Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Oct 9;66(Pt 11):o2747. doi: 10.1107/S1600536810038936

3,4-Diaminopyridinium 2-carboxy-4,6-dinitrophenolate

Madhukar Hemamalini a, Hoong-Kun Fun a,*,
PMCID: PMC3009103  PMID: 21588952

Abstract

In the title salt, C5H8N3 +·C7H3N2O7 , the pyridine N atom of the 3,4-diamino­pyridine mol­ecule is protonated. The 3,5-dinitro­salicylate anion shows whole-mol­ecule disorder over two orientations with a refined occupancy ratio of 0.875 (4): 0.125 (4). In the crystal, the cations and anions are connected by inter­molecular N—H⋯O and C—H⋯O hydrogen bonds, forming a three-dimensional network.

Related literature

For applications of diamino­pyridine, see: Abu Zuhri & Cox (1989); Inuzuka & Fujimoto (1990); El-Mossalamy (2001). For related structures, see: Rubin-Preminger & Englert (2007); Koleva et al. (2007); Koleva et al. (2008). For reference bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).graphic file with name e-66-o2747-scheme1.jpg

Experimental

Crystal data

  • C5H8N3 +·C7H3N2O7

  • M r = 337.26

  • Monoclinic, Inline graphic

  • a = 9.1187 (4) Å

  • b = 11.3569 (5) Å

  • c = 13.1343 (6) Å

  • β = 98.204 (4)°

  • V = 1346.27 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 100 K

  • 0.52 × 0.11 × 0.10 mm

Data collection

  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.931, T max = 0.986

  • 10195 measured reflections

  • 2785 independent reflections

  • 1979 reflections with I > 2σ(I)

  • R int = 0.064

Refinement

  • R[F 2 > 2σ(F 2)] = 0.070

  • wR(F 2) = 0.162

  • S = 1.12

  • 2785 reflections

  • 287 parameters

  • 526 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.28 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810038936/hb5660sup1.cif

e-66-o2747-sup1.cif (22.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810038936/hb5660Isup2.hkl

e-66-o2747-Isup2.hkl (134KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O1 1.07 1.76 2.753 (4) 153
N2—H2N2⋯O6i 0.89 2.24 3.120 (4) 171
N2—H1N2⋯O3ii 1.03 2.11 3.026 (5) 146
N3—H1N3⋯O6i 0.89 2.36 3.104 (4) 142
N3—H2N3⋯O5iii 1.00 2.24 3.217 (5) 163
C6—H6A⋯O3iv 0.93 2.56 3.299 (6) 136

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

MH and HKF thank the Malaysian Government and Universiti Sains Malaysia for the Research University grant No. 1001/PFIZIK/811160. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

supplementary crystallographic information

Comment

Diaminopyridine have an important role in the preparation of aromatic azo dyes (Abu Zuhri & Cox, 1989; Inuzuka & Fujimoto, 1990) and in many polarographic investigations (El-Mossalamy, 2001). The crystal structure of 3,4-diaminopyridine (Rubin-Preminger & Englert, 2007), 3,4-diaminopyridinium hydrogen squarate (Koleva et al., 2007) and 3,4-diaminopyridinium hydrogen tartarate (Koleva et al., 2008) have been reported in the literature. 3,5-Dinitrosalicylic acid (DNSA) has proved to be effective as a proton-donating acid species for stabilizing crystalline salts of Lewis bases. Since our aim is to study some interesting hydrogen-bonding interactions, the synthesis and structure of the title compound (I) is presented here.

The asymmetric unit of (I) (Fig 1), contains a protonated 3,4-diaminopyridinium cation and a 3,5-dinitrosalicylate anion. The bond lengths (Allen et al., 1987) and angles are normal. In the 3,4-diaminopyridinium cation (the proton transfer from the hydroxyl group of the anion), protonation of the N1 atom leads to a slight increase in the C1—N1—C5 angle to 122.1 (3)°, compared to 115.69 (19)° in 3,4-diaminopyridine (Rubin-Preminger & Englert, 2007). The whole 3,5-dinitrosalicylate anion is disordered over two positions with a refined occupancy ratio of 0.886 (4): 0.114 (4). Excluding amino group, the pyridine is planar, with a maximum deviation of 0.010 (3) Å for atom C2.

In the crystal structure (Fig. 2), there is an intramolecular O2—H2···O1 hydrogen bond in the 3,5-dinitrosalicylate anion, which generates an S(6) (Bernstein et al., 1995) ring motif. Furthermore, the cations and anions are connected by intermolecular strong N1—H1N1···O1; N2—H2N2···O6; N2—H1N2···O3; N3—H1N3···O6; N3—H2N3···O5 and weak C6—H6A···O3 hydrogen bonds, forming a three-dimensional network.

Experimental

A hot methanol solution (20 ml) of 3,4-diaminopyridine (27 mg, Aldrich) and 3,5-dinitrosalicylic acid (57 mg, Merck) were mixed and warmed over a heating magnetic stirrer hotplate for a few minutes. The resulting solution was allowed to cool slowly at room temperature and crystals of the title compound appeared after a few days.

Refinement

All the H atoms were positioned geometrically [C–H = 0.93 Å; N–H = 0.8875–1.0684 Å] and were refined using a riding model, with Uiso(H) = 1.2 Ueq(C,N,O). The whole 3,5-dinitrosalicylate anion is disordered over two positions with a refined ratio of 0.886 (4): 0.114 (4). In the final difference Fourier map, the highest peak and the deepest hole are 1.24 Å and 0.62 Å from H1N2 and C5, respectively.

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level. All disorder components are shown.

Fig. 2.

Fig. 2.

The crystal packing of the title compound, showing a hydrogen-bonded (dashed lines) network. H atoms not involved in the interactions have been omitted for clarity.

Crystal data

C5H8N3+·C7H3N2O7 F(000) = 696
Mr = 337.26 Dx = 1.664 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 2307 reflections
a = 9.1187 (4) Å θ = 2.4–28.6°
b = 11.3569 (5) Å µ = 0.14 mm1
c = 13.1343 (6) Å T = 100 K
β = 98.204 (4)° Needle, yellow
V = 1346.27 (10) Å3 0.52 × 0.11 × 0.10 mm
Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 2785 independent reflections
Radiation source: fine-focus sealed tube 1979 reflections with I > 2σ(I)
graphite Rint = 0.064
φ and ω scans θmax = 26.5°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −11→11
Tmin = 0.931, Tmax = 0.986 k = −14→14
10195 measured reflections l = −16→16

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.070 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.162 H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0439P)2 + 2.4565P] where P = (Fo2 + 2Fc2)/3
2785 reflections (Δ/σ)max < 0.001
279 parameters Δρmax = 0.46 e Å3
526 restraints Δρmin = −0.28 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
N1 0.1346 (3) 0.4299 (2) −0.0435 (2) 0.0286 (7)
H1N1 0.2282 0.4863 −0.0241 0.034*
N2 0.0269 (3) 0.1468 (3) 0.0541 (2) 0.0370 (8)
H2N2 −0.0550 0.1048 0.0573 0.044*
H1N2 0.1048 0.1417 0.1192 0.044*
N3 −0.1784 (3) 0.1759 (2) −0.1255 (2) 0.0279 (7)
H1N3 −0.1717 0.1109 −0.0876 0.034*
H2N3 −0.2376 0.1940 −0.1942 0.034*
C1 0.1297 (4) 0.3365 (3) 0.0206 (3) 0.0283 (8)
H1A 0.1953 0.3325 0.0816 0.034*
C2 0.0275 (3) 0.2469 (3) −0.0045 (3) 0.0274 (8)
C3 −0.0744 (3) 0.2571 (3) −0.0968 (2) 0.0253 (7)
C4 −0.0643 (4) 0.3579 (3) −0.1599 (3) 0.0275 (8)
H4A −0.1299 0.3671 −0.2204 0.033*
C5 0.0411 (4) 0.4406 (3) −0.1315 (3) 0.0298 (8)
H5A 0.0486 0.5054 −0.1737 0.036*
O1 0.3734 (3) 0.5460 (2) 0.06336 (19) 0.0242 (7) 0.886 (4)
O2 0.5011 (3) 0.4686 (2) 0.2297 (2) 0.0278 (7) 0.886 (4)
H2 0.4413 0.4777 0.1774 0.033* 0.886 (4)
O3 0.6962 (5) 0.5623 (2) 0.3110 (3) 0.0274 (9) 0.886 (4)
O4 0.2470 (6) 0.6533 (5) −0.1085 (5) 0.0309 (11) 0.886 (4)
O5 0.3768 (6) 0.7848 (5) −0.1745 (3) 0.0242 (10) 0.886 (4)
O6 0.7238 (3) 1.0170 (3) 0.0450 (3) 0.0246 (7) 0.886 (4)
O7 0.8474 (3) 0.9354 (3) 0.1809 (2) 0.0270 (7) 0.886 (4)
N4 0.3541 (10) 0.7207 (7) −0.1015 (5) 0.0204 (9) 0.886 (4)
N5 0.7468 (3) 0.9350 (3) 0.1074 (3) 0.0191 (7) 0.886 (4)
C6 0.5497 (8) 0.8229 (5) 0.0041 (4) 0.0177 (14) 0.886 (4)
H6A 0.5442 0.8801 −0.0470 0.021* 0.886 (4)
C7 0.4568 (12) 0.7259 (7) −0.0067 (6) 0.0182 (12) 0.886 (4)
C8 0.4606 (6) 0.6350 (4) 0.0699 (4) 0.0179 (9) 0.886 (4)
C9 0.5741 (4) 0.6491 (3) 0.1573 (3) 0.0171 (8) 0.886 (4)
C10 0.6650 (4) 0.7456 (3) 0.1681 (3) 0.0162 (7) 0.886 (4)
H10A 0.7364 0.7530 0.2259 0.019* 0.886 (4)
C11 0.6506 (5) 0.8326 (4) 0.0926 (3) 0.0158 (8) 0.886 (4)
C12 0.5956 (4) 0.5570 (3) 0.2394 (3) 0.0210 (8) 0.886 (4)
O1B 0.703 (2) 0.7054 (19) 0.2650 (14) 0.037 (6)* 0.114 (4)
O2B 0.598 (2) 0.512 (2) 0.2943 (15) 0.034 (6)* 0.114 (4)
H2B 0.6584 0.5652 0.2956 0.01 (17)* 0.114 (4)
O3B 0.409 (3) 0.4439 (19) 0.1805 (19) 0.051 (7)* 0.114 (4)
O4B 0.833 (2) 0.892 (2) 0.2101 (17) 0.028 (6)* 0.114 (4)
O5B 0.722 (3) 0.995 (2) 0.0788 (19) 0.013 (6)* 0.114 (4)
O6B 0.375 (7) 0.811 (4) −0.176 (4) 0.045 (16)* 0.114 (4)
O7B 0.250 (6) 0.660 (5) −0.132 (4) 0.044 (15)* 0.114 (4)
N4B 0.733 (3) 0.908 (2) 0.138 (2) 0.032 (7)* 0.114 (4)
N5B 0.353 (10) 0.733 (7) −0.115 (4) 0.032 (7)* 0.114 (4)
C6B 0.537 (6) 0.824 (4) 0.018 (3) 0.011 (6)* 0.114 (4)
H6BA 0.5362 0.8931 −0.0200 0.013* 0.114 (4)
C7B 0.633 (4) 0.811 (3) 0.110 (2) 0.011 (6)* 0.114 (4)
C8B 0.620 (3) 0.714 (2) 0.1781 (16) 0.007 (6)* 0.114 (4)
C9B 0.520 (3) 0.6226 (19) 0.1401 (17) 0.014 (5)* 0.114 (4)
C10B 0.432 (5) 0.633 (3) 0.049 (3) 0.014 (5)* 0.114 (4)
H10B 0.3639 0.5746 0.0275 0.016* 0.114 (4)
C11B 0.442 (12) 0.732 (7) −0.014 (5) 0.026 (6)* 0.114 (4)
C12B 0.499 (3) 0.521 (2) 0.2106 (18) 0.026 (6)* 0.114 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0268 (15) 0.0294 (15) 0.0305 (16) 0.0010 (13) 0.0071 (13) −0.0046 (12)
N2 0.0307 (15) 0.0329 (17) 0.0469 (19) −0.0038 (14) 0.0036 (14) 0.0063 (14)
N3 0.0288 (14) 0.0247 (14) 0.0296 (15) −0.0042 (12) 0.0017 (12) 0.0005 (12)
C1 0.0268 (17) 0.0239 (17) 0.037 (2) 0.0027 (15) 0.0138 (15) −0.0011 (15)
C2 0.0254 (17) 0.0312 (18) 0.0262 (17) 0.0103 (15) 0.0055 (14) −0.0011 (14)
C3 0.0219 (16) 0.0277 (18) 0.0282 (18) 0.0005 (14) 0.0098 (14) −0.0089 (14)
C4 0.0260 (16) 0.0239 (17) 0.0346 (19) 0.0016 (14) 0.0110 (15) −0.0036 (14)
C5 0.0318 (18) 0.0268 (18) 0.0319 (19) 0.0035 (15) 0.0089 (15) 0.0015 (14)
O1 0.0243 (13) 0.0203 (13) 0.0282 (14) −0.0050 (11) 0.0047 (11) −0.0006 (10)
O2 0.0340 (15) 0.0211 (15) 0.0283 (15) −0.0031 (12) 0.0053 (12) 0.0083 (12)
O3 0.0300 (15) 0.0260 (19) 0.0258 (16) 0.0037 (12) 0.0021 (15) 0.0078 (11)
O4 0.0240 (18) 0.034 (2) 0.033 (3) −0.0167 (12) −0.0016 (18) 0.0034 (19)
O5 0.0281 (19) 0.024 (2) 0.0201 (18) −0.0091 (18) 0.0016 (11) 0.0047 (15)
O6 0.0303 (16) 0.0173 (15) 0.0266 (18) −0.0026 (11) 0.0051 (14) 0.0060 (13)
O7 0.0245 (14) 0.0227 (15) 0.0308 (16) −0.0050 (12) −0.0065 (12) −0.0017 (13)
N4 0.0193 (16) 0.023 (3) 0.020 (2) −0.0003 (18) 0.0050 (17) −0.0003 (14)
N5 0.0198 (16) 0.0176 (18) 0.0203 (18) 0.0005 (14) 0.0038 (14) −0.0027 (15)
C6 0.019 (2) 0.0193 (19) 0.016 (2) 0.0018 (15) 0.009 (2) −0.0020 (16)
C7 0.016 (3) 0.020 (2) 0.020 (2) 0.002 (2) 0.0068 (14) −0.0020 (14)
C8 0.018 (3) 0.0159 (17) 0.021 (3) 0.0011 (16) 0.0086 (17) −0.0020 (16)
C9 0.018 (2) 0.0158 (18) 0.0183 (17) 0.0026 (16) 0.0059 (14) 0.0005 (14)
C10 0.0153 (17) 0.0164 (18) 0.0182 (18) −0.0011 (16) 0.0067 (14) −0.0041 (14)
C11 0.018 (2) 0.011 (2) 0.020 (2) −0.0012 (14) 0.0103 (16) −0.0006 (14)
C12 0.0255 (19) 0.0153 (16) 0.024 (2) 0.0030 (15) 0.0096 (16) 0.0010 (15)

Geometric parameters (Å, °)

N1—C5 1.341 (4) C6—C7 1.384 (5)
N1—C1 1.358 (4) C6—H6A 0.9300
N1—H1N1 1.0684 C7—C8 1.438 (5)
N2—C2 1.373 (4) C8—C9 1.441 (5)
N2—H2N2 0.8919 C9—C10 1.369 (5)
N2—H1N2 1.0329 C9—C12 1.494 (5)
N3—C3 1.338 (4) C10—C11 1.393 (5)
N3—H1N3 0.8875 C10—H10A 0.9300
N3—H2N3 1.0043 O1B—C8B 1.281 (16)
C1—C2 1.387 (5) O2B—C12B 1.322 (16)
C1—H1A 0.9300 O2B—H2B 0.8200
C2—C3 1.423 (4) O3B—C12B 1.229 (17)
C3—C4 1.424 (5) O4B—N4B 1.230 (17)
C4—C5 1.357 (5) O5B—N4B 1.249 (17)
C4—H4A 0.9300 O6B—N5B 1.237 (18)
C5—H5A 0.9300 O7B—N5B 1.246 (18)
O1—C8 1.282 (5) N4B—C7B 1.445 (16)
O2—C12 1.317 (4) N5B—C11B 1.454 (17)
O2—H2 0.8200 C6B—C11B 1.386 (18)
O3—C12 1.219 (6) C6B—C7B 1.388 (18)
O4—N4 1.234 (4) C6B—H6BA 0.9300
O5—N4 1.244 (5) C7B—C8B 1.436 (16)
O6—N5 1.239 (5) C8B—C9B 1.424 (16)
O7—N5 1.233 (4) C9B—C10B 1.348 (16)
N4—C7 1.449 (5) C9B—C12B 1.507 (16)
N5—C11 1.453 (5) C10B—C11B 1.398 (18)
C6—C11 1.381 (5) C10B—H10B 0.9300
C5—N1—C1 122.1 (3) C10—C9—C8 121.8 (3)
C5—N1—H1N1 122.6 C10—C9—C12 118.0 (3)
C1—N1—H1N1 114.6 C8—C9—C12 120.2 (3)
C2—N2—H2N2 122.6 C9—C10—C11 120.0 (3)
C2—N2—H1N2 116.9 C9—C10—H10A 120.0
H2N2—N2—H1N2 114.3 C11—C10—H10A 120.0
C3—N3—H1N3 115.2 C6—C11—C10 121.8 (4)
C3—N3—H2N3 112.3 C6—C11—N5 119.6 (4)
H1N3—N3—H2N3 131.3 C10—C11—N5 118.6 (3)
N1—C1—C2 120.4 (3) O3—C12—O2 121.5 (3)
N1—C1—H1A 119.8 O3—C12—C9 122.0 (3)
C2—C1—H1A 119.8 O2—C12—C9 116.5 (3)
N2—C2—C1 122.0 (3) C12B—O2B—H2B 109.5
N2—C2—C3 119.4 (3) O4B—N4B—O5B 126 (2)
C1—C2—C3 118.5 (3) O4B—N4B—C7B 116.9 (19)
N3—C3—C2 122.3 (3) O5B—N4B—C7B 116.5 (18)
N3—C3—C4 119.5 (3) O6B—N5B—O7B 123 (3)
C2—C3—C4 118.3 (3) O6B—N5B—C11B 119 (2)
C5—C4—C3 119.9 (3) O7B—N5B—C11B 118 (3)
C5—C4—H4A 120.1 C11B—C6B—C7B 118.0 (19)
C3—C4—H4A 120.1 C11B—C6B—H6BA 121.0
N1—C5—C4 120.8 (3) C7B—C6B—H6BA 121.0
N1—C5—H5A 119.6 C6B—C7B—C8B 121.6 (17)
C4—C5—H5A 119.6 C6B—C7B—N4B 115.9 (18)
C12—O2—H2 109.5 C8B—C7B—N4B 121.9 (17)
O4—N4—O5 121.5 (4) O1B—C8B—C9B 121.6 (16)
O4—N4—C7 119.8 (4) O1B—C8B—C7B 121.6 (17)
O5—N4—C7 118.7 (4) C9B—C8B—C7B 116.4 (15)
O7—N5—O6 123.5 (3) C10B—C9B—C8B 120.9 (16)
O7—N5—C11 118.3 (4) C10B—C9B—C12B 120.2 (17)
O6—N5—C11 118.1 (3) C8B—C9B—C12B 118.2 (15)
C11—C6—C7 118.3 (4) C9B—C10B—C11B 121 (2)
C11—C6—H6A 120.9 C9B—C10B—H10B 119.5
C7—C6—H6A 120.9 C11B—C10B—H10B 119.5
C6—C7—C8 123.1 (4) C6B—C11B—C10B 121.0 (19)
C6—C7—N4 115.5 (4) C6B—C11B—N5B 121 (2)
C8—C7—N4 121.3 (4) C10B—C11B—N5B 118 (2)
O1—C8—C7 124.5 (4) O3B—C12B—O2B 124 (2)
O1—C8—C9 120.6 (4) O3B—C12B—C9B 119.1 (17)
C7—C8—C9 114.9 (3) O2B—C12B—C9B 116.2 (17)
C5—N1—C1—C2 1.0 (5) O6—N5—C11—C10 −173.2 (4)
N1—C1—C2—N2 174.7 (3) C10—C9—C12—O3 −4.5 (5)
N1—C1—C2—C3 −1.9 (5) C8—C9—C12—O3 175.3 (4)
N2—C2—C3—N3 4.7 (5) C10—C9—C12—O2 176.3 (3)
C1—C2—C3—N3 −178.6 (3) C8—C9—C12—O2 −3.8 (5)
N2—C2—C3—C4 −175.5 (3) C11B—C6B—C7B—C8B −10 (11)
C1—C2—C3—C4 1.2 (4) C11B—C6B—C7B—N4B 178 (8)
N3—C3—C4—C5 −179.8 (3) O4B—N4B—C7B—C6B −170 (5)
C2—C3—C4—C5 0.4 (5) O5B—N4B—C7B—C6B 1(7)
C1—N1—C5—C4 0.7 (5) O4B—N4B—C7B—C8B 18 (6)
C3—C4—C5—N1 −1.4 (5) O5B—N4B—C7B—C8B −171 (4)
C11—C6—C7—C8 0.0 (17) C6B—C7B—C8B—O1B −176 (5)
C11—C6—C7—N4 −179.7 (9) N4B—C7B—C8B—O1B −5(6)
O4—N4—C7—C6 −164.1 (11) C6B—C7B—C8B—C9B 10 (7)
O5—N4—C7—C6 16.1 (17) N4B—C7B—C8B—C9B −179 (4)
O4—N4—C7—C8 16.2 (18) O1B—C8B—C9B—C10B 179 (4)
O5—N4—C7—C8 −163.6 (11) C7B—C8B—C9B—C10B −7(6)
C6—C7—C8—O1 178.0 (9) O1B—C8B—C9B—C12B 8(5)
N4—C7—C8—O1 −2.3 (17) C7B—C8B—C9B—C12B −178 (3)
C6—C7—C8—C9 −3.0 (16) C8B—C9B—C10B—C11B 4(10)
N4—C7—C8—C9 176.7 (10) C12B—C9B—C10B—C11B 175 (8)
O1—C8—C9—C10 −177.5 (4) C7B—C6B—C11B—C10B 7(16)
C7—C8—C9—C10 3.5 (9) C7B—C6B—C11B—N5B −172 (10)
O1—C8—C9—C12 2.7 (7) C9B—C10B—C11B—C6B −4(16)
C7—C8—C9—C12 −176.4 (7) C9B—C10B—C11B—N5B 175 (9)
C8—C9—C10—C11 −1.0 (6) O6B—N5B—C11B—C6B 9(19)
C12—C9—C10—C11 178.9 (4) O7B—N5B—C11B—C6B −167 (12)
C7—C6—C11—C10 2.8 (12) O6B—N5B—C11B—C10B −170 (11)
C7—C6—C11—N5 −178.3 (9) O7B—N5B—C11B—C10B 15 (18)
C9—C10—C11—C6 −2.3 (7) C10B—C9B—C12B—O3B 6(6)
C9—C10—C11—N5 178.7 (4) C8B—C9B—C12B—O3B 177 (3)
O7—N5—C11—C6 −171.6 (5) C10B—C9B—C12B—O2B 175 (4)
O6—N5—C11—C6 7.8 (7) C8B—C9B—C12B—O2B −14 (4)
O7—N5—C11—C10 7.3 (6)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1N1···O1 1.07 1.76 2.753 (4) 153
O2—H2···O1 0.82 1.72 2.485 (4) 154
N2—H2N2···O6i 0.89 2.24 3.120 (4) 171
N2—H1N2···O3ii 1.03 2.11 3.026 (5) 146
N3—H1N3···O6i 0.89 2.36 3.104 (4) 142
N3—H2N3···O5iii 1.00 2.24 3.217 (5) 163
C6—H6A···O3iv 0.93 2.56 3.299 (6) 136

Symmetry codes: (i) x−1, y−1, z; (ii) −x+1, y−1/2, −z+1/2; (iii) −x, y−1/2, −z−1/2; (iv) x, −y+3/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5660).

References

  1. Abu Zuhri, A. Z. & Cox, J. A. (1989). Mikrochim. Acta, 11, 277–283.
  2. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  3. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  5. El-Mossalamy, E. H. (2001). Pigm. Resin Technol.30, 164–168.
  6. Inuzuka, K. & Fujimoto, A. (1990). Bull. Chem. Soc. Jpn, 63, 216–220.
  7. Koleva, B., Kolev, T., Tsanev, T., Kotov, S., Mayer-Figge, H., Seidel, R. W. & Sheldrich, W. S. (2008). J. Mol. Struct.881, 146–155.
  8. Koleva, B., Tsanev, T., Kolev, T., Mayer-Figge, H. & Sheldrick, W. S. (2007). Acta Cryst. E63, o3356.
  9. Rubin-Preminger, J. M. & Englert, U. (2007). Acta Cryst. E63, o757–o758.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810038936/hb5660sup1.cif

e-66-o2747-sup1.cif (22.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810038936/hb5660Isup2.hkl

e-66-o2747-Isup2.hkl (134KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES