Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Oct 13;66(Pt 11):o2802–o2803. doi: 10.1107/S1600536810039942

R,4R,4aR,6aS,7R,8S,10R,11S)-Methyl α-acet­oxy-4-(3-furan­yl)-10-hy­droxy-4a,7,9,9-tetra­methyl-2,13-dioxo-1,4,4a,5,6,6a,7,8,9,10,11,12-dodeca­hydro-7,11-methano-2H-cyclo­octa­[f][2]benzopyran-8-acetate (6-O-acetyl­swietenolide) from the seeds of Swietenia macrophylla

Bey Hing Goh a, Habsah Abdul Kadir a, Sri Nurestri Abdul Malek a, Seik Weng Ng b,*
PMCID: PMC3009069  PMID: 21588997

Abstract

The mol­ecule of O-acetyl­swietenolide, C29H36O9, isolated from the seeds of Swietenia macrophylla, features four six-membered rings connected together in the shape of a bowl; one of the inner rings adopts a twisted chair conformation owing to the C=C double bond. The furyl substitutent is connected to an outer ring, and it points away from the bowl cavity. The hy­droxy group is connected to a carbonyl O atom of an adjacent mol­ecule by an O—H⋯O hydrogen bond, generating a chain running along the b axis.

Related literature

For the absolute stereochemistry assignment, see: Bickii et al. (2000); Kadota et al. (1990); Mootoo et al. (1999); Narender et al. (2008). For another swietenolide isolated from Swietenia macrophylla, see: Goh et al. (2010).graphic file with name e-66-o2802-scheme1.jpg

Experimental

Crystal data

  • C29H36O9

  • M r = 528.58

  • Monoclinic, Inline graphic

  • a = 11.5648 (9) Å

  • b = 8.4355 (6) Å

  • c = 14.5082 (11) Å

  • β = 112.985 (1)°

  • V = 1302.98 (17) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.35 × 0.15 × 0.05 mm

Data collection

  • Bruker SMART APEX diffractometer

  • 12419 measured reflections

  • 3178 independent reflections

  • 2952 reflections with I > 2σ(I)

  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034

  • wR(F 2) = 0.100

  • S = 1.00

  • 3178 reflections

  • 353 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810039942/bt5372sup1.cif

e-66-o2802-sup1.cif (26.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810039942/bt5372Isup2.hkl

e-66-o2802-Isup2.hkl (155.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5⋯O8i 0.84 (1) 1.99 (1) 2.827 (2) 175 (3)

Symmetry code: (i) Inline graphic.

Acknowledgments

We thank the University of Malaya for supporting this study.

supplementary crystallographic information

Comment

Sweietenia macrophylla is a large mahogany tree growing in the rainforests of Malaysia. The extracts of the seeds contain flavonoids, saponins and alkaloids that are commecialized in local herbal products. A previous study reports the crystal structure of swietenolide diactate (Goh et al., 2010). The title compound (Scheme I, Fig. 1), which was isolated from the same plant, differs only in having a hydroxy group in place of a acetoxy group. The hydroxy group engages in O–H···O hydrogen bonding to generate a chain structure.

Experimental

The finely ground seeds ofSweietenia macrophylla (600 g) were soaked in ethanol at room temperature for three days. The mixture was filtered and the solvent evaporated to give a dark yellow crude material (70 g). A portion (40 g) was successively extracted with n-hexane, ethyl acetate and water to give an n-hexane-insoluble residue. The residue was partitioned between ethyl acetate-water (1:1) to give an ethyl acetate-soluble fraction (30 g, 80%).

This fraction (3 g) was subjected to column chromatography on silica gel (70–230 mesh, 300 g), with initial elution by n-hexane, followed by increasing proportions of chloroform. Eleven fractions were obtained. The fourth fraction (2 g) was further subjected to column chromatography (70–230 mesh,200 g), initially eluting with n-hexane and later with acetone to give twelve fractions.

The eighth fraction (600 mg) was dissolved in methanol and kept in a refrigerator. A white solid was obtained after two days, and a second crop was obtained after another two days. Recrystallization of the first crop from chloroform yielded colorless crystals of the swietenolide diacetate (yield 15 mg). The ninth fraction (80 mg) yielded O-acetylswietenolide (13 mg) after recrystalization from chloroform.

Refinement

Carbon-bound H atoms were placed in calculated positions (C—H 0.95 to 1.00 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2 to 1.5U(C). The hydroxy H-atom was located in a difference Fourier map, and was refined isotropically with a distance restraint of O–H 0.84±0.01 Å.

2201 Friedel pairs were merged.

Figures

Fig. 1.

Fig. 1.

Anisotropic displacement ellipsoid plot (Barbour, 2001) of C29H36O9 at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

Crystal data

C29H36O9 F(000) = 564
Mr = 528.58 Dx = 1.347 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2yb Cell parameters from 4876 reflections
a = 11.5648 (9) Å θ = 2.9–28.1°
b = 8.4355 (6) Å µ = 0.10 mm1
c = 14.5082 (11) Å T = 100 K
β = 112.985 (1)° Prism, colorless
V = 1302.98 (17) Å3 0.35 × 0.15 × 0.05 mm
Z = 2

Data collection

Bruker SMART APEX diffractometer 2952 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.034
graphite θmax = 27.5°, θmin = 1.9°
ω scans h = −15→15
12419 measured reflections k = −10→10
3178 independent reflections l = −18→18

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100 H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0733P)2 + 0.1429P] where P = (Fo2 + 2Fc2)/3
3178 reflections (Δ/σ)max = 0.001
353 parameters Δρmax = 0.27 e Å3
2 restraints Δρmin = −0.20 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.61851 (17) 0.5009 (2) 1.01707 (12) 0.0283 (4)
O2 0.47929 (19) 1.1423 (2) 0.73073 (15) 0.0344 (4)
O3 0.55291 (15) 0.92107 (19) 0.81247 (12) 0.0198 (3)
O4 0.87219 (16) 0.6373 (2) 0.44745 (12) 0.0257 (4)
O5 0.89022 (14) 0.99908 (19) 0.69927 (12) 0.0200 (3)
H5 0.945 (2) 1.059 (3) 0.7393 (18) 0.024 (7)*
O6 0.92901 (15) 0.6390 (2) 0.91487 (12) 0.0264 (4)
O7 1.12489 (15) 0.5429 (2) 0.96568 (11) 0.0224 (4)
O8 1.06597 (15) 0.21550 (19) 0.82808 (12) 0.0218 (3)
O9 1.10687 (14) 0.46053 (18) 0.78928 (12) 0.0169 (3)
C1 0.4977 (2) 0.5532 (3) 0.98089 (18) 0.0268 (5)
H1 0.4365 0.5202 1.0054 0.032*
C2 0.4760 (2) 0.6575 (3) 0.90604 (17) 0.0237 (5)
H2 0.3990 0.7097 0.8688 0.028*
C3 0.5928 (2) 0.6741 (3) 0.89368 (16) 0.0184 (4)
C4 0.6748 (2) 0.5781 (3) 0.96307 (17) 0.0252 (5)
H4 0.7605 0.5660 0.9730 0.030*
C5 0.61902 (19) 0.7714 (3) 0.81867 (16) 0.0162 (4)
H5A 0.7112 0.7937 0.8451 0.019*
C6 0.5376 (2) 1.0223 (3) 0.73623 (17) 0.0200 (4)
C7 0.5993 (2) 0.9818 (3) 0.66575 (16) 0.0174 (4)
H7A 0.6814 1.0370 0.6892 0.021*
H7B 0.5471 1.0261 0.5993 0.021*
C8 0.62213 (18) 0.8084 (3) 0.65186 (15) 0.0144 (4)
C9 0.57977 (19) 0.6948 (3) 0.71383 (16) 0.0156 (4)
C10 0.4363 (2) 0.6743 (3) 0.66379 (17) 0.0203 (5)
H10A 0.4133 0.6334 0.5957 0.030*
H10B 0.3955 0.7770 0.6610 0.030*
H10C 0.4088 0.5995 0.7028 0.030*
C11 0.6478 (2) 0.5347 (2) 0.72606 (16) 0.0159 (4)
H11A 0.7348 0.5460 0.7762 0.019*
H11B 0.6046 0.4553 0.7517 0.019*
C12 0.6513 (2) 0.4750 (3) 0.62825 (16) 0.0178 (4)
H12A 0.5646 0.4503 0.5813 0.021*
H12B 0.7002 0.3751 0.6415 0.021*
C13 0.70907 (19) 0.5924 (3) 0.57788 (16) 0.0159 (4)
H13 0.6677 0.5706 0.5044 0.019*
C14 0.67811 (19) 0.7634 (3) 0.59133 (15) 0.0148 (4)
C15 0.7178 (2) 0.8800 (3) 0.53024 (16) 0.0183 (4)
H15A 0.7045 0.9891 0.5493 0.022*
H15B 0.6638 0.8655 0.4585 0.022*
C16 0.8571 (2) 0.8611 (3) 0.54462 (17) 0.0186 (4)
H16 0.8712 0.9238 0.4914 0.022*
C17 0.8692 (2) 0.6869 (3) 0.52527 (16) 0.0189 (4)
C18 0.85658 (19) 0.5781 (3) 0.60545 (16) 0.0153 (4)
C19 0.8895 (2) 0.4080 (3) 0.58576 (17) 0.0189 (4)
H19A 0.8320 0.3742 0.5189 0.028*
H19B 0.8813 0.3364 0.6361 0.028*
H19C 0.9760 0.4050 0.5897 0.028*
C20 0.93657 (19) 0.6467 (2) 0.71258 (15) 0.0125 (4)
H20 0.8750 0.7049 0.7329 0.015*
C21 1.03242 (19) 0.7743 (3) 0.71073 (16) 0.0154 (4)
C22 0.9545 (2) 0.9152 (3) 0.64803 (17) 0.0185 (4)
H22 1.0139 0.9906 0.6361 0.022*
C23 1.1253 (2) 0.7223 (3) 0.66323 (18) 0.0211 (5)
H23A 1.1843 0.6442 0.7067 0.032*
H23B 1.1719 0.8149 0.6555 0.032*
H23C 1.0785 0.6748 0.5975 0.032*
C24 1.1129 (2) 0.8349 (3) 0.81604 (17) 0.0198 (5)
H24A 1.1701 0.7508 0.8541 0.030*
H24B 1.0582 0.8656 0.8503 0.030*
H24C 1.1618 0.9270 0.8110 0.030*
C25 0.99178 (19) 0.5175 (2) 0.79253 (15) 0.0146 (4)
H25 0.9310 0.4271 0.7753 0.018*
C26 1.0111 (2) 0.5757 (3) 0.89756 (16) 0.0179 (4)
C27 1.1475 (3) 0.5980 (4) 1.06570 (19) 0.0352 (7)
H27A 1.2382 0.6054 1.1047 0.053*
H27B 1.1105 0.5233 1.0982 0.053*
H27C 1.1092 0.7027 1.0620 0.053*
C28 1.1339 (2) 0.3050 (3) 0.80775 (16) 0.0166 (4)
C29 1.2531 (2) 0.2641 (3) 0.79648 (18) 0.0216 (5)
H29A 1.2356 0.2438 0.7258 0.032*
H29B 1.2898 0.1691 0.8359 0.032*
H29C 1.3123 0.3526 0.8204 0.032*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0289 (9) 0.0383 (10) 0.0209 (8) −0.0019 (8) 0.0133 (7) 0.0061 (7)
O2 0.0402 (11) 0.0271 (9) 0.0458 (11) 0.0131 (9) 0.0274 (9) 0.0032 (9)
O3 0.0224 (8) 0.0193 (7) 0.0225 (8) −0.0008 (6) 0.0140 (7) −0.0051 (6)
O4 0.0284 (9) 0.0365 (9) 0.0172 (8) 0.0106 (8) 0.0142 (7) 0.0037 (7)
O5 0.0157 (7) 0.0171 (7) 0.0276 (9) 0.0008 (6) 0.0090 (7) 0.0000 (6)
O6 0.0182 (8) 0.0465 (10) 0.0158 (8) 0.0061 (8) 0.0079 (6) −0.0018 (8)
O7 0.0201 (8) 0.0307 (9) 0.0139 (7) 0.0063 (7) 0.0038 (6) 0.0016 (7)
O8 0.0229 (8) 0.0159 (7) 0.0267 (9) 0.0003 (6) 0.0097 (7) 0.0020 (7)
O9 0.0141 (7) 0.0146 (7) 0.0230 (8) 0.0029 (6) 0.0084 (6) 0.0025 (6)
C1 0.0251 (11) 0.0347 (13) 0.0254 (12) −0.0046 (10) 0.0150 (10) −0.0012 (10)
C2 0.0208 (11) 0.0304 (12) 0.0249 (12) −0.0033 (10) 0.0142 (9) −0.0012 (10)
C3 0.0196 (10) 0.0231 (11) 0.0150 (10) −0.0037 (9) 0.0096 (8) −0.0058 (8)
C4 0.0219 (11) 0.0363 (13) 0.0198 (11) −0.0019 (10) 0.0105 (9) 0.0025 (10)
C5 0.0134 (9) 0.0197 (10) 0.0170 (10) −0.0018 (8) 0.0077 (8) −0.0030 (8)
C6 0.0172 (10) 0.0220 (10) 0.0223 (11) 0.0000 (9) 0.0095 (9) −0.0044 (9)
C7 0.0158 (10) 0.0195 (10) 0.0182 (10) 0.0031 (8) 0.0081 (8) 0.0009 (8)
C8 0.0081 (9) 0.0189 (10) 0.0132 (10) 0.0018 (7) 0.0010 (7) −0.0003 (8)
C9 0.0116 (9) 0.0203 (10) 0.0151 (9) −0.0016 (8) 0.0053 (8) −0.0032 (8)
C10 0.0137 (10) 0.0282 (12) 0.0199 (10) −0.0035 (9) 0.0076 (8) −0.0071 (9)
C11 0.0161 (9) 0.0175 (10) 0.0167 (10) −0.0035 (8) 0.0094 (8) −0.0018 (8)
C12 0.0165 (10) 0.0189 (10) 0.0200 (10) −0.0024 (8) 0.0091 (8) −0.0044 (8)
C13 0.0116 (9) 0.0201 (10) 0.0152 (10) 0.0017 (8) 0.0045 (8) −0.0032 (8)
C14 0.0105 (9) 0.0203 (10) 0.0124 (9) 0.0026 (8) 0.0031 (7) 0.0008 (8)
C15 0.0147 (10) 0.0249 (10) 0.0156 (10) 0.0057 (9) 0.0063 (8) 0.0051 (9)
C16 0.0183 (11) 0.0241 (11) 0.0182 (10) 0.0055 (8) 0.0123 (9) 0.0081 (9)
C17 0.0136 (10) 0.0274 (11) 0.0172 (10) 0.0050 (8) 0.0077 (8) 0.0045 (9)
C18 0.0131 (9) 0.0193 (10) 0.0146 (9) 0.0019 (8) 0.0066 (8) 0.0007 (8)
C19 0.0188 (10) 0.0228 (11) 0.0174 (10) 0.0027 (9) 0.0096 (9) −0.0033 (8)
C20 0.0108 (8) 0.0141 (9) 0.0127 (9) 0.0029 (7) 0.0045 (7) 0.0010 (7)
C21 0.0129 (9) 0.0161 (9) 0.0201 (10) 0.0013 (8) 0.0096 (8) 0.0029 (8)
C22 0.0154 (10) 0.0159 (10) 0.0260 (11) 0.0030 (8) 0.0102 (9) 0.0068 (8)
C23 0.0134 (10) 0.0234 (10) 0.0303 (12) 0.0039 (8) 0.0126 (9) 0.0074 (9)
C24 0.0148 (10) 0.0168 (10) 0.0259 (12) −0.0007 (8) 0.0058 (9) 0.0002 (8)
C25 0.0127 (9) 0.0145 (9) 0.0173 (10) 0.0012 (8) 0.0065 (8) 0.0014 (8)
C26 0.0169 (10) 0.0218 (10) 0.0157 (10) −0.0007 (9) 0.0071 (8) 0.0028 (8)
C27 0.0271 (13) 0.0530 (18) 0.0161 (11) 0.0144 (13) −0.0017 (10) −0.0026 (11)
C28 0.0178 (10) 0.0147 (10) 0.0139 (10) 0.0019 (8) 0.0026 (8) −0.0014 (8)
C29 0.0183 (10) 0.0187 (10) 0.0276 (12) 0.0055 (9) 0.0089 (9) −0.0002 (9)

Geometric parameters (Å, °)

O1—C1 1.360 (3) C12—H12B 0.9900
O1—C4 1.364 (3) C13—C14 1.518 (3)
O2—C6 1.202 (3) C13—C18 1.597 (3)
O3—C6 1.353 (3) C13—H13 1.0000
O3—C5 1.461 (3) C14—C15 1.510 (3)
O4—C17 1.217 (3) C15—C16 1.550 (3)
O5—C22 1.427 (3) C15—H15A 0.9900
O5—H5 0.84 (1) C15—H15B 0.9900
O6—C26 1.198 (3) C16—C17 1.513 (3)
O7—C26 1.330 (3) C16—C22 1.552 (3)
O7—C27 1.447 (3) C16—H16 1.0000
O8—C28 1.206 (3) C17—C18 1.533 (3)
O9—C28 1.351 (3) C18—C19 1.540 (3)
O9—C25 1.433 (2) C18—C20 1.576 (3)
C1—C2 1.343 (4) C19—H19A 0.9800
C1—H1 0.9500 C19—H19B 0.9800
C2—C3 1.438 (3) C19—H19C 0.9800
C2—H2 0.9500 C20—C25 1.537 (3)
C3—C4 1.350 (3) C20—C21 1.553 (3)
C3—C5 1.486 (3) C20—H20 1.0000
C4—H4 0.9500 C21—C24 1.533 (3)
C5—C9 1.548 (3) C21—C23 1.549 (3)
C5—H5A 1.0000 C21—C22 1.553 (3)
C6—C7 1.497 (3) C22—H22 1.0000
C7—C8 1.513 (3) C23—H23A 0.9800
C7—H7A 0.9900 C23—H23B 0.9800
C7—H7B 0.9900 C23—H23C 0.9800
C8—C14 1.333 (3) C24—H24A 0.9800
C8—C9 1.520 (3) C24—H24B 0.9800
C9—C11 1.538 (3) C24—H24C 0.9800
C9—C10 1.539 (3) C25—C26 1.532 (3)
C10—H10A 0.9800 C25—H25 1.0000
C10—H10B 0.9800 C27—H27A 0.9800
C10—H10C 0.9800 C27—H27B 0.9800
C11—C12 1.521 (3) C27—H27C 0.9800
C11—H11A 0.9900 C28—C29 1.490 (3)
C11—H11B 0.9900 C29—H29A 0.9800
C12—C13 1.530 (3) C29—H29B 0.9800
C12—H12A 0.9900 C29—H29C 0.9800
C1—O1—C4 105.78 (19) C17—C16—C22 112.35 (18)
C6—O3—C5 119.61 (16) C15—C16—C22 115.07 (18)
C22—O5—H5 104 (2) C17—C16—H16 108.4
C26—O7—C27 114.67 (18) C15—C16—H16 108.4
C28—O9—C25 117.71 (17) C22—C16—H16 108.4
C2—C1—O1 111.4 (2) O4—C17—C16 123.0 (2)
C2—C1—H1 124.3 O4—C17—C18 122.9 (2)
O1—C1—H1 124.3 C16—C17—C18 113.45 (18)
C1—C2—C3 106.0 (2) C17—C18—C19 108.29 (17)
C1—C2—H2 127.0 C17—C18—C20 109.63 (18)
C3—C2—H2 127.0 C19—C18—C20 115.63 (17)
C4—C3—C2 105.6 (2) C17—C18—C13 100.00 (16)
C4—C3—C5 126.4 (2) C19—C18—C13 109.91 (18)
C2—C3—C5 128.0 (2) C20—C18—C13 112.19 (16)
C3—C4—O1 111.2 (2) C18—C19—H19A 109.5
C3—C4—H4 124.4 C18—C19—H19B 109.5
O1—C4—H4 124.4 H19A—C19—H19B 109.5
O3—C5—C3 105.74 (16) C18—C19—H19C 109.5
O3—C5—C9 110.76 (17) H19A—C19—H19C 109.5
C3—C5—C9 115.06 (18) H19B—C19—H19C 109.5
O3—C5—H5A 108.4 C25—C20—C21 114.55 (16)
C3—C5—H5A 108.4 C25—C20—C18 113.28 (17)
C9—C5—H5A 108.4 C21—C20—C18 112.67 (16)
O2—C6—O3 118.5 (2) C25—C20—H20 105.1
O2—C6—C7 123.5 (2) C21—C20—H20 105.1
O3—C6—C7 117.99 (19) C18—C20—H20 105.1
C6—C7—C8 117.74 (19) C24—C21—C23 106.33 (18)
C6—C7—H7A 107.9 C24—C21—C20 111.93 (17)
C8—C7—H7A 107.9 C23—C21—C20 115.78 (18)
C6—C7—H7B 107.9 C24—C21—C22 108.43 (18)
C8—C7—H7B 107.9 C23—C21—C22 107.51 (17)
H7A—C7—H7B 107.2 C20—C21—C22 106.60 (16)
C14—C8—C7 121.15 (19) O5—C22—C16 108.69 (17)
C14—C8—C9 124.17 (19) O5—C22—C21 112.06 (17)
C7—C8—C9 114.66 (17) C16—C22—C21 112.18 (18)
C8—C9—C11 110.70 (16) O5—C22—H22 107.9
C8—C9—C10 109.21 (18) C16—C22—H22 107.9
C11—C9—C10 111.35 (18) C21—C22—H22 107.9
C8—C9—C5 106.23 (16) C21—C23—H23A 109.5
C11—C9—C5 108.21 (17) C21—C23—H23B 109.5
C10—C9—C5 111.03 (17) H23A—C23—H23B 109.5
C9—C10—H10A 109.5 C21—C23—H23C 109.5
C9—C10—H10B 109.5 H23A—C23—H23C 109.5
H10A—C10—H10B 109.5 H23B—C23—H23C 109.5
C9—C10—H10C 109.5 C21—C24—H24A 109.5
H10A—C10—H10C 109.5 C21—C24—H24B 109.5
H10B—C10—H10C 109.5 H24A—C24—H24B 109.5
C12—C11—C9 112.46 (17) C21—C24—H24C 109.5
C12—C11—H11A 109.1 H24A—C24—H24C 109.5
C9—C11—H11A 109.1 H24B—C24—H24C 109.5
C12—C11—H11B 109.1 O9—C25—C26 111.32 (17)
C9—C11—H11B 109.1 O9—C25—C20 109.29 (16)
H11A—C11—H11B 107.8 C26—C25—C20 112.31 (17)
C11—C12—C13 114.02 (17) O9—C25—H25 107.9
C11—C12—H12A 108.7 C26—C25—H25 107.9
C13—C12—H12A 108.7 C20—C25—H25 107.9
C11—C12—H12B 108.7 O6—C26—O7 124.9 (2)
C13—C12—H12B 108.7 O6—C26—C25 122.11 (19)
H12A—C12—H12B 107.6 O7—C26—C25 112.95 (18)
C14—C13—C12 112.65 (17) O7—C27—H27A 109.5
C14—C13—C18 108.77 (17) O7—C27—H27B 109.5
C12—C13—C18 117.01 (18) H27A—C27—H27B 109.5
C14—C13—H13 105.9 O7—C27—H27C 109.5
C12—C13—H13 105.9 H27A—C27—H27C 109.5
C18—C13—H13 105.9 H27B—C27—H27C 109.5
C8—C14—C15 122.6 (2) O8—C28—O9 122.2 (2)
C8—C14—C13 123.70 (19) O8—C28—C29 126.9 (2)
C15—C14—C13 113.74 (17) O9—C28—C29 110.79 (19)
C14—C15—C16 113.10 (17) C28—C29—H29A 109.5
C14—C15—H15A 109.0 C28—C29—H29B 109.5
C16—C15—H15A 109.0 H29A—C29—H29B 109.5
C14—C15—H15B 109.0 C28—C29—H29C 109.5
C16—C15—H15B 109.0 H29A—C29—H29C 109.5
H15A—C15—H15B 107.8 H29B—C29—H29C 109.5
C17—C16—C15 103.94 (19)
C4—O1—C1—C2 0.9 (3) C15—C16—C17—C18 −68.0 (2)
O1—C1—C2—C3 −0.4 (3) C22—C16—C17—C18 57.1 (2)
C1—C2—C3—C4 −0.3 (3) O4—C17—C18—C19 17.1 (3)
C1—C2—C3—C5 177.9 (2) C16—C17—C18—C19 −171.89 (18)
C2—C3—C4—O1 0.9 (3) O4—C17—C18—C20 144.1 (2)
C5—C3—C4—O1 −177.3 (2) C16—C17—C18—C20 −44.9 (2)
C1—O1—C4—C3 −1.1 (3) O4—C17—C18—C13 −97.9 (2)
C6—O3—C5—C3 −166.70 (18) C16—C17—C18—C13 73.1 (2)
C6—O3—C5—C9 −41.4 (2) C14—C13—C18—C17 −62.5 (2)
C4—C3—C5—O3 −140.9 (2) C12—C13—C18—C17 168.46 (18)
C2—C3—C5—O3 41.3 (3) C14—C13—C18—C19 −176.26 (17)
C4—C3—C5—C9 96.5 (3) C12—C13—C18—C19 54.7 (2)
C2—C3—C5—C9 −81.3 (3) C14—C13—C18—C20 53.6 (2)
C5—O3—C6—O2 177.6 (2) C12—C13—C18—C20 −75.4 (2)
C5—O3—C6—C7 −5.1 (3) C17—C18—C20—C25 −147.54 (17)
O2—C6—C7—C8 −155.4 (2) C19—C18—C20—C25 −24.8 (2)
O3—C6—C7—C8 27.5 (3) C13—C18—C20—C25 102.3 (2)
C6—C7—C8—C14 −179.1 (2) C17—C18—C20—C21 −15.5 (2)
C6—C7—C8—C9 −0.7 (3) C19—C18—C20—C21 107.2 (2)
C14—C8—C9—C11 19.3 (3) C13—C18—C20—C21 −125.63 (18)
C7—C8—C9—C11 −159.00 (18) C25—C20—C21—C24 −46.3 (2)
C14—C8—C9—C10 −103.6 (2) C18—C20—C21—C24 −177.77 (17)
C7—C8—C9—C10 78.1 (2) C25—C20—C21—C23 75.7 (2)
C14—C8—C9—C5 136.6 (2) C18—C20—C21—C23 −55.7 (2)
C7—C8—C9—C5 −41.7 (2) C25—C20—C21—C22 −164.74 (17)
O3—C5—C9—C8 63.6 (2) C18—C20—C21—C22 63.8 (2)
C3—C5—C9—C8 −176.52 (18) C17—C16—C22—O5 −129.80 (18)
O3—C5—C9—C11 −177.45 (16) C15—C16—C22—O5 −11.1 (2)
C3—C5—C9—C11 −57.6 (2) C17—C16—C22—C21 −5.3 (2)
O3—C5—C9—C10 −55.0 (2) C15—C16—C22—C21 113.3 (2)
C3—C5—C9—C10 64.9 (2) C24—C21—C22—O5 −49.9 (2)
C8—C9—C11—C12 −45.1 (2) C23—C21—C22—O5 −164.50 (18)
C10—C9—C11—C12 76.6 (2) C20—C21—C22—O5 70.7 (2)
C5—C9—C11—C12 −161.11 (17) C24—C21—C22—C16 −172.51 (17)
C9—C11—C12—C13 55.3 (2) C23—C21—C22—C16 72.9 (2)
C11—C12—C13—C14 −35.6 (3) C20—C21—C22—C16 −51.8 (2)
C11—C12—C13—C18 91.5 (2) C28—O9—C25—C26 90.9 (2)
C7—C8—C14—C15 −2.3 (3) C28—O9—C25—C20 −144.50 (18)
C9—C8—C14—C15 179.45 (19) C21—C20—C25—O9 −47.2 (2)
C7—C8—C14—C13 177.06 (19) C18—C20—C25—O9 84.0 (2)
C9—C8—C14—C13 −1.2 (3) C21—C20—C25—C26 76.9 (2)
C12—C13—C14—C8 8.9 (3) C18—C20—C25—C26 −151.96 (17)
C18—C13—C14—C8 −122.5 (2) C27—O7—C26—O6 −3.3 (4)
C12—C13—C14—C15 −171.68 (18) C27—O7—C26—C25 179.2 (2)
C18—C13—C14—C15 56.9 (2) O9—C25—C26—O6 174.3 (2)
C8—C14—C15—C16 127.9 (2) C20—C25—C26—O6 51.4 (3)
C13—C14—C15—C16 −51.6 (3) O9—C25—C26—O7 −8.1 (3)
C14—C15—C16—C17 52.2 (2) C20—C25—C26—O7 −131.01 (19)
C14—C15—C16—C22 −71.1 (2) C25—O9—C28—O8 −1.2 (3)
C15—C16—C17—O4 103.1 (2) C25—O9—C28—C29 177.21 (17)
C22—C16—C17—O4 −131.9 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O5—H5···O8i 0.84 (1) 1.99 (1) 2.827 (2) 175 (3)

Symmetry codes: (i) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5372).

References

  1. Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  2. Bickii, J., Njifutie, N., Ayafo Foyere, J., Basco, L. K. & Ringwald, P. (2000). J. Enthnopharmacol.69, 27–33. [DOI] [PubMed]
  3. Bruker (2009). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Goh, B. H., Abdul Kadir, H., Abdul Malek, S. N. & Ng, S. W. (2010). Acta Cryst. E66, o1396. [DOI] [PMC free article] [PubMed]
  5. Kadota, S., Maraung, L., Kikuchi, T. & Ekimoto, H. (1990). Chem. Pharm. Bull.36, 639–651. [DOI] [PubMed]
  6. Mootoo, B. S., Ali, A., Motilal, R., Pingal, R., Ramlal, A., Khan, A., Reynolds, W. F. & McLean, S. (1999). J. Nat. Prod.62, 1515–1517. [DOI] [PubMed]
  7. Narender, T., Khaliq, T. & Shweta, T. (2008). Nat. Prod. Res. A22, 763–800. [DOI] [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Westrip, S. P. (2010). J. Appl. Cryst.43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810039942/bt5372sup1.cif

e-66-o2802-sup1.cif (26.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810039942/bt5372Isup2.hkl

e-66-o2802-Isup2.hkl (155.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES