Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Oct 20;66(Pt 11):o2837. doi: 10.1107/S1600536810040675

3-(4-Meth­oxy­benzyl­idene)-1,5-dioxa­spiro­[5.5]undecane-2,4-dione

Wu-Lan Zeng a, Jin-Long Suo a, Fang-fang Jian b,*
PMCID: PMC3009085  PMID: 21589023

Abstract

In the title mol­ecule, C17H18O5, which was prepared by the reaction of (R)-1,5-dioxaspiro­[5.5]undecane-2,4-dione and 4-meth­oxy­benzaldehyde with ethanol, the 1,3-dioxane ring is in a distorted envelope conformation with the spiro C atom forming the flap. The crystal structure is stabilized by weak inter­molecular C—H⋯O hydrogen bonds.

Related literature

For background information on spiro-compounds, see: Jiang et al. (1998); Lian et al. (2008); Wei et al. (2008). For a related structure, see: Zeng et al. (2009). For puckering parameters, see: Cremer & Pople (1975).graphic file with name e-66-o2837-scheme1.jpg

Experimental

Crystal data

  • C17H18O5

  • M r = 302.31

  • Monoclinic, Inline graphic

  • a = 15.723 (3) Å

  • b = 10.531 (2) Å

  • c = 9.2029 (18) Å

  • β = 90.00 (3)°

  • V = 1523.8 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.25 × 0.16 × 0.10 mm

Data collection

  • Bruker SMART CCD diffractometer

  • 14509 measured reflections

  • 3493 independent reflections

  • 2450 reflections with I > 2σ(I)

  • R int = 0.057

Refinement

  • R[F 2 > 2σ(F 2)] = 0.060

  • wR(F 2) = 0.185

  • S = 1.11

  • 3493 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.41 e Å−3

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810040675/hb5678sup1.cif

e-66-o2837-sup1.cif (17.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810040675/hb5678Isup2.hkl

e-66-o2837-Isup2.hkl (171.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8A⋯O3i 0.93 2.58 3.405 (3) 149 (3)

Symmetry code: (i) Inline graphic.

supplementary crystallographic information

Comment

Spiro compounds are widely used in medicine, catalysis and optical material (Lian et al., 2008; Jiang et al., 1998; Wei et al., 2008) owing to their interesting conformational features. We have recently reported the crystal structure of (Z)-3-(3-phenylallylidene)-1,5-dioxaspiro[5.5]undecane-2,4-dione (Zeng et al. 2009). As part of our ongoing studies on new spiro compounds with potentially higher bioactivity, the title compound, (I) (Fig. 1), has been synthesized and its structure is reported here.

The 1,3-dioxane ring is in a distored envelope conformation with atom C11 atom common to the cyclohexane forming the flap. The cyclohexane exists in a distorted chair comformation, with the puckering parameters Q=0.552Å, theta=175.1°, Phi=39.2°; The crystal structure is stabilized by weak intra and intermolecular C—H···O hydrogen bonds (Table 1).

Experimental

A mixture of malonic acid (6.24 g, 0.06 mol) and acetic anhydride(9 ml) in strong sulfuric acid (0.25 ml) was stirred with water at 303 K. After dissolving, cyclohexanone (5.88 g, 0.06 mol) was added dropwise into solution for 1 h. The reaction was allowed to proceed for 4 h. The mixture was cooled and filtered, and then an ethanol solution of 4-methoxybenzaldehyde (8.16 g, 0.06 mol) was added. The solution was then filtered and concentrated. Colourless blocks of (I) were obtained by evaporation of an petroleum ether-ethylacetate (3:1 v/v) solution at room temperature over a period of one week.

Refinement

The H atoms were placed in calculated positions (C—H = 0.93–0.97 Å), and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), drawn with 30% probability ellipsoids and spheres of arbritrary size for the H atoms.

Crystal data

C17H18O5 F(000) = 640
Mr = 302.31 Dx = 1.318 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 2450 reflections
a = 15.723 (3) Å θ = 3.2–27.5°
b = 10.531 (2) Å µ = 0.10 mm1
c = 9.2029 (18) Å T = 293 K
β = 90.00 (3)° Block, colorless
V = 1523.8 (5) Å3 0.25 × 0.16 × 0.10 mm
Z = 4

Data collection

Bruker SMART CCD diffractometer 2450 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.057
graphite θmax = 27.5°, θmin = 3.2°
phi and ω scans h = −20→20
14509 measured reflections k = −11→13
3493 independent reflections l = −11→11

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.185 H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0988P)2 + 0.1666P] where P = (Fo2 + 2Fc2)/3
3493 reflections (Δ/σ)max < 0.001
199 parameters Δρmax = 0.34 e Å3
0 restraints Δρmin = −0.41 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O5 0.35323 (7) 0.60512 (11) 0.18736 (14) 0.0621 (4)
O4 0.27576 (8) 0.50924 (12) 0.37464 (12) 0.0613 (4)
O3 0.14427 (8) 0.56348 (16) 0.42086 (13) 0.0767 (4)
C12 0.20204 (11) 0.56349 (17) 0.33460 (18) 0.0573 (4)
O1 −0.22145 (8) 0.60711 (16) 0.16227 (16) 0.0799 (5)
C9 0.20107 (11) 0.62557 (17) 0.1912 (2) 0.0591 (4)
C11 0.34102 (10) 0.49138 (15) 0.26925 (17) 0.0520 (4)
C5 0.04075 (11) 0.64170 (17) 0.13577 (19) 0.0596 (4)
O2 0.29512 (10) 0.73591 (18) 0.0312 (2) 0.1155 (7)
C2 −0.13524 (11) 0.61345 (19) 0.15722 (19) 0.0612 (4)
C17 0.31883 (13) 0.38211 (18) 0.1710 (2) 0.0663 (5)
H17A 0.2690 0.4036 0.1141 0.080*
H17B 0.3054 0.3080 0.2293 0.080*
C4 −0.01498 (12) 0.72360 (19) 0.0631 (2) 0.0696 (5)
H4A 0.0072 0.7881 0.0054 0.084*
C6 0.00472 (12) 0.54299 (19) 0.2157 (2) 0.0661 (5)
H6A 0.0402 0.4856 0.2628 0.079*
C13 0.42224 (12) 0.4727 (2) 0.3519 (2) 0.0744 (6)
H13A 0.4141 0.4065 0.4239 0.089*
H13B 0.4364 0.5505 0.4027 0.089*
C8 0.13114 (12) 0.66335 (18) 0.1175 (2) 0.0669 (5)
H8A 0.1438 0.7143 0.0378 0.080*
C7 −0.08152 (12) 0.5284 (2) 0.2265 (2) 0.0668 (5)
H7A −0.1040 0.4617 0.2803 0.080*
C10 0.28435 (12) 0.66098 (19) 0.1279 (2) 0.0707 (5)
C3 −0.10110 (13) 0.7112 (2) 0.0747 (2) 0.0725 (5)
H3A −0.1368 0.7681 0.0274 0.087*
C15 0.4723 (2) 0.3234 (3) 0.1548 (4) 0.1182 (11)
H15A 0.5187 0.3067 0.0880 0.142*
H15B 0.4637 0.2483 0.2139 0.142*
C14 0.49532 (14) 0.4363 (3) 0.2527 (3) 0.1001 (9)
H14A 0.5445 0.4144 0.3112 0.120*
H14B 0.5104 0.5085 0.1926 0.120*
C16 0.39229 (19) 0.3516 (3) 0.0700 (3) 0.1034 (9)
H16A 0.3777 0.2787 0.0107 0.124*
H16B 0.4023 0.4231 0.0058 0.124*
C1 −0.25940 (14) 0.5094 (3) 0.2471 (3) 0.1045 (9)
H1A −0.3202 0.5159 0.2409 0.157*
H1B −0.2420 0.5182 0.3466 0.157*
H1C −0.2416 0.4280 0.2110 0.157*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O5 0.0527 (7) 0.0513 (7) 0.0822 (8) −0.0017 (5) 0.0135 (6) 0.0140 (5)
O4 0.0618 (7) 0.0751 (8) 0.0470 (6) −0.0023 (6) 0.0115 (5) −0.0021 (5)
O3 0.0619 (8) 0.1095 (12) 0.0587 (7) −0.0099 (7) 0.0195 (6) −0.0150 (7)
C12 0.0573 (9) 0.0596 (10) 0.0549 (9) −0.0089 (8) 0.0141 (7) −0.0117 (7)
O1 0.0530 (8) 0.1061 (12) 0.0808 (9) −0.0026 (7) 0.0057 (6) 0.0112 (8)
C9 0.0532 (9) 0.0508 (9) 0.0732 (11) 0.0017 (7) 0.0182 (8) 0.0042 (7)
C11 0.0554 (9) 0.0501 (9) 0.0506 (8) −0.0030 (7) 0.0110 (7) 0.0037 (6)
C5 0.0575 (10) 0.0563 (10) 0.0650 (10) 0.0027 (8) 0.0121 (7) 0.0050 (7)
O2 0.0713 (10) 0.1084 (13) 0.1668 (16) 0.0208 (9) 0.0394 (10) 0.0879 (12)
C2 0.0524 (9) 0.0747 (12) 0.0563 (9) 0.0010 (8) 0.0056 (7) −0.0017 (8)
C17 0.0790 (13) 0.0524 (10) 0.0675 (11) 0.0010 (8) 0.0074 (9) −0.0063 (8)
C4 0.0639 (11) 0.0664 (12) 0.0787 (12) 0.0033 (9) 0.0108 (9) 0.0185 (9)
C6 0.0606 (11) 0.0611 (11) 0.0765 (12) −0.0023 (8) −0.0002 (8) 0.0152 (9)
C13 0.0626 (11) 0.0894 (15) 0.0710 (11) −0.0060 (10) −0.0017 (9) 0.0195 (10)
C8 0.0621 (11) 0.0569 (10) 0.0816 (12) 0.0061 (8) 0.0200 (9) 0.0130 (8)
C7 0.0622 (11) 0.0716 (12) 0.0666 (10) −0.0104 (9) 0.0009 (8) 0.0157 (9)
C10 0.0582 (10) 0.0566 (11) 0.0972 (14) 0.0080 (8) 0.0229 (9) 0.0234 (9)
C3 0.0640 (12) 0.0718 (12) 0.0816 (12) 0.0103 (9) 0.0032 (9) 0.0159 (10)
C15 0.110 (2) 0.105 (2) 0.140 (2) 0.0499 (18) 0.0472 (19) 0.0149 (19)
C14 0.0599 (12) 0.129 (2) 0.1108 (18) 0.0150 (13) 0.0135 (12) 0.0447 (18)
C16 0.115 (2) 0.0978 (19) 0.0974 (16) 0.0332 (16) 0.0266 (15) −0.0256 (14)
C1 0.0627 (13) 0.159 (3) 0.0916 (16) −0.0262 (14) 0.0035 (11) 0.0349 (16)

Geometric parameters (Å, °)

O5—C10 1.348 (2) C4—C3 1.365 (3)
O5—C11 1.4281 (19) C4—H4A 0.9300
O4—C12 1.344 (2) C6—C7 1.368 (3)
O4—C11 1.4245 (19) C6—H6A 0.9300
O3—C12 1.2064 (19) C13—C14 1.516 (3)
C12—C9 1.473 (3) C13—H13A 0.9700
O1—C2 1.358 (2) C13—H13B 0.9700
O1—C1 1.423 (3) C8—H8A 0.9300
C9—C8 1.352 (3) C7—H7A 0.9300
C9—C10 1.481 (2) C3—H3A 0.9300
C11—C13 1.499 (3) C15—C16 1.509 (4)
C11—C17 1.504 (2) C15—C14 1.535 (5)
C5—C6 1.394 (3) C15—H15A 0.9700
C5—C4 1.400 (3) C15—H15B 0.9700
C5—C8 1.449 (3) C14—H14A 0.9700
O2—C10 1.201 (2) C14—H14B 0.9700
C2—C7 1.386 (3) C16—H16A 0.9700
C2—C3 1.387 (3) C16—H16B 0.9700
C17—C16 1.517 (3) C1—H1A 0.9600
C17—H17A 0.9700 C1—H1B 0.9600
C17—H17B 0.9700 C1—H1C 0.9600
C10—O5—C11 118.18 (13) H13A—C13—H13B 107.9
C12—O4—C11 119.39 (13) C9—C8—C5 133.89 (17)
O3—C12—O4 117.97 (17) C9—C8—H8A 113.1
O3—C12—C9 125.58 (18) C5—C8—H8A 113.1
O4—C12—C9 116.32 (14) C6—C7—C2 119.86 (18)
C2—O1—C1 118.23 (18) C6—C7—H7A 120.1
C8—C9—C12 126.06 (16) C2—C7—H7A 120.1
C8—C9—C10 116.61 (16) O2—C10—O5 118.29 (17)
C12—C9—C10 117.06 (16) O2—C10—C9 125.55 (18)
O4—C11—O5 110.20 (13) O5—C10—C9 116.15 (15)
O4—C11—C13 106.60 (14) C4—C3—C2 119.86 (18)
O5—C11—C13 105.28 (14) C4—C3—H3A 120.1
O4—C11—C17 110.06 (14) C2—C3—H3A 120.1
O5—C11—C17 110.83 (14) C16—C15—C14 110.4 (2)
C13—C11—C17 113.69 (16) C16—C15—H15A 109.6
C6—C5—C4 117.22 (17) C14—C15—H15A 109.6
C6—C5—C8 125.26 (17) C16—C15—H15B 109.6
C4—C5—C8 117.48 (16) C14—C15—H15B 109.6
O1—C2—C7 124.10 (17) H15A—C15—H15B 108.1
O1—C2—C3 116.19 (17) C13—C14—C15 111.7 (2)
C7—C2—C3 119.70 (17) C13—C14—H14A 109.3
C11—C17—C16 110.71 (19) C15—C14—H14A 109.3
C11—C17—H17A 109.5 C13—C14—H14B 109.3
C16—C17—H17A 109.5 C15—C14—H14B 109.3
C11—C17—H17B 109.5 H14A—C14—H14B 107.9
C16—C17—H17B 109.5 C15—C16—C17 111.1 (2)
H17A—C17—H17B 108.1 C15—C16—H16A 109.4
C3—C4—C5 121.64 (18) C17—C16—H16A 109.4
C3—C4—H4A 119.2 C15—C16—H16B 109.4
C5—C4—H4A 119.2 C17—C16—H16B 109.4
C7—C6—C5 121.66 (18) H16A—C16—H16B 108.0
C7—C6—H6A 119.2 O1—C1—H1A 109.5
C5—C6—H6A 119.2 O1—C1—H1B 109.5
C11—C13—C14 111.92 (18) H1A—C1—H1B 109.5
C11—C13—H13A 109.2 O1—C1—H1C 109.5
C14—C13—H13A 109.2 H1A—C1—H1C 109.5
C11—C13—H13B 109.2 H1B—C1—H1C 109.5
C14—C13—H13B 109.2

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C8—H8A···O3i 0.93 2.58 3.405 (3) 149 (3)

Symmetry codes: (i) x, −y+3/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5678).

References

  1. Bruker (1997). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc 6, 1354–1358.
  3. Jiang, Y. Z., Xue, S., Li, Z., Deng, J. G., Mi, A. Q. & Albert, S. C. C. (1998). Tetrahedron, 9, 3185–3189.
  4. Lian, Y., Guo, J. J., Liu, X. M. & Wei, R. B. (2008). Chem. Res. Chin. Univ 24, 441–444.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Wei, R. B., Liu, B., Liu, Y., Guo, J. J. & Zhang, D. W. (2008). Chin. J. Org. Chem 28, 1501–1514.
  7. Zeng, W.-L., Zhang, H.-X. & Jian, F.-F. (2009). Acta Cryst. E65, o2586. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810040675/hb5678sup1.cif

e-66-o2837-sup1.cif (17.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810040675/hb5678Isup2.hkl

e-66-o2837-Isup2.hkl (171.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES