Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Oct 20;66(Pt 11):o2861–o2862. doi: 10.1107/S1600536810041152

3-Methyl-4-[(E)-3-thien­ylmethyl­idene­amino]-1H-1,2,4-triazole-5(4H)-thione

Mohammad Asad a, Chuan-Wei Oo a,, Hasnah Osman a, Chin Sing Yeap b,§, Hoong-Kun Fun b,*,
PMCID: PMC3009062  PMID: 21589044

Abstract

The asymmetric unit of the title compound, C8H8N4S2, contains two crystallographically independent mol­ecules. The thio­phene ring of one mol­ecule is disordered over two positions with refined site occupancies of 0.6375 (19) and 0.3625 (19). One mol­ecule is almost planar and the other one is twisted, the dihedral angles between the thio­phene and triazole rings being 7.28 (7) and 48.9 (2)° [48.5 (4)° for the minor component], respectively. An intra­molecular C—H⋯S hydrogen bond stabilizes the mol­ecular conformation of the planar molecule. In the crystal, the two mol­ecules are inter­connected by N—H⋯S hydrogen bonds into dimers, which are further consolidated into chains along the b axis by C—H⋯N hydrogen bonds. Weak C–H⋯π and π–π inter­actions [centroid–centroid distance = 3.5149 (7) Å] are also observed.

Related literature

For general background and the biological activity of Schiff bases of 1,2,4-triazole derivatives, see: Ghazzali et al. (2010); Xia et al. (2010); Aytac et al. (2009); Siddiqui et al. (2006); Kucukguzel et al. (2008). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).graphic file with name e-66-o2861-scheme1.jpg

Experimental

Crystal data

  • C8H8N4S2

  • M r = 224.30

  • Triclinic, Inline graphic

  • a = 9.3108 (7) Å

  • b = 10.2848 (8) Å

  • c = 12.7798 (10) Å

  • α = 66.632 (2)°

  • β = 83.409 (2)°

  • γ = 63.974 (2)°

  • V = 1006.88 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.49 mm−1

  • T = 100 K

  • 0.36 × 0.25 × 0.23 mm

Data collection

  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.845, T max = 0.896

  • 23519 measured reflections

  • 8745 independent reflections

  • 7500 reflections with I > 2σ(I)

  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.114

  • S = 1.06

  • 8745 reflections

  • 288 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.06 e Å−3

  • Δρmin = −0.50 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810041152/rz2500sup1.cif

e-66-o2861-sup1.cif (23.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810041152/rz2500Isup2.hkl

e-66-o2861-Isup2.hkl (427.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3A—H3NA⋯S2Bi 0.894 (19) 2.46 (2) 3.3494 (11) 177.7 (18)
N3B—H3NB⋯S2Aii 0.84 (2) 2.45 (2) 3.2728 (12) 167.7 (19)
C5A—H5AA⋯S2A 0.93 2.50 3.2311 (12) 135
C8B—H8BA⋯N4Aiii 0.96 2.59 3.5503 (16) 175
C5B—H5BACg1iv 0.93 2.91 3.4955 (12) 122

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

The authors are thankful to Universiti Sains Malaysia (USM) for providing the necessary research facilities and RU research funding under grant No. 1001/PKIMIA/811134. MA also thanks Universiti Sains Malaysia for the award of a post doctoral fellowship and HKF and CSY thank USM for the Research University Grant No. 1001/PFIZIK/811160.

supplementary crystallographic information

Comment

Schiff bases of 1,2,4-triazole and its derivatives have been the subject of current research in the field of pharmacology and coordination chemistry (Ghazzali et al., 2010). Due to the bioactivity associated with substituted 1,2,4-triazoles, researchers and chemists are very much interested to study the chemistry of these compounds, as they exhibit a broad spectrum of biological properties such as anticancer (Xia et al., 2010), anti-inflammatory/analgesic (Aytac et al., 2009), antibacterial/antifungal (Siddiqui et al., 2006), antiviral/anti-HIV and anti-tuberculosis (Kucukguzel et al., 2008) activities.

The asymmetric unit of the title compound consists of two crystallographically independent molecules (Fig. 1). The thiophene ring of molecule B is disordered over two positions with refined site occupancies of 0.6375 (19) and 0.3625 (19). Both molecules exist in an E configuration with respect to the central C=N double bond. Molecule A is almost planar and molecule B is twisted, the dihedral angles between the thiophene ring and the triazole ring being 7.28 (7)° and 48.9 (2)° [48.5 (4)° for the minor component] respectively. Intramolecular C—H···S hydrogen bonds stabilize the molecular structures. In the crystal structure, the two molecules are interconnected by N3A—H3NA···S2B and N3B—H3NB···S2A hydrogen bonds (Table 1) into dimers and these dimers are further consolidated into chains along the b axis (Fig. 2) by C8B—H8BA···N4A hydrogen bonds (Table 1). Weak C–H···π and π···π interactions are also observed [Cg1···Cg2v = 3.5149 (7) Å; (v) 1 - x, -y, -z. Cg1 and Cg2 are centroids of S1A–C1A–C4A–C3A–C2A and N2A–C6A–N3A–N4A–C7A ring, respectively].

Experimental

A mixture of 3-methyl-4-amino-5-mercapto-1,2,4-triazole (4.46 mmol, 0.58 g) and thiophene-3-carboxaldehyde (4.46 mmol, 0.5 g) containing pyridine (0.1 ml) in ethanol was refluxed for about 13 to 14 h. The reaction mixture was cooled to room temperature and the light yellow solid was filtered off, washed with water, dried and recrystallized from chloroform-methanol (1:1 v/v) to get the title compound in 65% yield.

Refinement

The thiophene ring of molecule B is disordered over two positions with refined site occupancies of 0.6375 (19) and 0.3625 (19). The same Uij parameters were used for the atom pairs C1B/C1X and C2B/C2X. The S1X–C2X bond distance was constrained to 1.70 (1) Å. The N-bound hydrogen atoms was located in a difference Fourier map and refined freely. The rest of hydrogen atoms were positioned geometrically [C–H = 0.93–0.96 Å] and refined using a riding model [Uiso(H) = 1.2–1.5Ueq(C)]. A rotating-group model were applied for methyl groups.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with atom labels and 50% probability ellipsoids for non-H atoms.

Fig. 2.

Fig. 2.

The crystal packing of the title compound viewed down the c axis showing chains along the b axis. Only the major component of disorder is shown. Intermolecular hydrogen bonds are shown as dashed lines.

Crystal data

C8H8N4S2 Z = 4
Mr = 224.30 F(000) = 464
Triclinic, P1 Dx = 1.480 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 9.3108 (7) Å Cell parameters from 9994 reflections
b = 10.2848 (8) Å θ = 2.4–35.0°
c = 12.7798 (10) Å µ = 0.49 mm1
α = 66.632 (2)° T = 100 K
β = 83.409 (2)° Block, colourless
γ = 63.974 (2)° 0.36 × 0.25 × 0.23 mm
V = 1006.88 (13) Å3

Data collection

Bruker APEXII DUO CCD area-detector diffractometer 8745 independent reflections
Radiation source: fine-focus sealed tube 7500 reflections with I > 2σ(I)
graphite Rint = 0.025
φ and ω scans θmax = 35.1°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −15→13
Tmin = 0.845, Tmax = 0.896 k = −16→16
23519 measured reflections l = −17→20

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114 H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0606P)2 + 0.2963P] where P = (Fo2 + 2Fc2)/3
8745 reflections (Δ/σ)max = 0.001
288 parameters Δρmax = 1.06 e Å3
1 restraint Δρmin = −0.50 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
S1A 0.76095 (4) −0.34744 (4) 0.39899 (2) 0.02948 (7)
S2A 0.22259 (3) −0.11508 (3) −0.03400 (2) 0.02363 (6)
N1A 0.35008 (11) 0.05807 (10) 0.09471 (7) 0.02091 (15)
N2A 0.24129 (11) 0.12778 (10) 0.00194 (7) 0.01941 (14)
N3A 0.07864 (12) 0.20250 (10) −0.13672 (8) 0.02245 (16)
N4A 0.06835 (12) 0.33875 (11) −0.13366 (8) 0.02392 (17)
C1A 0.63594 (14) −0.31400 (13) 0.29387 (9) 0.02447 (19)
H1AA 0.6348 −0.3924 0.2755 0.029*
C2A 0.68112 (15) −0.15163 (15) 0.37468 (10) 0.0279 (2)
H2AA 0.7137 −0.1108 0.4157 0.033*
C3A 0.56310 (14) −0.06294 (13) 0.28710 (9) 0.02428 (19)
H3AA 0.5065 0.0456 0.2614 0.029*
C4A 0.53698 (12) −0.15641 (12) 0.23970 (8) 0.02067 (16)
C5A 0.42312 (13) −0.09238 (12) 0.14318 (8) 0.02136 (17)
H5AA 0.4042 −0.1571 0.1179 0.026*
C6A 0.18194 (12) 0.07072 (11) −0.05621 (8) 0.01945 (16)
C7A 0.16892 (13) 0.29067 (12) −0.04888 (8) 0.02199 (17)
C8A 0.20936 (16) 0.39193 (13) −0.01317 (10) 0.0285 (2)
H8AA 0.1551 0.4992 −0.0654 0.043*
H8AB 0.3230 0.3597 −0.0134 0.043*
H8AC 0.1762 0.3825 0.0624 0.043*
S2B 0.88542 (4) 0.23323 (3) 0.64301 (2) 0.02461 (7)
N1B 0.78425 (11) 0.05827 (10) 0.51301 (7) 0.02158 (16)
N2B 0.85328 (11) −0.01306 (10) 0.62466 (7) 0.01962 (15)
N3B 0.97744 (12) −0.07490 (11) 0.77934 (8) 0.02242 (16)
N4B 0.98117 (13) −0.21239 (11) 0.78403 (8) 0.02472 (17)
C4B 0.58641 (12) 0.28766 (11) 0.37606 (8) 0.01978 (16)
S1B 0.38121 (11) 0.51444 (11) 0.21591 (7) 0.02699 (15) 0.6375 (19)
C1B 0.4516 (4) 0.4333 (3) 0.3522 (3) 0.0172 (6) 0.6375 (19)
H1BA 0.4077 0.4784 0.4054 0.021* 0.6375 (19)
C2B 0.5300 (10) 0.3569 (8) 0.1808 (6) 0.0429 (15) 0.6375 (19)
H2BA 0.5390 0.3496 0.1099 0.051* 0.6375 (19)
C3B 0.6279 (10) 0.2492 (8) 0.2775 (7) 0.0299 (7) 0.6375 (19)
H3BA 0.7151 0.1577 0.2789 0.036* 0.6375 (19)
S1X 0.5125 (4) 0.3829 (3) 0.1634 (2) 0.0288 (4) 0.3625 (19)
C1X 0.6323 (13) 0.2441 (10) 0.2839 (10) 0.0172 (6) 0.3625 (19)
H1XA 0.7179 0.1506 0.2871 0.021* 0.3625 (19)
C2X 0.3997 (10) 0.5014 (10) 0.2362 (7) 0.0429 (15) 0.3625 (19)
H2XA 0.3132 0.5990 0.2040 0.051* 0.3625 (19)
C3X 0.4540 (11) 0.4332 (11) 0.3424 (8) 0.048 (2) 0.3625 (19)
H3XA 0.4062 0.4799 0.3943 0.057* 0.3625 (19)
C5B 0.66610 (12) 0.19528 (11) 0.49031 (8) 0.01976 (16)
H5BA 0.6319 0.2350 0.5472 0.024*
C6B 0.90351 (12) 0.04953 (11) 0.68276 (8) 0.01932 (16)
C7B 0.90578 (13) −0.17204 (11) 0.68809 (8) 0.02196 (17)
C8B 0.87796 (17) −0.27885 (13) 0.65086 (10) 0.0302 (2)
H8BA 0.9231 −0.3832 0.7087 0.045*
H8BB 0.9279 −0.2790 0.5809 0.045*
H8BC 0.7649 −0.2436 0.6389 0.045*
H3NA 0.025 (2) 0.210 (2) −0.1941 (16) 0.035 (5)*
H3NB 1.027 (2) −0.077 (2) 0.8312 (17) 0.037 (5)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1A 0.02947 (14) 0.02718 (13) 0.02285 (12) −0.01128 (11) −0.00947 (10) 0.00081 (10)
S2A 0.02878 (13) 0.01789 (11) 0.02143 (11) −0.00851 (9) −0.00820 (9) −0.00404 (8)
N1A 0.0232 (4) 0.0199 (3) 0.0164 (3) −0.0082 (3) −0.0052 (3) −0.0033 (3)
N2A 0.0224 (4) 0.0171 (3) 0.0158 (3) −0.0077 (3) −0.0046 (3) −0.0028 (3)
N3A 0.0257 (4) 0.0188 (3) 0.0196 (3) −0.0092 (3) −0.0074 (3) −0.0025 (3)
N4A 0.0279 (4) 0.0187 (4) 0.0213 (4) −0.0091 (3) −0.0065 (3) −0.0029 (3)
C1A 0.0253 (5) 0.0209 (4) 0.0227 (4) −0.0103 (4) −0.0057 (3) −0.0018 (3)
C2A 0.0320 (5) 0.0301 (5) 0.0219 (4) −0.0149 (4) −0.0066 (4) −0.0064 (4)
C3A 0.0295 (5) 0.0233 (4) 0.0187 (4) −0.0119 (4) −0.0053 (3) −0.0044 (3)
C4A 0.0223 (4) 0.0200 (4) 0.0166 (3) −0.0098 (3) −0.0041 (3) −0.0019 (3)
C5A 0.0230 (4) 0.0197 (4) 0.0187 (4) −0.0088 (3) −0.0051 (3) −0.0035 (3)
C6A 0.0209 (4) 0.0187 (4) 0.0160 (3) −0.0081 (3) −0.0034 (3) −0.0034 (3)
C7A 0.0260 (4) 0.0172 (4) 0.0190 (4) −0.0084 (3) −0.0043 (3) −0.0028 (3)
C8A 0.0369 (6) 0.0209 (4) 0.0266 (5) −0.0126 (4) −0.0080 (4) −0.0052 (4)
S2B 0.03028 (13) 0.01731 (11) 0.02452 (12) −0.00988 (9) −0.00816 (9) −0.00420 (9)
N1B 0.0251 (4) 0.0173 (3) 0.0176 (3) −0.0066 (3) −0.0066 (3) −0.0029 (3)
N2B 0.0229 (4) 0.0144 (3) 0.0173 (3) −0.0064 (3) −0.0061 (3) −0.0019 (3)
N3B 0.0275 (4) 0.0197 (4) 0.0183 (3) −0.0108 (3) −0.0063 (3) −0.0028 (3)
N4B 0.0316 (5) 0.0182 (3) 0.0205 (4) −0.0107 (3) −0.0081 (3) −0.0011 (3)
C4B 0.0219 (4) 0.0163 (4) 0.0181 (4) −0.0083 (3) −0.0035 (3) −0.0024 (3)
S1B 0.0283 (3) 0.0208 (2) 0.0227 (2) −0.00926 (19) −0.00948 (18) 0.00179 (17)
C1B 0.0168 (9) 0.0083 (7) 0.0140 (7) 0.0010 (6) −0.0091 (7) 0.0030 (6)
C2B 0.0343 (17) 0.0261 (19) 0.063 (4) −0.0096 (14) −0.002 (2) −0.014 (2)
C3B 0.0346 (15) 0.0358 (15) 0.0226 (16) −0.0165 (12) 0.0019 (11) −0.0131 (12)
S1X 0.0313 (8) 0.0265 (9) 0.0240 (5) −0.0102 (7) −0.0031 (5) −0.0066 (5)
C1X 0.0168 (9) 0.0083 (7) 0.0140 (7) 0.0010 (6) −0.0091 (7) 0.0030 (6)
C2X 0.0343 (17) 0.0261 (19) 0.063 (4) −0.0096 (14) −0.002 (2) −0.014 (2)
C3X 0.053 (4) 0.056 (4) 0.069 (5) −0.041 (3) 0.029 (3) −0.044 (4)
C5B 0.0215 (4) 0.0172 (4) 0.0180 (4) −0.0080 (3) −0.0034 (3) −0.0034 (3)
C6B 0.0202 (4) 0.0172 (4) 0.0184 (4) −0.0075 (3) −0.0034 (3) −0.0041 (3)
C7B 0.0268 (4) 0.0152 (4) 0.0190 (4) −0.0080 (3) −0.0067 (3) −0.0010 (3)
C8B 0.0433 (6) 0.0178 (4) 0.0266 (5) −0.0125 (4) −0.0124 (4) −0.0027 (4)

Geometric parameters (Å, °)

S1A—C1A 1.7085 (11) N2B—C7B 1.3812 (12)
S1A—C2A 1.7170 (13) N3B—C6B 1.3430 (12)
S2A—C6A 1.6838 (10) N3B—N4B 1.3765 (13)
N1A—C5A 1.2859 (13) N3B—H3NB 0.84 (2)
N1A—N2A 1.3820 (11) N4B—C7B 1.3063 (13)
N2A—C6A 1.3881 (12) C4B—C1X 1.381 (13)
N2A—C7A 1.3889 (13) C4B—C3X 1.392 (10)
N3A—C6A 1.3408 (13) C4B—C1B 1.410 (3)
N3A—N4A 1.3781 (13) C4B—C3B 1.429 (8)
N3A—H3NA 0.896 (19) C4B—C5B 1.4542 (13)
N4A—C7A 1.3026 (13) S1B—C1B 1.670 (3)
C1A—C4A 1.3787 (15) S1B—C2B 1.791 (9)
C1A—H1AA 0.9300 C1B—H1BA 0.9300
C2A—C3A 1.3730 (15) C2B—C3B 1.367 (9)
C2A—H2AA 0.9300 C2B—H2BA 0.9300
C3A—C4A 1.4322 (15) C3B—H3BA 0.9300
C3A—H3AA 0.9300 S1X—C1X 1.705 (9)
C4A—C5A 1.4568 (13) S1X—C2X 1.734 (8)
C5A—H5AA 0.9300 C1X—H1XA 0.9300
C7A—C8A 1.4816 (15) C2X—C3X 1.297 (13)
C8A—H8AA 0.9600 C2X—H2XA 0.9300
C8A—H8AB 0.9600 C3X—H3XA 0.9300
C8A—H8AC 0.9600 C5B—H5BA 0.9300
S2B—C6B 1.6837 (10) C7B—C8B 1.4809 (15)
N1B—C5B 1.2917 (13) C8B—H8BA 0.9600
N1B—N2B 1.3977 (11) C8B—H8BB 0.9600
N2B—C6B 1.3811 (12) C8B—H8BC 0.9600
C1A—S1A—C2A 92.44 (5) C1X—C4B—C3X 109.6 (5)
C5A—N1A—N2A 120.12 (9) C1X—C4B—C1B 114.6 (3)
N1A—N2A—C6A 134.03 (8) C3X—C4B—C3B 107.0 (5)
N1A—N2A—C7A 117.69 (8) C1B—C4B—C3B 112.0 (3)
C6A—N2A—C7A 108.28 (8) C1X—C4B—C5B 124.8 (3)
C6A—N3A—N4A 114.25 (8) C3X—C4B—C5B 125.6 (4)
C6A—N3A—H3NA 127.0 (12) C1B—C4B—C5B 120.56 (16)
N4A—N3A—H3NA 118.5 (12) C3B—C4B—C5B 127.5 (3)
C7A—N4A—N3A 104.29 (8) C1B—S1B—C2B 94.2 (3)
C4A—C1A—S1A 111.67 (8) C4B—C1B—S1B 111.2 (2)
C4A—C1A—H1AA 124.2 C4B—C1B—H1BA 124.4
S1A—C1A—H1AA 124.2 S1B—C1B—H1BA 124.4
C3A—C2A—S1A 111.42 (8) C3B—C2B—S1B 107.5 (6)
C3A—C2A—H2AA 124.3 C3B—C2B—H2BA 126.3
S1A—C2A—H2AA 124.3 S1B—C2B—H2BA 126.3
C2A—C3A—C4A 112.42 (10) C2B—C3B—C4B 115.1 (6)
C2A—C3A—H3AA 123.8 C2B—C3B—H3BA 122.4
C4A—C3A—H3AA 123.8 C4B—C3B—H3BA 122.4
C1A—C4A—C3A 112.04 (9) C1X—S1X—C2X 91.4 (5)
C1A—C4A—C5A 123.85 (10) C4B—C1X—S1X 111.6 (5)
C3A—C4A—C5A 124.08 (9) C4B—C1X—H1XA 124.2
N1A—C5A—C4A 116.66 (9) S1X—C1X—H1XA 124.2
N1A—C5A—H5AA 121.7 C3X—C2X—S1X 109.7 (7)
C4A—C5A—H5AA 121.7 C3X—C2X—H2XA 125.1
N3A—C6A—N2A 102.63 (8) S1X—C2X—H2XA 125.1
N3A—C6A—S2A 126.98 (8) C2X—C3X—C4B 117.6 (8)
N2A—C6A—S2A 130.38 (7) C2X—C3X—H3XA 121.2
N4A—C7A—N2A 110.54 (9) C4B—C3X—H3XA 121.2
N4A—C7A—C8A 125.91 (9) N1B—C5B—C4B 120.21 (9)
N2A—C7A—C8A 123.48 (9) N1B—C5B—H5BA 119.9
C7A—C8A—H8AA 109.5 C4B—C5B—H5BA 119.9
C7A—C8A—H8AB 109.5 N3B—C6B—N2B 102.76 (8)
H8AA—C8A—H8AB 109.5 N3B—C6B—S2B 127.50 (8)
C7A—C8A—H8AC 109.5 N2B—C6B—S2B 129.69 (7)
H8AA—C8A—H8AC 109.5 N4B—C7B—N2B 110.39 (9)
H8AB—C8A—H8AC 109.5 N4B—C7B—C8B 125.79 (9)
C5B—N1B—N2B 113.61 (9) N2B—C7B—C8B 123.82 (9)
C6B—N2B—C7B 108.61 (8) C7B—C8B—H8BA 109.5
C6B—N2B—N1B 128.38 (8) C7B—C8B—H8BB 109.5
C7B—N2B—N1B 122.26 (8) H8BA—C8B—H8BB 109.5
C6B—N3B—N4B 113.86 (8) C7B—C8B—H8BC 109.5
C6B—N3B—H3NB 126.2 (13) H8BA—C8B—H8BC 109.5
N4B—N3B—H3NB 119.7 (13) H8BB—C8B—H8BC 109.5
C7B—N4B—N3B 104.32 (8)
C5A—N1A—N2A—C6A 2.18 (18) S1B—C2B—C3B—C4B 0.9 (10)
C5A—N1A—N2A—C7A −178.40 (10) C1X—C4B—C3B—C2B 178 (100)
C6A—N3A—N4A—C7A 0.28 (13) C3X—C4B—C3B—C2B −1.7 (9)
C2A—S1A—C1A—C4A 1.06 (10) C1B—C4B—C3B—C2B −1.1 (9)
C1A—S1A—C2A—C3A −0.79 (10) C5B—C4B—C3B—C2B 178.9 (5)
S1A—C2A—C3A—C4A 0.34 (14) C3X—C4B—C1X—S1X 0.3 (10)
S1A—C1A—C4A—C3A −1.04 (13) C1B—C4B—C1X—S1X 1.0 (10)
S1A—C1A—C4A—C5A 177.06 (9) C3B—C4B—C1X—S1X 0(19)
C2A—C3A—C4A—C1A 0.45 (15) C5B—C4B—C1X—S1X −179.1 (3)
C2A—C3A—C4A—C5A −177.65 (11) C2X—S1X—C1X—C4B 0.1 (9)
N2A—N1A—C5A—C4A 179.43 (9) C1X—S1X—C2X—C3X −0.6 (9)
C1A—C4A—C5A—N1A −173.55 (11) S1X—C2X—C3X—C4B 1.0 (11)
C3A—C4A—C5A—N1A 4.33 (16) C1X—C4B—C3X—C2X −0.9 (11)
N4A—N3A—C6A—N2A −0.02 (12) C1B—C4B—C3X—C2X −174 (6)
N4A—N3A—C6A—S2A 179.17 (8) C3B—C4B—C3X—C2X −0.9 (10)
N1A—N2A—C6A—N3A 179.21 (11) C5B—C4B—C3X—C2X 178.6 (6)
C7A—N2A—C6A—N3A −0.24 (11) N2B—N1B—C5B—C4B 177.18 (9)
N1A—N2A—C6A—S2A 0.07 (18) C1X—C4B—C5B—N1B −3.5 (7)
C7A—N2A—C6A—S2A −179.39 (9) C3X—C4B—C5B—N1B 177.1 (5)
N3A—N4A—C7A—N2A −0.43 (12) C1B—C4B—C5B—N1B 176.36 (19)
N3A—N4A—C7A—C8A 176.66 (11) C3B—C4B—C5B—N1B −3.6 (5)
N1A—N2A—C7A—N4A −179.11 (9) N4B—N3B—C6B—N2B 1.89 (12)
C6A—N2A—C7A—N4A 0.44 (13) N4B—N3B—C6B—S2B −175.95 (9)
N1A—N2A—C7A—C8A 3.72 (16) C7B—N2B—C6B—N3B −2.32 (12)
C6A—N2A—C7A—C8A −176.73 (11) N1B—N2B—C6B—N3B −172.46 (10)
C5B—N1B—N2B—C6B −49.59 (15) C7B—N2B—C6B—S2B 175.46 (9)
C5B—N1B—N2B—C7B 141.48 (10) N1B—N2B—C6B—S2B 5.31 (17)
C6B—N3B—N4B—C7B −0.69 (13) N3B—N4B—C7B—N2B −0.87 (13)
C1X—C4B—C1B—S1B 0.7 (6) N3B—N4B—C7B—C8B 179.50 (12)
C3X—C4B—C1B—S1B 7(5) C6B—N2B—C7B—N4B 2.09 (13)
C3B—C4B—C1B—S1B 0.7 (5) N1B—N2B—C7B—N4B 172.96 (10)
C5B—C4B—C1B—S1B −179.23 (13) C6B—N2B—C7B—C8B −178.27 (11)
C2B—S1B—C1B—C4B −0.2 (4) N1B—N2B—C7B—C8B −7.40 (17)
C1B—S1B—C2B—C3B −0.4 (7)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N3A—H3NA···S2Bi 0.894 (19) 2.46 (2) 3.3494 (11) 177.7 (18)
N3B—H3NB···S2Aii 0.84 (2) 2.45 (2) 3.2728 (12) 167.7 (19)
C5A—H5AA···S2A 0.93 2.50 3.2311 (12) 135
C8B—H8BA···N4Aiii 0.96 2.59 3.5503 (16) 175
C5B—H5BA···Cg1iv 0.93 2.91 3.4955 (12) 122

Symmetry codes: (i) x−1, y, z−1; (ii) x+1, y, z+1; (iii) x+1, y−1, z+1; (iv) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2500).

References

  1. Aytac, S. P., Tozkoparan, B., Kaynak, F. B., Aktay, G., Goktas, O. & Unuvar, S. (2009). Eur. J. Med. Chem.44, 4528–4538. [DOI] [PubMed]
  2. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  4. Ghazzali, M., Al-Farhan, K., El-Faham, A. & Reedijk, J. (2010). Polyhedron, 29, 2829–2832.
  5. Kucukguzel, I., Tatar, E., Kucukguzel, S. G., Rolollas, S. & Clercq, E. D. (2008). Eur. J. Med. Chem.43, 381–392. [DOI] [PubMed]
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Siddiqui, Z. N., Khuwaja, G. & Asad, M. (2006). Heterocycl. Commun.12, 443–448.
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  9. Xia, Y., Qu, F. & Peng, L. (2010). Mini-Rev. Med. Chem 10, 806–821. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810041152/rz2500sup1.cif

e-66-o2861-sup1.cif (23.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810041152/rz2500Isup2.hkl

e-66-o2861-Isup2.hkl (427.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES