Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Oct 9;66(Pt 11):o2767. doi: 10.1107/S1600536810039760

Methyl 4-(4-meth­oxy­phen­yl)-2-methyl-5-oxo-1,4,5,6,7,8-hexa­hydro­quinoline-3-carboxyl­ate

Xiao-Hui Yang a, Yong-Hong Zhou a,*, Meng Zhang a, Xing Song a
PMCID: PMC3009142  PMID: 21588969

Abstract

In the title compound, C19H21NO4, the dihydro­pyridine ring adopts a distorted screw-boat conformation. The fused cyclo­hexenone ring forms a slightly distorted envelope conformation. The dihedral angle between the mean planes of the benzene and heterocyclic rings is 86.1 (7)°. An intra­molecular C—H⋯O inter­action occurs. In the crystal, mol­ecules are linked by inter­molecular N—H⋯O hydrogen bonds, forming an infinite chain along the c axis.

Related literature

For the physiological activity of 1,4-dihydro­pyridine derivatives, see: Davies et al. (2005); Rose & Draeger (1992); Warrior et al. (2005).graphic file with name e-66-o2767-scheme1.jpg

Experimental

Crystal data

  • C19H21NO4

  • M r = 327.37

  • Monoclinic, Inline graphic

  • a = 13.628 (3) Å

  • b = 8.6300 (17) Å

  • c = 14.577 (3) Å

  • β = 98.39 (3)°

  • V = 1696.0 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.05 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968) T min = 0.982, T max = 0.996

  • 3232 measured reflections

  • 3040 independent reflections

  • 1300 reflections with I > 2σ(I)

  • R int = 0.078

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.070

  • wR(F 2) = 0.128

  • S = 1.00

  • 3040 reflections

  • 217 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810039760/jj2057sup1.cif

e-66-o2767-sup1.cif (20.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810039760/jj2057Isup2.hkl

e-66-o2767-Isup2.hkl (149.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N—H0A⋯O1i 0.86 2.05 2.884 (4) 163
C10—H10A⋯O3 0.96 2.08 2.818 (5) 132

Symmetry code: (i) Inline graphic.

Acknowledgments

This work was supported by the President of the Chinese Academy of Forestry Foundation (CAFYBB2008009).

supplementary crystallographic information

Comment

The development of new methods for the synthesis of 1,4-dihydropyridine derivatives is a motive for the current study. 1,4-dihydropyridine derivatives attract interest because of their presence in numerous natural products. In addition, they exhibit calcium modulatory properties (Rose & Draeger, 1992), antibacterial (Davies et al., 2005) and fungicidal activity (Warrior et al., 2005).

In the title compound the heterocyclic ring adopts a distorted screw-boat conformation (Fig. 1). Atoms C7 and N deviate from the mean plane of C1/C6/C8/C9 by 0.177 (3)Å and 0.067 (7)Å, respectively. The fused cyclohexene ring displays a slightly distorted envelope conformation, with atom C3 out of the plane of the atoms by -0.314 (5)°. The dihedral angle between the mean planes of the benzene and heterocyclic rings is 86.1 (7)°. The methoxy group is nearly coplanar with the attached benzene ring with a C19/O4/C16/C17 torsion angle of -4.1 (6)°. Crystal packing is stabilized by an intermolecular N—H···O hydrogen bond forming an infinite chain of molecules along the c axis (Table 1, Fig. 2).

Experimental

A mixture of 4-methoxybenzaldehyde (2 mmol), methyl 3-oxobutanoate (4 mmol), cyclohexane-1,3-dione (2 mmol) and NH4CO3 (2 mmol) was stirred in water (2 ml) at 353 K. After completion of the reaction (TLC monitoring),the mixture was diluted with cold water (20 ml) and filtered to obtain the precipitated product which was further purified by recrystallization. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution.

Refinement

Atom H0A was located in a difference map and refined isotropically. All other H atoms were positioned geometrically and treated as riding, with C—H distances in the range 0.93–0.98 Å and Uiso(H) = 1.2 or 1.5 times Ueq(C). In the absence of significant anomalous dispersion effects, Friedel pairs were merged.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.

Fig. 2.

Fig. 2.

The packing of the title compound, viewed along the a axis. Dashed lines indicate N—H···O hydrogen bonds.

Crystal data

C19H21NO4 F(000) = 696
Mr = 327.37 Dx = 1.282 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 25 reflections
a = 13.628 (3) Å θ = 9–12°
b = 8.6300 (17) Å µ = 0.09 mm1
c = 14.577 (3) Å T = 293 K
β = 98.39 (3)° Block, colourless
V = 1696.0 (6) Å3 0.20 × 0.20 × 0.05 mm
Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometer 1300 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.078
graphite θmax = 25.3°, θmin = 1.5°
ω/2θ scans h = 0→16
Absorption correction: ψ scan (North et al., 1968) k = 0→10
Tmin = 0.982, Tmax = 0.996 l = −17→17
3232 measured reflections 3 standard reflections every 200 reflections
3040 independent reflections intensity decay: 1%

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.070 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128 H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.030P)2] where P = (Fo2 + 2Fc2)/3
3040 reflections (Δ/σ)max < 0.001
217 parameters Δρmax = 0.16 e Å3
1 restraint Δρmin = −0.19 e Å3

Special details

Experimental. Absorption correction: semi-empirical absorption based on psi-scan (North et al., 1968)
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N 0.7089 (2) −0.1346 (4) 1.10531 (19) 0.0561 (9)
H0A 0.7239 −0.1617 1.1624 0.067*
O1 0.7167 (2) −0.2573 (3) 0.79342 (17) 0.0675 (8)
C1 0.7348 (2) −0.2312 (4) 1.0380 (2) 0.0437 (9)
O3 0.5828 (3) 0.3072 (4) 1.0342 (2) 0.1228 (14)
O2 0.5564 (2) 0.2194 (3) 0.8893 (2) 0.0691 (8)
C2 0.7719 (3) −0.3882 (4) 1.0694 (2) 0.0579 (11)
H2A 0.7161 −0.4545 1.0764 0.069*
H2B 0.8130 −0.3795 1.1294 0.069*
C3 0.8315 (3) −0.4604 (5) 1.0013 (3) 0.0783 (14)
H3A 0.8450 −0.5680 1.0178 0.094*
H3B 0.8944 −0.4069 1.0040 0.094*
O4 1.0127 (2) 0.2744 (3) 0.7949 (2) 0.0800 (9)
C4 0.7756 (3) −0.4514 (5) 0.9038 (3) 0.0713 (13)
H4A 0.8194 −0.4841 0.8606 0.086*
H4B 0.7204 −0.5234 0.8983 0.086*
C5 0.7367 (3) −0.2935 (5) 0.8765 (3) 0.0571 (11)
C6 0.7201 (3) −0.1864 (4) 0.9470 (2) 0.0444 (9)
C7 0.6864 (3) −0.0254 (4) 0.9202 (2) 0.0488 (10)
H7A 0.6318 −0.0343 0.8686 0.059*
C8 0.6458 (3) 0.0595 (4) 0.9990 (3) 0.0477 (9)
C9 0.6599 (3) 0.0044 (4) 1.0854 (3) 0.0486 (10)
C10 0.6220 (3) 0.0715 (4) 1.1683 (2) 0.0673 (12)
H10A 0.5884 0.1673 1.1514 0.101*
H10B 0.6767 0.0903 1.2165 0.101*
H10C 0.5767 0.0000 1.1902 0.101*
C11 0.5931 (3) 0.2038 (5) 0.9799 (3) 0.0648 (12)
C12 0.5003 (4) 0.3605 (5) 0.8655 (3) 0.1003 (17)
H12A 0.4785 0.3631 0.7998 0.151*
H12B 0.5416 0.4487 0.8832 0.151*
H12C 0.4437 0.3628 0.8977 0.151*
C13 0.7696 (3) 0.0644 (4) 0.8845 (2) 0.0432 (9)
C14 0.8566 (3) 0.0938 (4) 0.9442 (2) 0.0570 (11)
H14A 0.8619 0.0646 1.0061 0.068*
C15 0.9360 (3) 0.1667 (5) 0.9120 (3) 0.0635 (12)
H15A 0.9937 0.1868 0.9527 0.076*
C16 0.9296 (3) 0.2093 (5) 0.8199 (3) 0.0577 (11)
C17 0.8445 (3) 0.1823 (4) 0.7607 (2) 0.0519 (10)
H17A 0.8393 0.2115 0.6988 0.062*
C18 0.7645 (3) 0.1101 (4) 0.7942 (2) 0.0500 (10)
H18A 0.7063 0.0927 0.7537 0.060*
C19 1.0128 (3) 0.3077 (6) 0.6991 (3) 0.0961 (17)
H19A 1.0752 0.3531 0.6908 0.144*
H19B 0.9602 0.3788 0.6781 0.144*
H19C 1.0032 0.2135 0.6638 0.144*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N 0.080 (2) 0.055 (2) 0.0358 (17) 0.0012 (18) 0.0164 (16) −0.0055 (16)
O1 0.096 (2) 0.071 (2) 0.0380 (14) −0.0014 (16) 0.0202 (15) −0.0075 (15)
C1 0.047 (2) 0.039 (2) 0.046 (2) −0.0057 (18) 0.0089 (17) −0.0011 (18)
O3 0.212 (4) 0.069 (2) 0.091 (3) 0.048 (3) 0.033 (3) −0.015 (2)
O2 0.076 (2) 0.0566 (19) 0.074 (2) 0.0125 (16) 0.0078 (16) 0.0084 (16)
C2 0.072 (3) 0.047 (3) 0.055 (2) −0.002 (2) 0.008 (2) 0.002 (2)
C3 0.113 (4) 0.055 (3) 0.066 (3) 0.012 (3) 0.012 (3) −0.005 (2)
O4 0.072 (2) 0.092 (2) 0.079 (2) −0.0276 (18) 0.0220 (16) 0.0123 (18)
C4 0.096 (4) 0.060 (3) 0.061 (3) 0.001 (3) 0.022 (3) −0.008 (2)
C5 0.071 (3) 0.043 (2) 0.060 (3) −0.010 (2) 0.018 (2) −0.013 (2)
C6 0.052 (2) 0.044 (2) 0.038 (2) −0.0081 (19) 0.0100 (17) −0.0026 (18)
C7 0.056 (2) 0.040 (2) 0.053 (2) −0.0059 (19) 0.016 (2) −0.0072 (18)
C8 0.049 (2) 0.040 (2) 0.058 (2) −0.0060 (19) 0.0200 (19) −0.007 (2)
C9 0.066 (3) 0.037 (2) 0.048 (2) 0.0044 (19) 0.025 (2) 0.0020 (19)
C10 0.100 (3) 0.051 (3) 0.057 (2) 0.002 (2) 0.034 (2) −0.009 (2)
C11 0.085 (3) 0.044 (3) 0.069 (3) −0.007 (3) 0.022 (3) −0.003 (2)
C12 0.108 (4) 0.072 (3) 0.126 (4) 0.006 (3) 0.032 (3) 0.026 (3)
C13 0.047 (2) 0.037 (2) 0.044 (2) 0.0087 (18) 0.0037 (18) −0.0025 (17)
C14 0.073 (3) 0.054 (3) 0.042 (2) −0.009 (2) 0.002 (2) 0.0095 (19)
C15 0.071 (3) 0.063 (3) 0.056 (3) −0.001 (2) 0.005 (2) −0.002 (2)
C16 0.061 (3) 0.054 (3) 0.062 (3) −0.010 (2) 0.021 (2) −0.008 (2)
C17 0.068 (3) 0.047 (2) 0.042 (2) −0.013 (2) 0.014 (2) 0.0054 (18)
C18 0.052 (2) 0.053 (3) 0.046 (2) −0.002 (2) 0.0082 (18) 0.004 (2)
C19 0.086 (4) 0.116 (4) 0.093 (4) −0.036 (3) 0.035 (3) 0.007 (3)

Geometric parameters (Å, °)

N—C1 1.372 (4) C7—H7A 0.9800
N—C9 1.383 (4) C8—C9 1.334 (4)
N—H0A 0.8600 C8—C11 1.444 (5)
O1—C5 1.242 (4) C9—C10 1.498 (4)
C1—C6 1.367 (4) C10—H10A 0.9600
C1—C2 1.495 (4) C10—H10B 0.9600
O3—C11 1.214 (4) C10—H10C 0.9600
O2—C11 1.349 (4) C12—H12A 0.9600
O2—C12 1.453 (4) C12—H12B 0.9600
C2—C3 1.506 (5) C12—H12C 0.9600
C2—H2A 0.9700 C13—C18 1.366 (4)
C2—H2B 0.9700 C13—C14 1.388 (4)
C3—C4 1.514 (5) C14—C15 1.390 (5)
C3—H3A 0.9700 C14—H14A 0.9300
C3—H3B 0.9700 C15—C16 1.383 (5)
O4—C16 1.361 (4) C15—H15A 0.9300
O4—C19 1.426 (4) C16—C17 1.361 (5)
C4—C5 1.495 (5) C17—C18 1.403 (4)
C4—H4A 0.9700 C17—H17A 0.9300
C4—H4B 0.9700 C18—H18A 0.9300
C5—C6 1.425 (4) C19—H19A 0.9600
C6—C7 1.497 (4) C19—H19B 0.9600
C7—C13 1.527 (4) C19—H19C 0.9600
C7—C8 1.532 (4)
C1—N—C9 122.9 (3) C8—C9—C10 127.2 (4)
C1—N—H0A 118.5 N—C9—C10 112.3 (3)
C9—N—H0A 118.5 C9—C10—H10A 109.5
C6—C1—N 120.4 (3) C9—C10—H10B 109.5
C6—C1—C2 123.3 (3) H10A—C10—H10B 109.5
N—C1—C2 116.2 (3) C9—C10—H10C 109.5
C11—O2—C12 115.1 (3) H10A—C10—H10C 109.5
C1—C2—C3 111.3 (3) H10B—C10—H10C 109.5
C1—C2—H2A 109.4 O3—C11—O2 120.2 (4)
C3—C2—H2A 109.4 O3—C11—C8 127.5 (4)
C1—C2—H2B 109.4 O2—C11—C8 112.2 (4)
C3—C2—H2B 109.4 O2—C12—H12A 109.5
H2A—C2—H2B 108.0 O2—C12—H12B 109.5
C2—C3—C4 110.6 (4) H12A—C12—H12B 109.5
C2—C3—H3A 109.5 O2—C12—H12C 109.5
C4—C3—H3A 109.5 H12A—C12—H12C 109.5
C2—C3—H3B 109.5 H12B—C12—H12C 109.5
C4—C3—H3B 109.5 C18—C13—C14 118.0 (3)
H3A—C3—H3B 108.1 C18—C13—C7 122.6 (3)
C16—O4—C19 117.7 (3) C14—C13—C7 119.3 (3)
C5—C4—C3 114.0 (3) C13—C14—C15 120.4 (3)
C5—C4—H4A 108.7 C13—C14—H14A 119.8
C3—C4—H4A 108.7 C15—C14—H14A 119.8
C5—C4—H4B 108.7 C16—C15—C14 120.4 (4)
C3—C4—H4B 108.7 C16—C15—H15A 119.8
H4A—C4—H4B 107.6 C14—C15—H15A 119.8
O1—C5—C6 120.4 (4) C17—C16—O4 124.5 (4)
O1—C5—C4 120.5 (4) C17—C16—C15 119.8 (4)
C6—C5—C4 119.1 (3) O4—C16—C15 115.6 (4)
C1—C6—C5 120.0 (4) C16—C17—C18 119.2 (3)
C1—C6—C7 120.7 (3) C16—C17—H17A 120.4
C5—C6—C7 119.2 (3) C18—C17—H17A 120.4
C6—C7—C13 110.2 (3) C13—C18—C17 122.1 (3)
C6—C7—C8 112.3 (3) C13—C18—H18A 119.0
C13—C7—C8 112.3 (3) C17—C18—H18A 119.0
C6—C7—H7A 107.2 O4—C19—H19A 109.5
C13—C7—H7A 107.2 O4—C19—H19B 109.5
C8—C7—H7A 107.2 H19A—C19—H19B 109.5
C9—C8—C11 119.3 (4) O4—C19—H19C 109.5
C9—C8—C7 121.3 (4) H19A—C19—H19C 109.5
C11—C8—C7 119.4 (3) H19B—C19—H19C 109.5
C8—C9—N 120.4 (3)
C9—N—C1—C6 5.7 (5) C11—C8—C9—C10 3.5 (6)
C9—N—C1—C2 −170.1 (3) C7—C8—C9—C10 −177.9 (3)
C6—C1—C2—C3 25.1 (5) C1—N—C9—C8 −8.0 (5)
N—C1—C2—C3 −159.3 (3) C1—N—C9—C10 168.2 (3)
C1—C2—C3—C4 −49.6 (5) C12—O2—C11—O3 −3.8 (6)
C2—C3—C4—C5 49.9 (5) C12—O2—C11—C8 178.5 (3)
C3—C4—C5—O1 158.2 (4) C9—C8—C11—O3 22.9 (7)
C3—C4—C5—C6 −23.5 (6) C7—C8—C11—O3 −155.7 (4)
N—C1—C6—C5 −173.0 (3) C9—C8—C11—O2 −159.6 (4)
C2—C1—C6—C5 2.4 (5) C7—C8—C11—O2 21.8 (5)
N—C1—C6—C7 6.9 (5) C6—C7—C13—C18 112.6 (4)
C2—C1—C6—C7 −177.6 (3) C8—C7—C13—C18 −121.4 (4)
O1—C5—C6—C1 174.9 (4) C6—C7—C13—C14 −63.6 (4)
C4—C5—C6—C1 −3.4 (5) C8—C7—C13—C14 62.4 (4)
O1—C5—C6—C7 −5.1 (5) C18—C13—C14—C15 −0.4 (5)
C4—C5—C6—C7 176.7 (3) C7—C13—C14—C15 175.9 (3)
C1—C6—C7—C13 110.8 (4) C13—C14—C15—C16 −0.7 (6)
C5—C6—C7—C13 −69.3 (4) C19—O4—C16—C17 −4.1 (6)
C1—C6—C7—C8 −15.3 (5) C19—O4—C16—C15 174.6 (4)
C5—C6—C7—C8 164.7 (3) C14—C15—C16—C17 1.2 (6)
C6—C7—C8—C9 13.1 (5) C14—C15—C16—O4 −177.5 (3)
C13—C7—C8—C9 −111.8 (4) O4—C16—C17—C18 178.0 (4)
C6—C7—C8—C11 −168.3 (3) C15—C16—C17—C18 −0.6 (6)
C13—C7—C8—C11 66.8 (4) C14—C13—C18—C17 1.1 (5)
C11—C8—C9—N 179.2 (3) C7—C13—C18—C17 −175.1 (3)
C7—C8—C9—N −2.2 (6) C16—C17—C18—C13 −0.6 (5)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N—H0A···O1i 0.86 2.05 2.884 (4) 163
C10—H10A···O3 0.96 2.08 2.818 (5) 132

Symmetry codes: (i) x, −y−1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JJ2057).

References

  1. Enraf–Nonius (1994). CAD-4 EXPRESS Enraf–Nonius, Delft, The Netherlands.
  2. Davies, D. T., Markwell, R. E., Pearson, N. D. & Takle, A. K. (2005). US Patent 6 911 442.
  3. Harms, K. & Wocadlo, S. (1996). XCAD4 University of Marburg, Germany.
  4. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  5. Rose, U. & Draeger, M. (1992). J. Med. Chem. A, 35, 2238–2243. [DOI] [PubMed]
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Warrior, P., Heiman, D. F., Fugiel, J. A. & Petracek, P. D. (2005). WO Patent 2005060748.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810039760/jj2057sup1.cif

e-66-o2767-sup1.cif (20.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810039760/jj2057Isup2.hkl

e-66-o2767-Isup2.hkl (149.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES