Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Oct 13;66(Pt 11):o2806–o2807. doi: 10.1107/S1600536810040079

3-Hy­droxy-2-[(2-hy­droxy-4,4-dimethyl-6-oxocyclo­hex-1-en-1-yl)(3-nitro­phen­yl)meth­yl]-5,5-dimethyl­cyclo­hex-2-en-1-one

B Palakshi Reddy a, V Vijayakumar a,, S Sarveswari a, Seik Weng Ng b, Edward R T Tiekink b,*
PMCID: PMC3009059  PMID: 21589000

Abstract

Each of the cyclohexenone rings in the title compound, C23H27NO6, adopts a half-chair (envelope) conformation with the C atom carrying the methyl groups lying out of the plane defined by the five remaining C atoms; the O atoms lie to the same side of the mol­ecule as the respective >C(CH3)2 atoms. The hy­droxy and carbonyl O atoms face each other and are orientated to allow for the formation of two intra­molecular O—H⋯O hydrogen bonds. In the crystal, the presence of C—H⋯O contacts leads to the formation of supra­molecular chains along the b axis. These aggregate into layers that stack along c.

Related literature

For the biological activity and uses of xanthenes, see: Jonathan et al. (1988); Pohlers & Scaiano (1997); Hilderbrand & Weissleder (2007). For background to xanthenedione derivatives, see: Hatakeyama et al. (1988); Shchekotikhin & Nikolaeva (2006).graphic file with name e-66-o2806-scheme1.jpg

Experimental

Crystal data

  • C23H27NO6

  • M r = 413.46

  • Monoclinic, Inline graphic

  • a = 14.2326 (10) Å

  • b = 8.6505 (6) Å

  • c = 16.8410 (12) Å

  • β = 97.796 (1)°

  • V = 2054.3 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.30 × 0.30 × 0.20 mm

Data collection

  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.792, T max = 0.862

  • 18883 measured reflections

  • 4717 independent reflections

  • 3928 reflections with I > 2σ(I)

  • R int = 0.036

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039

  • wR(F 2) = 0.112

  • S = 1.03

  • 4717 reflections

  • 279 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810040079/hb5662sup1.cif

e-66-o2806-sup1.cif (23.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810040079/hb5662Isup2.hkl

e-66-o2806-Isup2.hkl (231.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1o⋯O4 0.85 (1) 1.80 (1) 2.6392 (13) 167 (2)
O3—H3o⋯O2 0.86 (1) 1.75 (1) 2.5985 (13) 170 (2)
C5—H5a⋯O4i 0.99 2.34 3.2781 (16) 158
C9—H9⋯O6ii 1.00 2.56 3.3431 (16) 135
C21—H21⋯O2iii 0.95 2.44 3.3121 (16) 152

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

VV is grateful to the DST, India, for funding through the Young Scientist Scheme (Fast Track Proposal). The authors are also grateful to the University of Malaya for support of the crystallographic facility.

supplementary crystallographic information

Comment

Xanthenes are known for to possess various biological properties including anti-bacterial, anti-viral and anti-inflammatory activities (Jonathan et al., 1988). In particular, xanthenedione derivatives constitute a structural unit in several natural products (Hatakeyama et al., 1988), and they are valuable synthons because of the inherent reactivity of the in-built pyran ring (Shchekotikhin & Nikolaeva, 2006). Xanthene derivatives are also very useful and important organic compounds widely used as dyes (Hilderbrand & Weissleder, 2007), in laser technologies, and as fluorescent materials for visualization of biomolecules (Pohlers & Scaiano, 1997).

The molecular structure of the title compound, Fig. 1, features two cyclohexene rings, each with a half-chair conformation as, in each case, the C4 and C13 atoms, i.e. carrying two methyl groups, lie above the respective least-squares plane through the remaining five carbon atoms. For each ring, the O atoms lie to the same side of the molecule as the C4 or C13 atoms. The hydroxyl- and carbonyl-O atoms of one cyclohexene ring face the carbonyl- and hydroxyl-O atoms of the other to allow for the formation of intramolecular O—H···O hydrogen bonds, Table 1. The nitro group is co-planar with the benzene ring to which it is attached as seen in the O5—N1—C22—C21 torsion angle of -176.02 (11) °. The nitro-substituted benzene ring occupies a position almost side-on to both cyclohexene rings.

The most prominent intermolecular interactions in the crystal packing are of the type C—H···O, Table 1. These serve to link molecules into a supramolecular chain along the b axis, Fig. 2. The chains pack into layers in the ab plane which stack along the c axis, Fig. 3.

Experimental

A mixture of 3-nitrobenaldehyde (0.377 g, 0.0025 mol), dimedone (0.7 g, 0.005 mol) was refluxed in acetonitrile (20 ml) for 3 h. The progress of the reaction was monitored by TLC. After completion of the reaction, the solution was left for 2 days to precipitate the solid product. The product was recrystallized by slow evaporation of its acetonitrile solution which yielded colourless blocks of (I). Yield: 72%. M.pt. 443–445 K.

Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 1.00 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2 to 1.5Uequiv(C). The O-bound H atoms were refined with the distance restraint O—H = 0.84±0.1 Å, and with Uiso(H) = 1.5Uequiv(O).

Figures

Fig. 1.

Fig. 1.

Molecular structure of (I) showing displacement ellipsoids at the 50% probability level.

Fig. 2.

Fig. 2.

Supramolecular chain aligned along the b axis sustained by C—H···O contacts (shown as orange dashed lines).

Fig. 3.

Fig. 3.

Unit-cell contents for (I) viewed in projection along the b axis showing the stacking of layers along the c axis. The C—H···O contacts are shown as orange dashed lines.

Crystal data

C23H27NO6 F(000) = 880
Mr = 413.46 Dx = 1.337 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 5854 reflections
a = 14.2326 (10) Å θ = 4.5–28.2°
b = 8.6505 (6) Å µ = 0.10 mm1
c = 16.8410 (12) Å T = 100 K
β = 97.796 (1)° Block, colourless
V = 2054.3 (3) Å3 0.30 × 0.30 × 0.20 mm
Z = 4

Data collection

Bruker SMART APEX CCD diffractometer 4717 independent reflections
Radiation source: fine-focus sealed tube 3928 reflections with I > 2σ(I)
graphite Rint = 0.036
ω scans θmax = 27.5°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −16→18
Tmin = 0.792, Tmax = 0.862 k = −11→11
18883 measured reflections l = −21→21

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112 H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0605P)2 + 0.67P] where P = (Fo2 + 2Fc2)/3
4717 reflections (Δ/σ)max = 0.001
279 parameters Δρmax = 0.37 e Å3
2 restraints Δρmin = −0.23 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.65593 (7) 0.65589 (10) 0.67564 (5) 0.0159 (2)
H1o 0.6569 (15) 0.594 (2) 0.6365 (9) 0.048 (6)*
O2 0.73862 (7) 1.02234 (10) 0.49100 (5) 0.0170 (2)
O3 0.73479 (7) 0.82683 (11) 0.37346 (5) 0.0170 (2)
H3o 0.7407 (13) 0.8846 (19) 0.4154 (8) 0.036 (5)*
O4 0.63116 (6) 0.46796 (10) 0.55110 (5) 0.0163 (2)
O5 0.99653 (7) 0.53999 (12) 0.35663 (6) 0.0237 (2)
O6 1.13360 (7) 0.63202 (12) 0.40630 (6) 0.0259 (2)
N1 1.04746 (8) 0.61823 (13) 0.40582 (7) 0.0176 (2)
C1 0.71426 (9) 0.83167 (14) 0.58531 (7) 0.0129 (2)
C2 0.67059 (9) 0.79995 (14) 0.65085 (7) 0.0134 (2)
C3 0.63844 (9) 0.92120 (14) 0.70461 (7) 0.0153 (3)
H3A 0.6898 0.9405 0.7493 0.018*
H3B 0.5829 0.8817 0.7279 0.018*
C4 0.61160 (9) 1.07463 (14) 0.66175 (7) 0.0149 (3)
C5 0.69030 (10) 1.11682 (15) 0.61177 (8) 0.0184 (3)
H5A 0.6701 1.2088 0.5788 0.022*
H5B 0.7480 1.1453 0.6486 0.022*
C6 0.71497 (9) 0.98965 (15) 0.55741 (8) 0.0145 (3)
C7 0.51615 (10) 1.05773 (17) 0.60799 (8) 0.0217 (3)
H7A 0.4669 1.0306 0.6409 0.032*
H7B 0.5209 0.9761 0.5684 0.032*
H7C 0.4997 1.1557 0.5803 0.032*
C8 0.60339 (10) 1.20199 (15) 0.72332 (8) 0.0187 (3)
H8A 0.5531 1.1754 0.7554 0.028*
H8B 0.5880 1.3002 0.6955 0.028*
H8C 0.6638 1.2121 0.7585 0.028*
C9 0.76179 (8) 0.70610 (14) 0.54208 (7) 0.0124 (2)
H9 0.7692 0.6185 0.5812 0.015*
C10 0.70261 (9) 0.63781 (14) 0.46833 (7) 0.0129 (2)
C11 0.69851 (9) 0.69205 (14) 0.39210 (8) 0.0139 (3)
C12 0.65447 (9) 0.60340 (15) 0.31987 (8) 0.0162 (3)
H12A 0.6947 0.6153 0.2767 0.019*
H12B 0.5916 0.6487 0.3006 0.019*
C13 0.64204 (9) 0.43071 (15) 0.33584 (8) 0.0162 (3)
C14 0.59406 (10) 0.41744 (16) 0.41182 (8) 0.0189 (3)
H14A 0.5281 0.4556 0.3999 0.023*
H14B 0.5913 0.3070 0.4268 0.023*
C15 0.64394 (9) 0.50637 (14) 0.48217 (7) 0.0140 (2)
C16 0.57961 (10) 0.35702 (17) 0.26472 (8) 0.0228 (3)
H16A 0.5718 0.2467 0.2752 0.034*
H16B 0.6097 0.3698 0.2161 0.034*
H16C 0.5174 0.4074 0.2573 0.034*
C17 0.73790 (10) 0.34775 (15) 0.34742 (8) 0.0201 (3)
H17A 0.7282 0.2378 0.3577 0.030*
H17B 0.7786 0.3932 0.3931 0.030*
H17C 0.7683 0.3592 0.2989 0.030*
C18 0.86411 (8) 0.74648 (14) 0.53038 (7) 0.0130 (2)
C19 0.91956 (9) 0.84390 (15) 0.58406 (8) 0.0156 (3)
H19 0.8912 0.8949 0.6248 0.019*
C20 1.01514 (9) 0.86788 (15) 0.57927 (8) 0.0175 (3)
H20 1.0509 0.9350 0.6165 0.021*
C21 1.05918 (9) 0.79508 (15) 0.52075 (8) 0.0171 (3)
H21 1.1245 0.8105 0.5170 0.021*
C22 1.00352 (9) 0.69910 (15) 0.46819 (7) 0.0150 (3)
C23 0.90774 (9) 0.67322 (14) 0.47154 (7) 0.0144 (3)
H23 0.8724 0.6062 0.4340 0.017*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0196 (5) 0.0135 (4) 0.0154 (4) −0.0009 (4) 0.0058 (4) 0.0015 (3)
O2 0.0193 (5) 0.0155 (5) 0.0174 (4) −0.0004 (4) 0.0067 (4) 0.0025 (3)
O3 0.0208 (5) 0.0146 (4) 0.0161 (5) −0.0015 (4) 0.0048 (4) 0.0019 (4)
O4 0.0186 (5) 0.0138 (4) 0.0176 (4) −0.0009 (3) 0.0067 (4) 0.0010 (3)
O5 0.0225 (5) 0.0281 (5) 0.0216 (5) 0.0016 (4) 0.0070 (4) −0.0041 (4)
O6 0.0152 (5) 0.0308 (6) 0.0342 (6) 0.0022 (4) 0.0126 (4) 0.0012 (5)
N1 0.0169 (6) 0.0171 (5) 0.0204 (6) 0.0040 (4) 0.0078 (4) 0.0052 (4)
C1 0.0115 (6) 0.0124 (6) 0.0151 (6) 0.0015 (4) 0.0027 (5) 0.0000 (4)
C2 0.0113 (6) 0.0141 (6) 0.0146 (6) 0.0008 (5) 0.0012 (4) 0.0017 (5)
C3 0.0167 (6) 0.0159 (6) 0.0140 (6) 0.0006 (5) 0.0048 (5) −0.0002 (5)
C4 0.0151 (6) 0.0155 (6) 0.0142 (6) 0.0017 (5) 0.0029 (5) −0.0015 (5)
C5 0.0225 (7) 0.0127 (6) 0.0216 (6) 0.0015 (5) 0.0091 (5) 0.0001 (5)
C6 0.0113 (6) 0.0149 (6) 0.0176 (6) 0.0000 (5) 0.0035 (5) 0.0001 (5)
C7 0.0183 (7) 0.0257 (7) 0.0201 (7) 0.0054 (5) −0.0003 (5) −0.0049 (5)
C8 0.0190 (6) 0.0175 (6) 0.0198 (6) 0.0019 (5) 0.0042 (5) −0.0034 (5)
C9 0.0123 (6) 0.0120 (6) 0.0134 (6) 0.0007 (4) 0.0036 (4) 0.0010 (4)
C10 0.0106 (5) 0.0126 (6) 0.0158 (6) 0.0013 (5) 0.0029 (5) −0.0004 (5)
C11 0.0110 (6) 0.0130 (6) 0.0183 (6) 0.0019 (4) 0.0045 (5) 0.0010 (5)
C12 0.0159 (6) 0.0179 (6) 0.0149 (6) 0.0005 (5) 0.0021 (5) 0.0010 (5)
C13 0.0161 (6) 0.0173 (6) 0.0153 (6) −0.0027 (5) 0.0028 (5) −0.0012 (5)
C14 0.0181 (6) 0.0199 (7) 0.0194 (6) −0.0062 (5) 0.0051 (5) −0.0017 (5)
C15 0.0120 (6) 0.0133 (6) 0.0173 (6) 0.0029 (5) 0.0042 (5) 0.0002 (5)
C16 0.0231 (7) 0.0258 (7) 0.0191 (7) −0.0059 (6) 0.0012 (5) −0.0037 (6)
C17 0.0226 (7) 0.0164 (6) 0.0214 (7) 0.0025 (5) 0.0034 (5) −0.0026 (5)
C18 0.0118 (6) 0.0134 (6) 0.0145 (6) 0.0019 (5) 0.0036 (5) 0.0047 (4)
C19 0.0167 (6) 0.0157 (6) 0.0145 (6) 0.0018 (5) 0.0028 (5) 0.0015 (5)
C20 0.0162 (6) 0.0170 (6) 0.0185 (6) −0.0020 (5) −0.0005 (5) 0.0020 (5)
C21 0.0131 (6) 0.0175 (6) 0.0209 (6) 0.0007 (5) 0.0030 (5) 0.0059 (5)
C22 0.0142 (6) 0.0145 (6) 0.0173 (6) 0.0039 (5) 0.0058 (5) 0.0049 (5)
C23 0.0145 (6) 0.0138 (6) 0.0152 (6) 0.0005 (5) 0.0030 (5) 0.0023 (5)

Geometric parameters (Å, °)

O1—C2 1.3395 (15) C9—H9 1.0000
O1—H1o 0.851 (9) C10—C11 1.3607 (17)
O2—C6 1.2436 (15) C10—C15 1.4481 (17)
O3—C11 1.3299 (15) C11—C12 1.5014 (18)
O3—H3o 0.860 (9) C12—C13 1.5323 (18)
O4—C15 1.2443 (15) C12—H12A 0.9900
O5—N1 1.2275 (15) C12—H12B 0.9900
O6—N1 1.2308 (14) C13—C17 1.5304 (18)
N1—C22 1.4704 (16) C13—C16 1.5303 (18)
C1—C2 1.3662 (17) C13—C14 1.5343 (18)
C1—C6 1.4456 (17) C14—C15 1.5072 (18)
C1—C9 1.5169 (16) C14—H14A 0.9900
C2—C3 1.4971 (17) C14—H14B 0.9900
C3—C4 1.5341 (17) C16—H16A 0.9800
C3—H3A 0.9900 C16—H16B 0.9800
C3—H3B 0.9900 C16—H16C 0.9800
C4—C8 1.5282 (17) C17—H17A 0.9800
C4—C5 1.5337 (18) C17—H17B 0.9800
C4—C7 1.5340 (18) C17—H17C 0.9800
C5—C6 1.5029 (17) C18—C23 1.3913 (17)
C5—H5A 0.9900 C18—C19 1.3988 (18)
C5—H5B 0.9900 C19—C20 1.3893 (18)
C7—H7A 0.9800 C19—H19 0.9500
C7—H7B 0.9800 C20—C21 1.3886 (19)
C7—H7C 0.9800 C20—H20 0.9500
C8—H8A 0.9800 C21—C22 1.3821 (19)
C8—H8B 0.9800 C21—H21 0.9500
C8—H8C 0.9800 C22—C23 1.3902 (18)
C9—C10 1.5223 (17) C23—H23 0.9500
C9—C18 1.5360 (16)
C2—O1—H1o 109.0 (14) O3—C11—C12 112.91 (11)
C11—O3—H3o 108.3 (13) C10—C11—C12 123.24 (11)
O6—N1—O5 123.66 (11) C11—C12—C13 113.65 (10)
O6—N1—C22 117.97 (11) C11—C12—H12A 108.8
O5—N1—C22 118.36 (11) C13—C12—H12A 108.8
C2—C1—C6 118.45 (11) C11—C12—H12B 108.8
C2—C1—C9 121.69 (11) C13—C12—H12B 108.8
C6—C1—C9 119.85 (11) H12A—C12—H12B 107.7
O1—C2—C1 123.08 (11) C17—C13—C16 108.50 (11)
O1—C2—C3 112.96 (10) C17—C13—C12 110.94 (11)
C1—C2—C3 123.90 (11) C16—C13—C12 109.71 (11)
C2—C3—C4 113.50 (10) C17—C13—C14 110.40 (11)
C2—C3—H3A 108.9 C16—C13—C14 110.16 (11)
C4—C3—H3A 108.9 C12—C13—C14 107.12 (11)
C2—C3—H3B 108.9 C15—C14—C13 113.70 (11)
C4—C3—H3B 108.9 C15—C14—H14A 108.8
H3A—C3—H3B 107.7 C13—C14—H14A 108.8
C8—C4—C5 109.24 (11) C15—C14—H14B 108.8
C8—C4—C7 109.03 (11) C13—C14—H14B 108.8
C5—C4—C7 110.68 (11) H14A—C14—H14B 107.7
C8—C4—C3 109.97 (10) O4—C15—C10 121.35 (12)
C5—C4—C3 108.08 (10) O4—C15—C14 118.96 (11)
C7—C4—C3 109.83 (11) C10—C15—C14 119.65 (11)
C6—C5—C4 114.11 (11) C13—C16—H16A 109.5
C6—C5—H5A 108.7 C13—C16—H16B 109.5
C4—C5—H5A 108.7 H16A—C16—H16B 109.5
C6—C5—H5B 108.7 C13—C16—H16C 109.5
C4—C5—H5B 108.7 H16A—C16—H16C 109.5
H5A—C5—H5B 107.6 H16B—C16—H16C 109.5
O2—C6—C1 121.46 (12) C13—C17—H17A 109.5
O2—C6—C5 119.71 (11) C13—C17—H17B 109.5
C1—C6—C5 118.79 (11) H17A—C17—H17B 109.5
C4—C7—H7A 109.5 C13—C17—H17C 109.5
C4—C7—H7B 109.5 H17A—C17—H17C 109.5
H7A—C7—H7B 109.5 H17B—C17—H17C 109.5
C4—C7—H7C 109.5 C23—C18—C19 117.87 (11)
H7A—C7—H7C 109.5 C23—C18—C9 120.68 (11)
H7B—C7—H7C 109.5 C19—C18—C9 121.04 (11)
C4—C8—H8A 109.5 C20—C19—C18 121.57 (12)
C4—C8—H8B 109.5 C20—C19—H19 119.2
H8A—C8—H8B 109.5 C18—C19—H19 119.2
C4—C8—H8C 109.5 C19—C20—C21 120.88 (12)
H8A—C8—H8C 109.5 C19—C20—H20 119.6
H8B—C8—H8C 109.5 C21—C20—H20 119.6
C1—C9—C10 115.85 (10) C22—C21—C20 116.90 (12)
C1—C9—C18 113.02 (10) C22—C21—H21 121.6
C10—C9—C18 114.39 (10) C20—C21—H21 121.6
C1—C9—H9 103.9 C21—C22—C23 123.42 (12)
C10—C9—H9 103.9 C21—C22—N1 118.75 (11)
C18—C9—H9 103.9 C23—C22—N1 117.83 (11)
C11—C10—C15 118.08 (11) C22—C23—C18 119.37 (12)
C11—C10—C9 125.74 (11) C22—C23—H23 120.3
C15—C10—C9 116.15 (10) C18—C23—H23 120.3
O3—C11—C10 123.83 (12)
C6—C1—C2—O1 171.69 (11) C10—C11—C12—C13 −17.54 (17)
C9—C1—C2—O1 −8.61 (19) C11—C12—C13—C17 −71.32 (14)
C6—C1—C2—C3 −11.38 (18) C11—C12—C13—C16 168.81 (11)
C9—C1—C2—C3 168.32 (11) C11—C12—C13—C14 49.24 (14)
O1—C2—C3—C4 −153.63 (11) C17—C13—C14—C15 68.28 (14)
C1—C2—C3—C4 29.16 (17) C16—C13—C14—C15 −171.90 (11)
C2—C3—C4—C8 −166.16 (11) C12—C13—C14—C15 −52.62 (14)
C2—C3—C4—C5 −46.99 (14) C11—C10—C15—O4 −167.09 (11)
C2—C3—C4—C7 73.84 (14) C9—C10—C15—O4 11.17 (17)
C8—C4—C5—C6 171.38 (11) C11—C10—C15—C14 10.51 (18)
C7—C4—C5—C6 −68.56 (14) C9—C10—C15—C14 −171.23 (11)
C3—C4—C5—C6 51.74 (14) C13—C14—C15—O4 −157.72 (12)
C2—C1—C6—O2 −167.47 (12) C13—C14—C15—C10 24.63 (17)
C9—C1—C6—O2 12.83 (18) C1—C9—C18—C23 −159.11 (11)
C2—C1—C6—C5 15.06 (18) C10—C9—C18—C23 −23.66 (16)
C9—C1—C6—C5 −164.65 (11) C1—C9—C18—C19 28.36 (16)
C4—C5—C6—O2 145.36 (12) C10—C9—C18—C19 163.81 (11)
C4—C5—C6—C1 −37.13 (16) C23—C18—C19—C20 0.13 (18)
C2—C1—C9—C10 96.76 (14) C9—C18—C19—C20 172.86 (11)
C6—C1—C9—C10 −83.54 (14) C18—C19—C20—C21 −0.2 (2)
C2—C1—C9—C18 −128.46 (12) C19—C20—C21—C22 0.12 (19)
C6—C1—C9—C18 51.23 (15) C20—C21—C22—C23 −0.03 (19)
C1—C9—C10—C11 88.93 (15) C20—C21—C22—N1 −179.31 (11)
C18—C9—C10—C11 −45.23 (16) O6—N1—C22—C21 4.50 (17)
C1—C9—C10—C15 −89.18 (13) O5—N1—C22—C21 −176.02 (11)
C18—C9—C10—C15 136.66 (11) O6—N1—C22—C23 −174.82 (11)
C15—C10—C11—O3 167.35 (11) O5—N1—C22—C23 4.65 (17)
C9—C10—C11—O3 −10.7 (2) C21—C22—C23—C18 −0.02 (19)
C15—C10—C11—C12 −14.28 (18) N1—C22—C23—C18 179.27 (11)
C9—C10—C11—C12 167.64 (11) C19—C18—C23—C22 −0.03 (18)
O3—C11—C12—C13 160.99 (11) C9—C18—C23—C22 −172.79 (11)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1o···O4 0.85 (1) 1.80 (1) 2.6392 (13) 167 (2)
O3—H3o···O2 0.86 (1) 1.75 (1) 2.5985 (13) 170 (2)
C5—H5a···O4i 0.99 2.34 3.2781 (16) 158
C9—H9···O6ii 1.00 2.56 3.3431 (16) 135
C21—H21···O2iii 0.95 2.44 3.3121 (16) 152

Symmetry codes: (i) x, y+1, z; (ii) −x+2, −y+1, −z+1; (iii) −x+2, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5662).

References

  1. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Bruker (2008). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  4. Hatakeyama, S., Ochi, N., Numata, H. & Takano, S. (1988). Chem. Commun. pp. 1202–1204.
  5. Hilderbrand, S. A. & Weissleder, R. (2007). Tetrahedron Lett.48, 4383–4385. [DOI] [PMC free article] [PubMed]
  6. Jonathan, R. D., Srinivas, K. R. & Glen, E. B. (1988). Eur. J. Med. Chem.23, 111–117.
  7. Pohlers, G. & Scaiano, J. C. (1997). Chem. Mater.9, 3222–3230.
  8. Shchekotikhin, Y. M. & Nikolaeva, T. G. (2006). Chem. Heterocycl. Compd, 42, 28–33.
  9. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Westrip, S. P. (2010). J. Appl. Cryst.43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810040079/hb5662sup1.cif

e-66-o2806-sup1.cif (23.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810040079/hb5662Isup2.hkl

e-66-o2806-Isup2.hkl (231.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES