Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Oct 23;66(Pt 11):o2912. doi: 10.1107/S1600536810041796

2-(Benzothia­zol-2-yl­sulfanyl)­acetic acid

Zhi-li Fang a,*, Jun Wang b
PMCID: PMC3009155  PMID: 21589086

Abstract

In the title compound, C9H7NO2S2, the benzine ring is essentially co-planar with the thia­zole ring, making a dihedral angle of 0.36 (7)°. In the crystal structure, mol­ecules are linked by inter­molecular O—H⋯N hydrogen bonds between the carb­oxy group and the thia­zole N atom into chains along [10Inline graphic]. The chains are assembled into a supermolecular layer structure by thia­zole ring S⋯S contacts [3.5679 (7) Å].

Related literature

For the structure of tris­(2-hy­droxy­eth­yl)ammonium 3-benzo­thia­zole-2-thiol­ate, see: Zhu et al. (2009). For S⋯S contacts in similar compounds, see: Dai et al. (1997).graphic file with name e-66-o2912-scheme1.jpg

Experimental

Crystal data

  • C9H7NO2S2

  • M r = 225.28

  • Monoclinic, Inline graphic

  • a = 6.0374 (5) Å

  • b = 19.2450 (17) Å

  • c = 8.1250 (7) Å

  • β = 90.419 (1)°

  • V = 944.02 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.53 mm−1

  • T = 296 K

  • 0.23 × 0.21 × 0.17 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.885, T max = 0.914

  • 4800 measured reflections

  • 1695 independent reflections

  • 1439 reflections with I > 2σ(I)

  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.030

  • wR(F 2) = 0.079

  • S = 1.04

  • 1695 reflections

  • 129 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.16 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810041796/ds2058sup1.cif

e-66-o2912-sup1.cif (14.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810041796/ds2058Isup2.hkl

e-66-o2912-Isup2.hkl (83.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1i 0.82 1.89 2.686 (2) 165

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors acknowledge South China Normal University for supporting this work.

supplementary crystallographic information

Experimental

A solution of benzothiazole-2-thiol (167.2 mg, 1.00 mmol) and K2CO3 (207.0 mg, 1.50 mmol) in CH3OH (15 ml) was slowly added to a solution of 2-chloroacetic acid (113.4 mg, 1.20 mmol) in CH3OH (10 ml). The resultant solution was stirred and refluxed for 20 h and then filtered. Colorless crystals suitable for X-ray diffraction were obtained in about a week by slow diffusion of diethyl ether into a dilute solution of the title compound in methanol. yield: ca 82.3% (based on benzothiazole-2-thiol).

Refinement

The structure was solved using direct methods followed by Fourier synthesis. Non-H atoms were refined anisotropically. All of H atoms were placed in idealized positions (C—H = 0.93 or 0.97 Å, O—H = 0.82 Å), forced to ride on the atom to which they are bonded, and were included in the refinement in the riding-model approximation. Uiso values were set equal to 1.5Ueq(parent atom) for carboxylic H atom and to 1.2Ueq(parent atom)for all other H atoms.

Figures

Fig. 1.

Fig. 1.

The structure of the title compound with 50% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

Two-dimensional supramolecular layer which is connected by O—H···N [O···N 2.686 (2) Å, H···N 1.89 Å, O—H···N 165.3°, symmetry code: x + 1, -y + 3/2,z + 1/2] hydrogen bonds and S···S [S···S 3.568 Å, symmetry code: 1-x, 1-y, 1-z] contacts.

Crystal data

C9H7NO2S2 F(000) = 464
Mr = 225.28 Dx = 1.585 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 2101 reflections
a = 6.0374 (5) Å θ = 2.7–27.5°
b = 19.2450 (17) Å µ = 0.53 mm1
c = 8.1250 (7) Å T = 296 K
β = 90.419 (1)° Block, pink
V = 944.02 (14) Å3 0.23 × 0.21 × 0.17 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer 1695 independent reflections
Radiation source: fine-focus sealed tube 1439 reflections with I > 2σ(I)
graphite Rint = 0.021
φ and ω scans θmax = 25.2°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −4→7
Tmin = 0.885, Tmax = 0.914 k = −22→23
4800 measured reflections l = −9→9

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0386P)2 + 0.2852P] where P = (Fo2 + 2Fc2)/3
1695 reflections (Δ/σ)max = 0.001
129 parameters Δρmax = 0.25 e Å3
0 restraints Δρmin = −0.16 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.5666 (3) 0.77360 (10) 0.5938 (3) 0.0446 (5)
C2 0.4631 (3) 0.70448 (10) 0.5538 (3) 0.0424 (5)
H2A 0.4289 0.6798 0.6546 0.051*
H2B 0.5654 0.6764 0.4906 0.051*
C3 0.1497 (3) 0.63490 (9) 0.3747 (2) 0.0367 (4)
C4 −0.0451 (3) 0.55193 (10) 0.2515 (2) 0.0371 (4)
C5 0.1331 (3) 0.51163 (10) 0.3081 (2) 0.0391 (4)
C6 0.1436 (4) 0.44073 (10) 0.2773 (3) 0.0509 (5)
H6 0.2624 0.4143 0.3154 0.061*
C7 −0.0259 (4) 0.41063 (11) 0.1894 (3) 0.0556 (6)
H7 −0.0223 0.3632 0.1677 0.067*
C8 −0.2024 (4) 0.45021 (12) 0.1327 (3) 0.0531 (6)
H8 −0.3154 0.4287 0.0732 0.064*
C9 −0.2144 (3) 0.52022 (11) 0.1620 (2) 0.0458 (5)
H9 −0.3337 0.5461 0.1228 0.055*
N1 −0.0309 (3) 0.62213 (8) 0.2909 (2) 0.0396 (4)
O1 0.7348 (3) 0.76603 (7) 0.6956 (2) 0.0557 (4)
H1 0.7911 0.8041 0.7140 0.084*
O2 0.5039 (3) 0.82751 (8) 0.5396 (2) 0.0736 (5)
S1 0.21328 (9) 0.71923 (3) 0.43642 (7) 0.04900 (19)
S2 0.31920 (8) 0.56396 (2) 0.41411 (7) 0.04382 (18)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0430 (11) 0.0378 (11) 0.0528 (12) 0.0004 (9) −0.0105 (10) −0.0021 (9)
C2 0.0413 (11) 0.0343 (10) 0.0515 (12) 0.0031 (8) −0.0147 (9) 0.0004 (8)
C3 0.0340 (10) 0.0336 (10) 0.0422 (11) 0.0021 (8) −0.0077 (8) 0.0014 (8)
C4 0.0402 (10) 0.0332 (10) 0.0378 (10) −0.0017 (8) −0.0033 (8) 0.0011 (8)
C5 0.0420 (11) 0.0354 (10) 0.0398 (10) 0.0014 (8) −0.0068 (9) 0.0023 (8)
C6 0.0621 (14) 0.0344 (11) 0.0560 (13) 0.0066 (9) −0.0087 (11) 0.0005 (9)
C7 0.0772 (16) 0.0335 (11) 0.0562 (13) −0.0083 (11) −0.0032 (12) −0.0042 (10)
C8 0.0589 (14) 0.0514 (13) 0.0489 (12) −0.0166 (11) −0.0080 (10) −0.0046 (10)
C9 0.0410 (11) 0.0495 (12) 0.0468 (12) −0.0027 (9) −0.0099 (9) 0.0009 (9)
N1 0.0387 (9) 0.0344 (8) 0.0455 (9) 0.0022 (7) −0.0121 (7) 0.0010 (7)
O1 0.0507 (9) 0.0409 (8) 0.0751 (11) −0.0069 (7) −0.0270 (8) 0.0023 (7)
O2 0.0777 (12) 0.0336 (9) 0.1090 (14) −0.0015 (8) −0.0464 (10) 0.0066 (8)
S1 0.0454 (3) 0.0309 (3) 0.0703 (4) 0.0053 (2) −0.0231 (3) −0.0041 (2)
S2 0.0415 (3) 0.0336 (3) 0.0560 (3) 0.00667 (19) −0.0177 (2) −0.0010 (2)

Geometric parameters (Å, °)

C1—O2 1.188 (2) C4—C5 1.401 (3)
C1—O1 1.313 (2) C5—C6 1.389 (3)
C1—C2 1.504 (3) C5—S2 1.7332 (19)
C2—S1 1.8012 (19) C6—C7 1.372 (3)
C2—H2A 0.9700 C6—H6 0.9300
C2—H2B 0.9700 C7—C8 1.386 (3)
C3—N1 1.304 (2) C7—H7 0.9300
C3—S2 1.7345 (18) C8—C9 1.370 (3)
C3—S1 1.7407 (18) C8—H8 0.9300
C4—N1 1.391 (2) C9—H9 0.9300
C4—C9 1.391 (3) O1—H1 0.8200
O2—C1—O1 124.99 (19) C4—C5—S2 109.55 (14)
O2—C1—C2 124.15 (19) C7—C6—C5 118.3 (2)
O1—C1—C2 110.86 (17) C7—C6—H6 120.9
C1—C2—S1 108.66 (14) C5—C6—H6 120.9
C1—C2—H2A 110.0 C6—C7—C8 120.7 (2)
S1—C2—H2A 110.0 C6—C7—H7 119.7
C1—C2—H2B 110.0 C8—C7—H7 119.7
S1—C2—H2B 110.0 C9—C8—C7 121.6 (2)
H2A—C2—H2B 108.3 C9—C8—H8 119.2
N1—C3—S2 115.97 (14) C7—C8—H8 119.2
N1—C3—S1 120.51 (14) C8—C9—C4 118.9 (2)
S2—C3—S1 123.51 (11) C8—C9—H9 120.6
N1—C4—C9 126.16 (18) C4—C9—H9 120.6
N1—C4—C5 114.61 (16) C3—N1—C4 110.65 (15)
C9—C4—C5 119.22 (18) C1—O1—H1 109.5
C6—C5—C4 121.37 (18) C3—S1—C2 100.82 (9)
C6—C5—S2 129.08 (16) C5—S2—C3 89.21 (9)
O2—C1—C2—S1 −7.7 (3) C5—C4—C9—C8 0.4 (3)
O1—C1—C2—S1 172.54 (15) S2—C3—N1—C4 0.0 (2)
N1—C4—C5—C6 −179.50 (19) S1—C3—N1—C4 178.49 (14)
C9—C4—C5—C6 −0.3 (3) C9—C4—N1—C3 −179.45 (19)
N1—C4—C5—S2 0.5 (2) C5—C4—N1—C3 −0.3 (2)
C9—C4—C5—S2 179.69 (15) N1—C3—S1—C2 176.73 (16)
C4—C5—C6—C7 0.0 (3) S2—C3—S1—C2 −4.87 (16)
S2—C5—C6—C7 −179.96 (17) C1—C2—S1—C3 170.23 (15)
C5—C6—C7—C8 0.2 (3) C6—C5—S2—C3 179.6 (2)
C6—C7—C8—C9 −0.1 (4) C4—C5—S2—C3 −0.40 (15)
C7—C8—C9—C4 −0.2 (3) N1—C3—S2—C5 0.25 (16)
N1—C4—C9—C8 179.49 (19) S1—C3—S2—C5 −178.21 (14)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1···N1i 0.82 1.89 2.686 (2) 165

Symmetry codes: (i) x+1, −y+3/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DS2058).

References

  1. Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Dai, J., Munakata, M., Kuroda-Sowa, T., Suenaga, Y., Wu, L. P. & Yamamoto, M. (1997). Inorg. Chim. Acta, 258, 65–69.
  3. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Zhu, J.-Q., Fang, H.-C., Chen, B.-Y., Feng, M.-S. & Li, J.-N. (2009). Acta Cryst. E65, o1640. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810041796/ds2058sup1.cif

e-66-o2912-sup1.cif (14.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810041796/ds2058Isup2.hkl

e-66-o2912-Isup2.hkl (83.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES