Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Oct 20;66(Pt 11):o2865. doi: 10.1107/S1600536810040705

2-Hy­droxy-3-oct­yloxy-N,N,N-trimethyl­propan-1-aminium bromide

Jiuqiang Liu a, Zengbin Wei a,*, Xilian Wei a, Chong Zhang a
PMCID: PMC3009037  PMID: 21589047

Abstract

In the title compound, C14H32NO2 +·Br, organic cationsstacked parallel to the a axis andbromide anions placed between the head groups of the cations form ionic pairs via weak inter­molecular O—H⋯Br hydrogen bonds. The octyl chain in the cation adopts an all-trans conformation. The O—CH2—CH(—OH)—CH2 portion of the molecule is disordered over two sets of sites with occupancy factors of 0.57 (3) and 0.47 (3).

Related literature

For uses of cationic surfacta­nts, see: Zhao et al. (1997, 2010). For bond lengths and angles, see: Koh et al. (1993). graphic file with name e-66-o2865-scheme1.jpg

Experimental

Crystal data

  • C14H32NO2 +·Br

  • M r = 326.32

  • Monoclinic, Inline graphic

  • a = 5.9713 (11) Å

  • b = 7.4780 (12) Å

  • c = 19.992 (2) Å

  • β = 92.923 (1)°

  • V = 891.6 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.30 mm−1

  • T = 298 K

  • 0.42 × 0.30 × 0.04 mm

Data collection

  • Siemens SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.445, T max = 0.914

  • 4642 measured reflections

  • 2827 independent reflections

  • 1168 reflections with I > 2σ(I)

  • R int = 0.135

Refinement

  • R[F 2 > 2σ(F 2)] = 0.081

  • wR(F 2) = 0.199

  • S = 1.03

  • 2827 reflections

  • 211 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.74 e Å−3

  • Δρmin = −0.30 e Å−3

  • Absolute structure: Flack (1983), 1124 Friedel pairs

  • Flack parameter: 0.02 (7)

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810040705/jj2054sup1.cif

e-66-o2865-sup1.cif (21.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810040705/jj2054Isup2.hkl

e-66-o2865-Isup2.hkl (138.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯Br1i 0.82 2.50 3.32 (3) 171
O2′—H2′⋯Br1ii 0.82 2.27 3.05 (4) 160

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

We acknowledge the financial support of the National Natural Science Foundation of China (20673050) and the Shandong Province Science Foundation (2006B05).

supplementary crystallographic information

Comment

Cationic surfactants have attracted much attention due to their wide spread use in both household and industrial activities, such as in the production of cosmetics (Zhao et al., 1997) and polluted soil treatment (Zhao, et al., 2010). As a contribution to the chemistry of surfactants, we report here the synthesis and crystal structure of the title compound, C14H32Br1N1O2.

The asymmetric unit of the title compound consists of a 3-octyloxy-2-hydroxypropyl-N,N,N- trimethylpropan-1-aminium cation, and a bromide anion, (Fig. 1). Atoms C1:C1', C2:C2', C3:C3', O1:O1' and O2:O2' are disordered with site occupancies of 0.47 (3):0.53 (3). The C—C bond distances in the octyl chain are alternately short and long, the average of the short distances being 1.46 (6)Å and the average of the long distances being 1.49 (8) Å. All N—C bond lengths and C—N—C angles are within the usual ranges (Koh et al., 1993). The bond distances of O1—C3 and O1—C7 are 1.4 (3)and 1.44 (18) Å, respectively. The octyl chains of the cations form monolayers parallel to the (010) plane. Adjacent anions are connected by weak intermolecular O—H···Br interactions and organic cations stacked parallel along the a axis (Table 1, Fig. 2).

Experimental

The reaction was carried out under nitrogen atmosphere. Trimethylammonium bromide (0.12 mol) and octyl glycidyl ether (0.1 mol) were added to a stirred solution of ethanol (100 ml) and stirred at 315 K for 24 h. The resulting clear solution was evaporated under vacuum. Colourless crystals suitable for X-ray analysis were obtained by slow evaporation of an ethyl acetate solution over a period of two weeks. (yield 82%, m.p.340k) Anal. Calcd (%) for C14H32Br1N1O2 (Mr = 326.32): C, 51.48; H, 9.81; N, 4.29. Found (%): C, 51.52; H, 9.83; N, 4.26.

Refinement

All H atoms were placed geometrically and treated as riding on their parent atoms with O—H = 0.82 Å, C—H = 0.97 (methylene) Å [Uiso(H) = 1.2Ueq(C)], and C—H = 0.96 (methyl) Å [Uiso(H) = 1.5Ueq(C)]. Atoms C1, C2, C3, O1 and O2 were found to be disordered over two sites, and the ratio of the occupancy factors refined to 0.47 (3):0.53 (3), 0.47 (3):0.53 (3), 0.47 (3):0.53 (3), 0.47 (3):0.53 (3) and 0.47 (3):0.53 (3), for atoms C1:C1', C2:C2', C3:C3', O1:O1' and O2:O2', respectively.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with atom labels and 50% probability displacement ellipsoids. Atoms C1:C1', C2:C2', C3:C3', O1:O1' and O2:O2' with disordered site occupancies 0.47 (3):0.53 (3) are shown.

Fig. 2.

Fig. 2.

Crystal packing of the title compound, showing one extended chain structure, linked by weak O—H···Br hydrogen bonds (dashed lines).

Crystal data

C14H32NO2+·Br F(000) = 348
Mr = 326.32 Dx = 1.216 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2yb Cell parameters from 889 reflections
a = 5.9713 (11) Å θ = 3.1–28.4°
b = 7.4780 (12) Å µ = 2.30 mm1
c = 19.992 (2) Å T = 298 K
β = 92.923 (1)° Block, colourless
V = 891.6 (2) Å3 0.42 × 0.30 × 0.04 mm
Z = 2

Data collection

Siemens SMART CCD area-detector diffractometer 2827 independent reflections
Radiation source: fine-focus sealed tube 1168 reflections with I > 2σ(I)
graphite Rint = 0.135
phi and ω scans θmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan (SABABS; Sheldrick, 1996) h = −7→7
Tmin = 0.445, Tmax = 0.914 k = −7→8
4642 measured reflections l = −19→23

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.081 H-atom parameters constrained
wR(F2) = 0.199 w = 1/[σ2(Fo2) + (0.0713P)2] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max = 0.001
2827 reflections Δρmax = 0.74 e Å3
211 parameters Δρmin = −0.30 e Å3
1 restraint Absolute structure: Flack (1983), 1124 FRIEDEL PAIRS
Primary atom site location: structure-invariant direct methods Flack parameter: 0.02 (7)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Br1 0.66822 (19) 0.4416 (9) 0.40071 (6) 0.0909 (6)
N1 0.0535 (12) 0.941 (5) 0.3976 (4) 0.070 (2)
O1 −0.02 (4) 0.902 (10) 0.186 (9) 0.09 (2) 0.57 (3)
O2 −0.389 (6) 1.064 (4) 0.3144 (15) 0.077 (10) 0.57 (3)
H2 −0.3915 1.1580 0.3356 0.116* 0.57 (3)
C1 −0.039 (17) 0.883 (12) 0.330 (5) 0.08 (2) 0.57 (3)
H1A −0.1382 0.7816 0.3346 0.099* 0.57 (3)
H1B 0.0832 0.8449 0.3028 0.099* 0.57 (3)
C2 −0.168 (12) 1.034 (9) 0.293 (3) 0.079 (16) 0.57 (3)
H2A −0.0811 1.1452 0.2950 0.094* 0.57 (3)
C3 −0.205 (15) 0.969 (10) 0.221 (4) 0.08 (3) 0.57 (3)
H3A −0.3176 0.8756 0.2211 0.100* 0.57 (3)
H3B −0.2699 1.0678 0.1952 0.100* 0.57 (3)
O1' −0.01 (5) 0.970 (11) 0.192 (12) 0.09 (4) 0.43 (3)
O2' −0.364 (7) 0.801 (5) 0.3282 (19) 0.077 (13) 0.43 (3)
H2' −0.3683 0.6949 0.3386 0.116* 0.43 (3)
C1' −0.02 (2) 0.979 (13) 0.326 (6) 0.08 (3) 0.43 (3)
H1'1 0.1120 0.9954 0.3008 0.097* 0.43 (3)
H1'2 −0.1025 1.0912 0.3248 0.097* 0.43 (3)
C2' −0.168 (16) 0.834 (12) 0.292 (4) 0.08 (2) 0.43 (3)
H2'1 −0.0803 0.7237 0.2939 0.095* 0.43 (3)
C3' −0.22 (2) 0.870 (17) 0.218 (6) 0.09 (3) 0.43 (3)
H3'1 −0.3563 0.9451 0.2117 0.104* 0.43 (3)
H3'2 −0.2504 0.7592 0.1934 0.104* 0.43 (3)
C4 0.190 (5) 1.104 (5) 0.4099 (15) 0.099 (11)
H4A 0.2923 1.1176 0.3747 0.148*
H4B 0.2727 1.0933 0.4521 0.148*
H4C 0.0932 1.2064 0.4107 0.148*
C5 0.206 (4) 0.784 (5) 0.4109 (15) 0.096 (10)
H5A 0.3187 0.7822 0.3783 0.144*
H5B 0.1202 0.6759 0.4079 0.144*
H5C 0.2766 0.7947 0.4549 0.144*
C6 −0.1293 (12) 0.936 (4) 0.4460 (4) 0.078 (3)
H6A −0.0659 0.9507 0.4907 0.116*
H6B −0.2045 0.8222 0.4425 0.116*
H6C −0.2347 1.0298 0.4358 0.116*
C7 −0.0337 (12) 0.978 (4) 0.1194 (4) 0.104 (8)
H7A −0.0355 1.1079 0.1219 0.125* 0.57 (3)
H7B −0.1696 0.9387 0.0952 0.125* 0.57 (3)
H7C −0.0705 1.0997 0.1058 0.125* 0.43 (3)
H7D −0.1588 0.9023 0.1052 0.125* 0.43 (3)
C8 0.169 (2) 0.915 (5) 0.0850 (6) 0.103 (7)
H8A 0.2919 0.9934 0.0992 0.123*
H8B 0.2056 0.7973 0.1025 0.123*
C9 0.168 (2) 0.903 (4) 0.0123 (6) 0.112 (9)
H9A 0.0434 0.9736 −0.0059 0.135*
H9B 0.1380 0.7795 0.0001 0.135*
C10 0.375 (2) 0.961 (5) −0.0225 (6) 0.109 (5)
H10A 0.5057 0.9083 0.0006 0.131*
H10B 0.3888 1.0895 −0.0193 0.131*
C11 0.371 (3) 0.907 (5) −0.0954 (6) 0.122 (10)
H11A 0.3381 0.7804 −0.0983 0.146*
H11B 0.2489 0.9700 −0.1188 0.146*
C12 0.581 (2) 0.941 (7) −0.1320 (6) 0.117 (4)
H12A 0.6494 1.0475 −0.1121 0.141*
H12B 0.6818 0.8427 −0.1210 0.141*
C13 0.581 (3) 0.964 (7) −0.2030 (7) 0.131 (8)
H13A 0.5496 1.0895 −0.2123 0.157*
H13B 0.4562 0.8963 −0.2226 0.157*
C14 0.781 (3) 0.916 (7) −0.2394 (8) 0.151 (9)
H14A 0.9120 0.9673 −0.2171 0.227*
H14B 0.7654 0.9609 −0.2843 0.227*
H14C 0.7959 0.7882 −0.2404 0.227*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0819 (8) 0.0684 (8) 0.1204 (10) −0.001 (2) −0.0165 (6) 0.005 (2)
N1 0.056 (4) 0.076 (6) 0.078 (6) 0.00 (2) 0.007 (5) 0.011 (19)
O1 0.10 (4) 0.10 (3) 0.08 (4) 0.00 (6) 0.01 (3) 0.01 (5)
O2 0.067 (18) 0.078 (16) 0.087 (17) −0.005 (12) 0.003 (12) −0.006 (12)
C1 0.08 (4) 0.09 (3) 0.07 (5) 0.00 (5) 0.01 (3) 0.01 (5)
C2 0.08 (4) 0.08 (4) 0.08 (4) 0.00 (3) 0.01 (4) 0.01 (3)
C3 0.08 (4) 0.09 (8) 0.07 (4) 0.00 (4) 0.00 (3) 0.01 (4)
O1' 0.10 (6) 0.10 (8) 0.08 (5) 0.00 (8) 0.01 (4) 0.01 (7)
O2' 0.07 (2) 0.08 (2) 0.09 (2) −0.005 (15) 0.003 (17) −0.006 (16)
C1' 0.08 (5) 0.09 (8) 0.07 (6) 0.00 (6) 0.01 (4) 0.01 (6)
C2' 0.08 (5) 0.09 (6) 0.08 (6) 0.00 (4) 0.01 (5) 0.01 (4)
C3' 0.09 (5) 0.10 (6) 0.08 (5) 0.00 (6) 0.01 (4) 0.01 (5)
C4 0.09 (2) 0.10 (3) 0.11 (3) −0.015 (18) 0.00 (2) 0.022 (18)
C5 0.08 (2) 0.09 (3) 0.12 (3) 0.026 (17) 0.010 (19) −0.003 (17)
C6 0.060 (6) 0.103 (9) 0.070 (6) 0.007 (19) 0.008 (5) 0.020 (19)
C7 0.105 (10) 0.12 (2) 0.084 (10) −0.003 (12) 0.005 (8) 0.007 (13)
C8 0.108 (10) 0.12 (2) 0.078 (9) 0.000 (14) 0.008 (7) 0.011 (14)
C9 0.119 (11) 0.14 (3) 0.080 (10) 0.000 (13) 0.000 (8) 0.006 (12)
C10 0.124 (10) 0.128 (15) 0.074 (9) −0.01 (2) −0.001 (7) 0.016 (17)
C11 0.127 (12) 0.15 (3) 0.084 (10) −0.008 (15) 0.000 (9) 0.004 (13)
C12 0.133 (11) 0.134 (12) 0.086 (10) 0.00 (4) 0.003 (8) 0.01 (3)
C13 0.139 (13) 0.16 (2) 0.090 (11) 0.00 (2) 0.005 (9) 0.01 (2)
C14 0.163 (15) 0.19 (3) 0.098 (11) 0.03 (3) 0.009 (11) 0.01 (2)

Geometric parameters (Å, °)

N1—C4 1.48 (4) C5—H5C 0.9600
N1—C6 1.495 (10) C6—H6A 0.9600
N1—C1' 1.50 (14) C6—H6B 0.9600
N1—C5 1.50 (4) C6—H6C 0.9600
N1—C1 1.51 (11) C7—C8 1.50 (2)
O1—C3 1.4 (2) C7—H7A 0.9700
O1—C7 1.44 (17) C7—H7B 0.9700
O2—C2 1.42 (6) C7—H7C 0.9703
O2—H2 0.8200 C7—H7D 0.9698
C1—C2 1.53 (12) C8—C9 1.456 (16)
C1—H1A 0.9700 C8—H8A 0.9700
C1—H1B 0.9700 C8—H8B 0.9700
C2—C3 1.53 (10) C9—C10 1.51 (2)
C2—H2A 0.9800 C9—H9A 0.9700
C3—H3A 0.9700 C9—H9B 0.9700
C3—H3B 0.9700 C10—C11 1.51 (2)
O1'—C3' 1.6 (3) C10—H10A 0.9700
O2'—C2' 1.43 (7) C10—H10B 0.9700
O2'—H2' 0.8200 C11—C12 1.501 (19)
C1'—C2' 1.54 (16) C11—H11A 0.9700
C1'—H1'1 0.9700 C11—H11B 0.9700
C1'—H1'2 0.9700 C12—C13 1.431 (18)
C2'—C3' 1.53 (13) C12—H12A 0.9700
C2'—H2'1 0.9800 C12—H12B 0.9700
C3'—H3'1 0.9700 C13—C14 1.47 (3)
C3'—H3'2 0.9700 C13—H13A 0.9700
C4—H4A 0.9600 C13—H13B 0.9700
C4—H4B 0.9600 C14—H14A 0.9600
C4—H4C 0.9600 C14—H14B 0.9600
C5—H5A 0.9600 C14—H14C 0.9600
C5—H5B 0.9600
C4—N1—C6 109 (3) H6A—C6—H6C 109.5
C4—N1—C1' 98 (5) H6B—C6—H6C 109.5
C6—N1—C1' 116 (5) O1'—C7—O1 21 (5)
C4—N1—C5 106.9 (8) O1'—C7—C8 114 (10)
C6—N1—C5 109 (2) O1—C7—C8 107 (8)
C1'—N1—C5 118 (5) O1'—C7—H7A 89.5
C4—N1—C1 124 (4) O1—C7—H7A 110.4
C6—N1—C1 109 (4) C8—C7—H7A 110.4
C1'—N1—C1 28 (3) O1'—C7—H7B 121.5
C5—N1—C1 97 (4) O1—C7—H7B 110.4
C3—O1—C7 108 (10) C8—C7—H7B 110.4
C2—O2—H2 109.5 H7A—C7—H7B 108.6
N1—C1—C2 112 (7) O1'—C7—H7C 109.2
N1—C1—H1A 109.3 O1—C7—H7C 129.1
C2—C1—H1A 109.3 C8—C7—H7C 110.0
N1—C1—H1B 109.3 H7A—C7—H7C 22.6
C2—C1—H1B 109.3 H7B—C7—H7C 88.5
H1A—C1—H1B 108.0 O1'—C7—H7D 107.7
O2—C2—C3 104 (6) O1—C7—H7D 92.8
O2—C2—C1 115 (5) C8—C7—H7D 108.0
C3—C2—C1 105 (6) H7A—C7—H7D 126.2
O2—C2—H2A 110.7 H7B—C7—H7D 20.3
C3—C2—H2A 110.7 H7C—C7—H7D 107.8
C1—C2—H2A 110.8 C9—C8—C7 121.2 (14)
O1—C3—C2 120 (9) C9—C8—H8A 107.0
O1—C3—H3A 107.4 C7—C8—H8A 107.0
C2—C3—H3A 107.4 C9—C8—H8B 107.0
O1—C3—H3B 107.4 C7—C8—H8B 107.0
C2—C3—H3B 107.4 H8A—C8—H8B 106.8
H3A—C3—H3B 106.9 C8—C9—C10 118.8 (16)
C7—O1'—C3' 108 (10) C8—C9—H9A 107.6
C2'—O2'—H2' 109.5 C10—C9—H9A 107.6
N1—C1'—C2' 115 (8) C8—C9—H9B 107.6
N1—C1'—H1'1 108.4 C10—C9—H9B 107.6
C2'—C1'—H1'1 108.4 H9A—C9—H9B 107.0
N1—C1'—H1'2 108.4 C9—C10—C11 113.5 (19)
C2'—C1'—H1'2 108.4 C9—C10—H10A 108.9
H1'1—C1'—H1'2 107.5 C11—C10—H10A 108.9
O2'—C2'—C3' 113 (8) C9—C10—H10B 108.9
O2'—C2'—C1' 111 (7) C11—C10—H10B 108.9
C3'—C2'—C1' 114 (8) H10A—C10—H10B 107.7
O2'—C2'—H2'1 106.3 C12—C11—C10 117.1 (18)
C3'—C2'—H2'1 106.3 C12—C11—H11A 108.0
C1'—C2'—H2'1 106.3 C10—C11—H11A 108.0
C2'—C3'—O1' 105 (10) C12—C11—H11B 108.0
C2'—C3'—H3'1 110.7 C10—C11—H11B 108.0
O1'—C3'—H3'1 110.7 H11A—C11—H11B 107.3
C2'—C3'—H3'2 110.7 C13—C12—C11 123.2 (13)
O1'—C3'—H3'2 110.7 C13—C12—H12A 106.5
H3'1—C3'—H3'2 108.8 C11—C12—H12A 106.5
N1—C4—H4A 109.5 C13—C12—H12B 106.5
N1—C4—H4B 109.5 C11—C12—H12B 106.5
H4A—C4—H4B 109.5 H12A—C12—H12B 106.5
N1—C4—H4C 109.5 C12—C13—C14 120 (2)
H4A—C4—H4C 109.5 C12—C13—H13A 107.3
H4B—C4—H4C 109.5 C14—C13—H13A 107.3
N1—C5—H5A 109.5 C12—C13—H13B 107.3
N1—C5—H5B 109.5 C14—C13—H13B 107.3
H5A—C5—H5B 109.5 H13A—C13—H13B 106.9
N1—C5—H5C 109.5 C13—C14—H14A 109.5
H5A—C5—H5C 109.5 C13—C14—H14B 109.5
H5B—C5—H5C 109.5 H14A—C14—H14B 109.5
N1—C6—H6A 109.5 C13—C14—H14C 109.5
N1—C6—H6B 109.5 H14A—C14—H14C 109.5
H6A—C6—H6B 109.5 H14B—C14—H14C 109.5
N1—C6—H6C 109.5
C4—N1—C1—C2 −52 (8) N1—C1'—C2'—C3' −175 (8)
C6—N1—C1—C2 80 (7) O2'—C2'—C3'—O1' 160 (9)
C1'—N1—C1—C2 −29 (12) C1'—C2'—C3'—O1' 33 (14)
C5—N1—C1—C2 −168 (6) C7—O1'—C3'—C2' 169 (9)
N1—C1—C2—O2 −78 (9) C3'—O1'—C7—C8 −130 (11)
N1—C1—C2—C3 168 (6) C3—O1—C7—C8 177 (7)
C7—O1—C3—C2 −136 (8) O1'—C7—C8—C9 176 (6)
O2—C2—C3—O1 −172 (8) O1—C7—C8—C9 155 (6)
C1—C2—C3—O1 −50 (11) C7—C8—C9—C10 140 (3)
C4—N1—C1'—C2' 179 (8) C8—C9—C10—C11 168 (3)
C6—N1—C1'—C2' −66 (10) C9—C10—C11—C12 −173 (3)
C5—N1—C1'—C2' 65 (10) C10—C11—C12—C13 −155 (4)
C1—N1—C1'—C2' 17 (11) C11—C12—C13—C14 −152 (4)
N1—C1'—C2'—O2' 57 (12)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O2—H2···Br1i 0.82 2.50 3.32 (3) 171
O2'—H2'···Br1ii 0.82 2.27 3.05 (4) 160

Symmetry codes: (i) x−1, y+1, z; (ii) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JJ2054).

References

  1. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  2. Koh, L. L., Xu, Y., Gan, L. M., Chew, C. H. & Lee, K. C. (1993). Acta Cryst. C49, 1032–1035.
  3. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Siemens (1996). SMART and SAINT Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  6. Zhao, Q., Yang, K. & Li, P. J. (2010). J. Hazardous Mater.182, 757–762. [DOI] [PubMed]
  7. Zhao, S. Y., Zhang, G. Y., Zheng, G. X. & Niu, C. Z. (1997). Chin. Surfactant Detergent Cosmetics, 5, 7–9.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810040705/jj2054sup1.cif

e-66-o2865-sup1.cif (21.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810040705/jj2054Isup2.hkl

e-66-o2865-Isup2.hkl (138.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES