8333 C11—H11B 0.9600
O5—H5D 0.8318 C11—H11C 0.9600
N1i—Co1—N1 180.0 O4—C4—C3 119.3 (3)
N1i—Co1—O5i 92.07 (10) O3—C4—C3 115.5 (3)
N1—Co1—O5i 87.93 (10) N1—C5—N2 110.7 (3)
N1i—Co1—O5 87.93 (10) N1—C5—C6 126.4 (3)
N1—Co1—O5 92.07 (10) N2—C5—C6 122.8 (3)
O5i—Co1—O5 180.0 C5—C6—C7 113.5 (3)
N1i—Co1—O1i 78.33 (9) C5—C6—H6A 108.9
N1—Co1—O1i 101.67 (9) C7—C6—H6A 108.9
O5i—Co1—O1i 88.69 (9) C5—C6—H6B 108.9
O5—Co1—O1i 91.31 (9) C7—C6—H6B 108.9
N1i—Co1—O1 101.67 (9) H6A—C6—H6B 107.7
N1—Co1—O1 78.33 (9) C6—C7—C8 113.8 (3)
O5i—Co1—O1 91.31 (9) C6—C7—H7A 108.8
O5—Co1—O1 88.69 (9) C8—C7—H7A 108.8
O1i—Co1—O1 180.0 C6—C7—H7B 108.8
C5—N1—C2 105.8 (3) C8—C7—H7B 108.8
C5—N1—Co1 142.0 (2) H7A—C7—H7B 107.7
C2—N1—Co1 111.9 (2) C7—C8—H8A 109.5
C5—N2—C3 108.3 (3) C7—C8—H8B 109.5
C5—N2—H2 125.8 H8A—C8—H8B 109.5
C3—N2—H2 125.8 C7—C8—H8C 109.5
C9—N3—C11 121.0 (4) H8A—C8—H8C 109.5
C9—N3—C10 119.5 (3) H8B—C8—H8C 109.5
C11—N3—C10 118.7 (4) O6—C9—N3 124.5 (4)
C1—O1—Co1 114.2 (2) O6—C9—H9 117.7
C1—O2—H2A 109.5 N3—C9—H9 117.7
Co1—O5—H5C 113.1 N3—C10—H10A 109.5
Co1—O5—H5D 116.9 N3—C10—H10B 109.5
H5C—O5—H5D 108.6 H10A—C10—H10B 109.5
O1—C1—O2 122.4 (3) N3—C10—H10C 109.5
O1—C1—C2 118.2 (3) H10A—C10—H10C 109.5
O2—C1—C2 119.5 (3) H10B—C10—H10C 109.5
C3—C2—N1 110.3 (3) N3—C11—H11A 109.5
C3—C2—C1 132.5 (3) N3—C11—H11B 109.5
N1—C2—C1 117.2 (3) H11A—C11—H11B 109.5
N2—C3—C2 104.9 (3) N3—C11—H11C 109.5
N2—C3—C4 122.9 (3) H11A—C11—H11C 109.5
C2—C3—C4 132.2 (3) H11B—C11—H11C 109.5
O4—C4—O3 125.2 (3)
N1i—Co1—N1—C5 156 (25) O1—C1—C2—N1 2.7 (5)
O5i—Co1—N1—C5 85.2 (4) O2—C1—C2—N1 −175.9 (3)
O5—Co1—N1—C5 −94.8 (4) C5—N2—C3—C2 0.4 (3)
O1i—Co1—N1—C5 −3.0 (4) C5—N2—C3—C4 −178.4 (3)
O1—Co1—N1—C5 177.0 (4) N1—C2—C3—N2 −0.5 (3)
N1i—Co1—N1—C2 −17 (25) C1—C2—C3—N2 −179.6 (3)
O5i—Co1—N1—C2 −88.1 (2) N1—C2—C3—C4 178.1 (3)
O5—Co1—N1—C2 91.9 (2) C1—C2—C3—C4 −1.0 (6)
O1i—Co1—N1—C2 −176.3 (2) N2—C3—C4—O4 −0.3 (5)
O1—Co1—N1—C2 3.7 (2) C2—C3—C4—O4 −178.6 (3)
N1i—Co1—O1—C1 177.5 (2) N2—C3—C4—O3 178.7 (3)
N1—Co1—O1—C1 −2.5 (2) C2—C3—C4—O3 0.4 (5)
O5i—Co1—O1—C1 85.2 (2) C2—N1—C5—N2 −0.1 (4)
O5—Co1—O1—C1 −94.8 (2) Co1—N1—C5—N2 −173.7 (2)
O1i—Co1—O1—C1 26 (45) C2—N1—C5—C6 −177.2 (3)
Co1—O1—C1—O2 179.3 (2) Co1—N1—C5—C6 9.3 (6)
Co1—O1—C1—C2 0.7 (4) C3—N2—C5—N1 −0.2 (4)
C5—N1—C2—C3 0.4 (4) C3—N2—C5—C6 177.1 (3)
Co1—N1—C2—C3 176.1 (2) N1—C5—C6—C7 110.9 (4)
C5—N1—C2—C1 179.6 (3) N2—C5—C6—C7 −65.8 (5)
Co1—N1—C2—C1 −4.7 (3) C5—C6—C7—C8 −175.9 (3)
O1—C1—C2—C3 −178.2 (3) C11—N3—C9—O6 −174.1 (4)
O2—C1—C2—C3 3.2 (6) C10—N3—C9—O6 −3.8 (6)

Symmetry codes: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O5—H5D···O4ii 0.83 2.12 2.946 (3) 174
O5—H5C···O4iii 0.83 1.94 2.773 (3) 175
O2—H2A···O3 0.82 1.66 2.478 (3) 177
N2—H2···O6iv 0.86 1.84 2.685 (4) 166

Symmetry codes: (ii) x−1, y+1, z; (iii) −x+1, −y, −z+1; (iv) x+1, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2216).

References

  1. Bruker (2007). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Fan, R.-Z., Li, S.-J., Song, W.-D., Miao, D.-L. & Hu, S.-W. (2010). Acta Cryst. E66, m897–m898. [DOI] [PMC free article] [PubMed]
  3. He, L.-Z., Li, S.-J., Song, W.-D. & Miao, D.-L. (2010). Acta Cryst. E66, m896. [DOI] [PMC free article] [PubMed]
  4. Li, S.-J., Dong, J.-J., Song, W.-D., Yan, J.-B. & Li, S.-H. (2010d). Acta Cryst. E66, m1175–m1176. [DOI] [PMC free article] [PubMed]
  5. Li, S.-J., Miao, D.-L., Song, W.-D., Li, S.-H. & Yan, J.-B. (2010c). Acta Cryst. E66, m1096–m1097. [DOI] [PMC free article] [PubMed]
  6. Li, S.-J., Song, W.-D., Li, S.-H., Dong, J.-J. & Yan, J.-B. (2010b). Acta Cryst. E66, m1094–m1095. [DOI] [PMC free article] [PubMed]
  7. Li, S.-J., Yan, J.-B., Song, W.-D., Wang, H. & Miao, D.-L. (2010a). Acta Cryst. E66, m280. [DOI] [PMC free article] [PubMed]
  8. Lu, W. G., Gu, J. Z., Jiang, L., Tan, Y. M. & Lu, T. B. (2008). Cryst. Growth Des.8, 192–199.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Song, W.-D., Yan, J.-B., Li, S.-J., Miao, D.-L. & Li, X.-F. (2010). Acta Cryst. E66, m53.
  11. Wang, Y.-L., Cao, R. & Bi, W.-H. (2004). Acta Cryst. C60, m609–m611. [DOI] [PubMed]
  12. Yan, J.-B., Li, S.-J., Song, W.-D., Wang, H. & Miao, D.-L. (2010). Acta Cryst. E66, m99. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810042054/jh2216sup1.cif

e-66-m1443-sup1.cif (19.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810042054/jh2216Isup2.hkl

e-66-m1443-Isup2.hkl (117.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES