Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Oct 9;66(Pt 11):o2752. doi: 10.1107/S1600536810039620

[2,7-Dimethoxy-8-(4-methylbenzoyl)-1-naphthyl](4-methylphenyl)methanone

Toyokazu Muto a, Yuichi Kato a, Atsushi Nagasawa a, Akiko Okamoto a, Noriyuki Yonezawa a,*
PMCID: PMC3009178  PMID: 21588956

Abstract

In the title compound, C28H24O4, the two 4-methyl­benzoyl groups at the 1- and 8-positions of the naphthalene ring system are aligned almost anti­parallel, the dihedral angle between the two phenyl rings being 9.64 (7)°. The dihedral angles between the two phenyl rings and the naphthalene ring system are 71.82 (6) and 71.58 (6)°. In the crystal, inter­molecular C—H⋯O inter­actions between the carbonyl oxygen and aromatic hydrogen are observed.

Related literature

For the formation reaction of aroylated naphthalene compounds via electrophilic aromatic aroylation of 2,7-dimeth­oxy­naphth­alene, see: Okamoto & Yonezawa (2009). For related structures, see: Nakaema et al. (2007, 2008); Watanabe et al. (2010a ,b ).graphic file with name e-66-o2752-scheme1.jpg

Experimental

Crystal data

  • C28H24O4

  • M r = 424.47

  • Orthorhombic, Inline graphic

  • a = 20.0334 (3) Å

  • b = 13.4311 (2) Å

  • c = 7.94771 (10) Å

  • V = 2138.49 (5) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.70 mm−1

  • T = 193 K

  • 0.60 × 0.40 × 0.20 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: numerical (NUMABS; Higashi, 1999) T min = 0.604, T max = 0.873

  • 33150 measured reflections

  • 2110 independent reflections

  • 2041 reflections with I > 2σ(I)

  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034

  • wR(F 2) = 0.094

  • S = 1.17

  • 2110 reflections

  • 293 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810039620/om2367sup1.cif

e-66-o2752-sup1.cif (23.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810039620/om2367Isup2.hkl

e-66-o2752-Isup2.hkl (101.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯O1i 0.95 2.52 3.465 (3) 175
C21—H21⋯O2ii 0.95 2.38 3.295 (3) 162

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors express their gratitude to Professor Keiichi Noguchi, Instrumentation Analysis Center, Tokyo University of Agriculture & Technology, for technical advice. This work was partially supported by The Mukai Science and Technology Foundation, Tokyo, Japan.

supplementary crystallographic information

Comment

In the course of our study on selective electrophilic aromatic aroylation of the naphthalene core, peri-aroylnaphthalene compounds have proved to be formed regioselectively by the aid of a suitable acidic mediator (Okamoto & Yonezawa, 2009). Recently, we reported the X-ray crystal structures of 1,8-diaroylated 2,7-dimethoxynaphthalene derivatives such as 1,8-bis(4-chlorobenzoyl)-2,7-dimethoxynaphthalene (Nakaema et al., 2007), 1,8-dibenzoyl-2,7-dimethoxynaphthalene (Nakaema et al., 2008), bis(4-bromophenyl)(2,7-dimethoxynaphthalene-1,8-diyl)dimethanone [1,8-bis(4-bromobenzoyl)-2,7-dimethoxynaphthalene] (Watanabe et al., 2010a) and (2,7-dimethoxynaphthalene-1,8-diyl)bis(4-fluorophenyl) dimethanone [1,8-bis(4-fluorobenzoyl)-2,7-dimethoxynaphthalene] (Watanabe et al., 2010b). The aroyl groups at 1,8-positions of the naphthalene rings in these compounds are oriented in opposite direction. The aromatic rings in the molecule are non-coplanar, resulting in partial disruption of π-conjugation of ring systems. As a part of our continuing studies on the molecular structures of this kind of homologous molecules, the X-ray crystal structure of title compound, peri-aroylnaphthalene bearing methyl groups, is discussed in this article.

The molecular structure of the title compound is displayed in Fig 1. Two 4-methylbenzoyl groups are situated in anti orientation and are twisted away from the attached naphthalene ring. The interplanar angle between the best planes of the two phenyl rings is 9.64 (7)°. On the other hand, the two interplanar angles between the best planes of the 4-methylphenyl rings and the naphthalene ring are 71.82 (6) and 71.58 (6)°, respectively. The torsion angles between the carbonyl groups and the naphthalene ring [C10—C1—C11—O1 = 68.1 (2)° and C10—C9—C18—O2 = 67.6 (2)°] are larger than those between the carbonyl groups and 4-methylphenyl groups [O1—C11—C12—C13 = -179.18 (15)° and O2—C18—C19—C20 = 176.67 (15)°]. In the molecular packing, the C—H···O hydrogen interactions between the oxygen atoms of the carbonyl groups and the hydrogen atoms of the phenyl rings are observed along the c axis [C14—H14···O1 = 2.52 Å and C21—H21···O2 = 2.38 Å] (Fig. 2).

Experimental

To a 30 ml flask, 4-methylbenzoic acid (8.00 mmol, 1.08 g) and phosphorus pentoxide–methanesulfonic acid mixture (P2O5–MsOH; 8.0 ml) were placed and stirred at 333 K. To the solution thus obtained, 2,7-dimethoxynaphthalene (4.00 mmol, 0.752 g) was added. After the reaction mixture was stirred at 333 K for 2 h, it was poured into ice-cold water (10 ml) and the mixture was extracted with CHCl3 (10 ml × 3). The combined extracts were washed with 2 M aqueous NaOH followed by washing with brine. The organic layer was dried over anhydrous MgSO4. The solvent was removed under reduced pressure to give a cake (57% yield). The crude product was purified by recrystallization from CHCl3-hexane (isolated yield 35%). Furthermore, the isolated product was crystallized from EtOH to give single-crystals.

Spectral data:1H NMR δ (300 MHz, CDCl3): 2.37 (6H, s), 3.67 (6H, s), 7.11 (4H, d, J = 7.8 Hz), 7.19 (2H, d, J = 8.7 Hz), 7.57 (4H, d, J = 7.8 Hz), 7.92 (2H, d, J = 8.7 Hz). 13C NMR δ (300 MHz, CDCl3): 21.740, 56.495, 111.34, 121.91, 125.58, 128.70, 129.25, 129.74, 131.79, 136.31, 143.17, 156.12, 196.22. IR (KBr): 1655 (C═O), 1607, 1512 (Ar, naphthalene). m.p. = 531.8–534.9 K. Anal. Calcd for C28H24O4; C, 79.22; H, 5,70. Found C, 78.98; H, 5.78.

Refinement

All the H-atoms could be located in difference Fourier maps. The C-bound H-atoms were subsequently refined as riding atoms, with C—H = 0.95 (aromatic) and 0.98(methyl) Å, and Uiso(H) = 1.2Ueq. Friedel-pair reflections were merged before final refinement because the absolute structure parameter was -0.04 (17). [Merging Friedel-pair data with the MERG 3 instruction in SHELX97].

Figures

Fig. 1.

Fig. 1.

: Molecular structure with the atom-labeling scheme and displacement ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

: C—H···O interactions (dashed lines).

Crystal data

C28H24O4 F(000) = 896
Mr = 424.47 Dx = 1.318 Mg m3
Orthorhombic, Pna21 Cu Kα radiation, λ = 1.54187 Å
Hall symbol: P 2c -2n Cell parameters from 31782 reflections
a = 20.0334 (3) Å θ = 3.3–68.2°
b = 13.4311 (2) Å µ = 0.70 mm1
c = 7.94771 (10) Å T = 193 K
V = 2138.49 (5) Å3 Block, colorless
Z = 4 0.60 × 0.40 × 0.20 mm

Data collection

Rigaku R-AXIS RAPID diffractometer 2110 independent reflections
Radiation source: fine-focus sealed tube 2041 reflections with I > 2σ(I)
graphite Rint = 0.034
Detector resolution: 10.00 pixels mm-1 θmax = 68.2°, θmin = 4.0°
ω scans h = −24→24
Absorption correction: numerical (NUMABS; Higashi, 1999) k = −16→16
Tmin = 0.604, Tmax = 0.873 l = −9→9
33150 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034 H-atom parameters constrained
wR(F2) = 0.094 w = 1/[σ2(Fo2) + (0.0569P)2 + 0.3088P] where P = (Fo2 + 2Fc2)/3
S = 1.17 (Δ/σ)max = 0.002
2110 reflections Δρmax = 0.18 e Å3
293 parameters Δρmin = −0.17 e Å3
1 restraint Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0066 (5)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.14819 (8) 0.11387 (12) 0.5115 (2) 0.0340 (4)
O2 0.14078 (8) 0.32719 (13) 0.2589 (2) 0.0368 (4)
O3 0.06372 (8) −0.05143 (12) 0.2673 (3) 0.0449 (4)
O4 0.03319 (8) 0.46452 (13) 0.4971 (3) 0.0444 (4)
C1 0.05479 (10) 0.11760 (16) 0.3328 (3) 0.0300 (5)
C2 0.02338 (11) 0.02950 (17) 0.2891 (3) 0.0361 (5)
C3 −0.04660 (12) 0.0239 (2) 0.2705 (4) 0.0426 (6)
H3 −0.0672 −0.0361 0.2345 0.051*
C4 −0.08397 (11) 0.1059 (2) 0.3048 (3) 0.0420 (6)
H4 −0.1311 0.1020 0.2935 0.050*
C5 −0.05501 (10) 0.19654 (19) 0.3567 (3) 0.0369 (5)
C6 −0.09500 (11) 0.2789 (2) 0.4003 (4) 0.0436 (6)
H6 −0.1422 0.2727 0.3944 0.052*
C7 −0.06805 (12) 0.3673 (2) 0.4509 (4) 0.0428 (6)
H7 −0.0960 0.4215 0.4816 0.051*
C8 0.00175 (12) 0.37696 (17) 0.4567 (3) 0.0361 (5)
C9 0.04339 (10) 0.29876 (17) 0.4152 (3) 0.0303 (5)
C10 0.01624 (10) 0.20501 (17) 0.3670 (3) 0.0309 (5)
C11 0.12923 (11) 0.11221 (15) 0.3659 (3) 0.0282 (5)
C12 0.17684 (11) 0.10505 (15) 0.2237 (3) 0.0274 (5)
C13 0.15505 (11) 0.10444 (17) 0.0569 (3) 0.0330 (5)
H13 0.1086 0.1075 0.0330 0.040*
C14 0.20036 (12) 0.09938 (16) −0.0735 (3) 0.0343 (5)
H14 0.1847 0.0991 −0.1863 0.041*
C15 0.26866 (11) 0.09473 (16) −0.0420 (3) 0.0332 (5)
C16 0.29032 (11) 0.09517 (17) 0.1250 (3) 0.0343 (5)
H16 0.3367 0.0916 0.1486 0.041*
C17 0.24524 (11) 0.10078 (15) 0.2565 (3) 0.0314 (5)
H17 0.2609 0.1017 0.3693 0.038*
C18 0.11740 (11) 0.32131 (15) 0.4002 (3) 0.0286 (5)
C19 0.15908 (11) 0.33410 (15) 0.5519 (3) 0.0280 (5)
C20 0.13218 (11) 0.33242 (17) 0.7139 (3) 0.0326 (5)
H20 0.0855 0.3239 0.7283 0.039*
C21 0.17245 (12) 0.34296 (17) 0.8529 (3) 0.0356 (5)
H21 0.1532 0.3424 0.9621 0.043*
C22 0.24135 (12) 0.35449 (16) 0.8353 (3) 0.0335 (5)
C23 0.26816 (12) 0.35582 (17) 0.6736 (3) 0.0345 (5)
H23 0.3149 0.3638 0.6594 0.041*
C24 0.22803 (11) 0.34573 (16) 0.5340 (3) 0.0301 (5)
H24 0.2473 0.3467 0.4248 0.036*
C25 0.03540 (14) −0.14711 (18) 0.2950 (4) 0.0489 (7)
H25A 0.0694 −0.1983 0.2755 0.059*
H25B −0.0020 −0.1573 0.2173 0.059*
H25C 0.0193 −0.1516 0.4111 0.059*
C26 −0.00659 (15) 0.5493 (2) 0.5335 (5) 0.0575 (8)
H26A 0.0224 0.6057 0.5614 0.069*
H26B −0.0358 0.5348 0.6292 0.069*
H26C −0.0338 0.5661 0.4350 0.069*
C27 0.31772 (13) 0.0894 (2) −0.1857 (4) 0.0450 (6)
H27A 0.2936 0.0769 −0.2909 0.054*
H27B 0.3495 0.0353 −0.1654 0.054*
H27C 0.3419 0.1527 −0.1942 0.054*
C28 0.28470 (13) 0.3658 (2) 0.9887 (4) 0.0442 (6)
H28A 0.2668 0.3247 1.0802 0.053*
H28B 0.2853 0.4357 1.0238 0.053*
H28C 0.3302 0.3442 0.9622 0.053*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0338 (8) 0.0407 (9) 0.0276 (9) −0.0016 (6) −0.0026 (7) 0.0006 (7)
O2 0.0351 (9) 0.0514 (10) 0.0238 (9) −0.0047 (7) 0.0037 (7) 0.0015 (7)
O3 0.0372 (8) 0.0403 (9) 0.0573 (11) −0.0093 (7) 0.0077 (8) −0.0081 (9)
O4 0.0402 (9) 0.0398 (9) 0.0532 (12) 0.0093 (7) 0.0005 (9) −0.0030 (8)
C1 0.0260 (10) 0.0401 (11) 0.0237 (10) −0.0036 (8) 0.0020 (9) 0.0017 (9)
C2 0.0338 (11) 0.0455 (12) 0.0289 (12) −0.0074 (9) 0.0028 (10) −0.0013 (10)
C3 0.0353 (11) 0.0551 (14) 0.0374 (13) −0.0168 (11) −0.0020 (11) −0.0008 (12)
C4 0.0258 (10) 0.0635 (16) 0.0368 (14) −0.0094 (10) −0.0037 (10) 0.0080 (12)
C5 0.0262 (10) 0.0545 (13) 0.0300 (12) −0.0008 (10) −0.0020 (10) 0.0094 (11)
C6 0.0239 (10) 0.0633 (15) 0.0437 (15) 0.0035 (10) −0.0006 (10) 0.0122 (12)
C7 0.0313 (11) 0.0558 (14) 0.0414 (14) 0.0125 (10) 0.0054 (11) 0.0095 (12)
C8 0.0361 (11) 0.0434 (12) 0.0286 (12) 0.0050 (10) 0.0008 (10) 0.0041 (10)
C9 0.0263 (10) 0.0402 (11) 0.0244 (11) 0.0029 (8) −0.0013 (9) 0.0046 (9)
C10 0.0267 (10) 0.0443 (12) 0.0218 (10) −0.0018 (9) −0.0003 (9) 0.0057 (9)
C11 0.0302 (11) 0.0267 (9) 0.0275 (12) −0.0023 (8) −0.0017 (10) 0.0005 (9)
C12 0.0264 (10) 0.0272 (9) 0.0286 (12) −0.0021 (7) −0.0009 (9) −0.0001 (8)
C13 0.0281 (11) 0.0408 (12) 0.0303 (12) −0.0005 (9) −0.0048 (9) 0.0018 (10)
C14 0.0387 (12) 0.0381 (11) 0.0262 (11) 0.0005 (9) −0.0004 (10) 0.0009 (9)
C15 0.0360 (12) 0.0292 (10) 0.0344 (13) −0.0012 (9) 0.0046 (10) 0.0012 (9)
C16 0.0267 (11) 0.0370 (11) 0.0393 (13) −0.0026 (8) 0.0011 (10) 0.0001 (10)
C17 0.0294 (10) 0.0331 (10) 0.0317 (12) −0.0024 (8) −0.0034 (9) 0.0007 (10)
C18 0.0304 (10) 0.0279 (9) 0.0276 (12) 0.0009 (8) 0.0023 (9) 0.0013 (8)
C19 0.0298 (10) 0.0264 (10) 0.0277 (11) 0.0009 (8) 0.0005 (9) 0.0010 (8)
C20 0.0291 (10) 0.0398 (12) 0.0289 (12) −0.0008 (9) 0.0018 (9) 0.0002 (10)
C21 0.0404 (12) 0.0405 (12) 0.0259 (12) −0.0007 (9) 0.0031 (10) 0.0032 (10)
C22 0.0389 (12) 0.0283 (10) 0.0331 (13) 0.0001 (8) −0.0061 (11) 0.0012 (9)
C23 0.0300 (11) 0.0341 (11) 0.0393 (14) −0.0002 (9) −0.0024 (10) −0.0005 (10)
C24 0.0310 (10) 0.0312 (10) 0.0280 (11) 0.0014 (8) 0.0044 (10) −0.0004 (9)
C25 0.0531 (15) 0.0413 (12) 0.0523 (17) −0.0147 (11) 0.0089 (14) −0.0081 (12)
C26 0.0583 (16) 0.0509 (15) 0.063 (2) 0.0204 (13) −0.0051 (16) −0.0145 (15)
C27 0.0419 (13) 0.0522 (14) 0.0408 (15) 0.0002 (10) 0.0110 (12) 0.0014 (12)
C28 0.0500 (15) 0.0459 (13) 0.0368 (14) −0.0022 (11) −0.0114 (12) 0.0028 (12)

Geometric parameters (Å, °)

O1—C11 1.218 (3) C15—C16 1.396 (4)
O2—C18 1.219 (3) C15—C27 1.508 (3)
O3—C2 1.366 (3) C16—C17 1.384 (3)
O3—C25 1.422 (3) C16—H16 0.9500
O4—C8 1.372 (3) C17—H17 0.9500
O4—C26 1.420 (3) C18—C19 1.477 (3)
C1—C2 1.385 (3) C19—C20 1.395 (3)
C1—C10 1.431 (3) C19—C24 1.398 (3)
C1—C11 1.516 (3) C20—C21 1.375 (3)
C2—C3 1.412 (3) C20—H20 0.9500
C3—C4 1.359 (4) C21—C22 1.396 (3)
C3—H3 0.9500 C21—H21 0.9500
C4—C5 1.410 (4) C22—C23 1.393 (3)
C4—H4 0.9500 C22—C28 1.505 (3)
C5—C6 1.409 (4) C23—C24 1.377 (3)
C5—C10 1.434 (3) C23—H23 0.9500
C6—C7 1.365 (4) C24—H24 0.9500
C6—H6 0.9500 C25—H25A 0.9800
C7—C8 1.405 (3) C25—H25B 0.9800
C7—H7 0.9500 C25—H25C 0.9800
C8—C9 1.381 (3) C26—H26A 0.9800
C9—C10 1.424 (3) C26—H26B 0.9800
C9—C18 1.518 (3) C26—H26C 0.9800
C11—C12 1.482 (3) C27—H27A 0.9800
C12—C13 1.396 (3) C27—H27B 0.9800
C12—C17 1.396 (3) C27—H27C 0.9800
C13—C14 1.379 (3) C28—H28A 0.9800
C13—H13 0.9500 C28—H28B 0.9800
C14—C15 1.392 (3) C28—H28C 0.9800
C14—H14 0.9500
C2—O3—C25 117.63 (18) C15—C16—H16 119.5
C8—O4—C26 118.5 (2) C16—C17—C12 120.1 (2)
C2—C1—C10 120.23 (19) C16—C17—H17 119.9
C2—C1—C11 116.73 (18) C12—C17—H17 119.9
C10—C1—C11 122.48 (18) O2—C18—C19 121.84 (19)
O3—C2—C1 116.31 (18) O2—C18—C9 117.41 (19)
O3—C2—C3 122.2 (2) C19—C18—C9 120.75 (18)
C1—C2—C3 121.5 (2) C20—C19—C24 118.5 (2)
C4—C3—C2 118.9 (2) C20—C19—C18 122.2 (2)
C4—C3—H3 120.6 C24—C19—C18 119.2 (2)
C2—C3—H3 120.6 C21—C20—C19 120.8 (2)
C3—C4—C5 122.1 (2) C21—C20—H20 119.6
C3—C4—H4 118.9 C19—C20—H20 119.6
C5—C4—H4 118.9 C20—C21—C22 120.7 (2)
C6—C5—C4 121.05 (19) C20—C21—H21 119.6
C6—C5—C10 119.3 (2) C22—C21—H21 119.6
C4—C5—C10 119.6 (2) C23—C22—C21 118.4 (2)
C7—C6—C5 122.03 (19) C23—C22—C28 121.6 (2)
C7—C6—H6 119.0 C21—C22—C28 120.0 (2)
C5—C6—H6 119.0 C24—C23—C22 121.1 (2)
C6—C7—C8 118.9 (2) C24—C23—H23 119.4
C6—C7—H7 120.5 C22—C23—H23 119.4
C8—C7—H7 120.5 C23—C24—C19 120.4 (2)
O4—C8—C9 115.50 (19) C23—C24—H24 119.8
O4—C8—C7 122.9 (2) C19—C24—H24 119.8
C9—C8—C7 121.5 (2) O3—C25—H25A 109.5
C8—C9—C10 120.40 (18) O3—C25—H25B 109.5
C8—C9—C18 117.19 (19) H25A—C25—H25B 109.5
C10—C9—C18 121.89 (18) O3—C25—H25C 109.5
C9—C10—C1 124.76 (17) H25A—C25—H25C 109.5
C9—C10—C5 117.74 (19) H25B—C25—H25C 109.5
C1—C10—C5 117.5 (2) O4—C26—H26A 109.5
O1—C11—C12 121.7 (2) O4—C26—H26B 109.5
O1—C11—C1 118.1 (2) H26A—C26—H26B 109.5
C12—C11—C1 120.25 (19) O4—C26—H26C 109.5
C13—C12—C17 118.9 (2) H26A—C26—H26C 109.5
C13—C12—C11 121.6 (2) H26B—C26—H26C 109.5
C17—C12—C11 119.5 (2) C15—C27—H27A 109.5
C14—C13—C12 120.5 (2) C15—C27—H27B 109.5
C14—C13—H13 119.7 H27A—C27—H27B 109.5
C12—C13—H13 119.7 C15—C27—H27C 109.5
C13—C14—C15 120.9 (2) H27A—C27—H27C 109.5
C13—C14—H14 119.5 H27B—C27—H27C 109.5
C15—C14—H14 119.5 C22—C28—H28A 109.5
C14—C15—C16 118.4 (2) C22—C28—H28B 109.5
C14—C15—C27 120.4 (2) H28A—C28—H28B 109.5
C16—C15—C27 121.2 (2) C22—C28—H28C 109.5
C17—C16—C15 121.0 (2) H28A—C28—H28C 109.5
C17—C16—H16 119.5 H28B—C28—H28C 109.5
C25—O3—C2—C1 153.3 (3) C10—C1—C11—O1 67.9 (3)
C25—O3—C2—C3 −25.9 (4) C2—C1—C11—C12 76.4 (3)
C10—C1—C2—O3 −176.7 (2) C10—C1—C11—C12 −112.1 (2)
C11—C1—C2—O3 −5.0 (3) O1—C11—C12—C13 −179.2 (2)
C10—C1—C2—C3 2.5 (4) C1—C11—C12—C13 0.9 (3)
C11—C1—C2—C3 174.1 (2) O1—C11—C12—C17 −0.5 (3)
O3—C2—C3—C4 175.7 (3) C1—C11—C12—C17 179.60 (18)
C1—C2—C3—C4 −3.4 (4) C17—C12—C13—C14 0.2 (3)
C2—C3—C4—C5 0.7 (4) C11—C12—C13—C14 178.9 (2)
C3—C4—C5—C6 −176.6 (3) C12—C13—C14—C15 0.0 (3)
C3—C4—C5—C10 2.8 (4) C13—C14—C15—C16 0.1 (3)
C4—C5—C6—C7 −180.0 (3) C13—C14—C15—C27 −179.9 (2)
C10—C5—C6—C7 0.6 (4) C14—C15—C16—C17 −0.4 (3)
C5—C6—C7—C8 1.1 (4) C27—C15—C16—C17 179.5 (2)
C26—O4—C8—C9 177.1 (3) C15—C16—C17—C12 0.7 (3)
C26—O4—C8—C7 −0.4 (4) C13—C12—C17—C16 −0.6 (3)
C6—C7—C8—O4 176.4 (2) C11—C12—C17—C16 −179.3 (2)
C6—C7—C8—C9 −1.1 (4) C8—C9—C18—O2 −104.1 (3)
O4—C8—C9—C10 −178.4 (2) C10—C9—C18—O2 67.6 (3)
C7—C8—C9—C10 −0.8 (4) C8—C9—C18—C19 76.7 (3)
O4—C8—C9—C18 −6.6 (3) C10—C9—C18—C19 −111.6 (2)
C7—C8—C9—C18 171.0 (2) O2—C18—C19—C20 176.7 (2)
C8—C9—C10—C1 −175.5 (2) C9—C18—C19—C20 −4.1 (3)
C18—C9—C10—C1 13.1 (4) O2—C18—C19—C24 −5.0 (3)
C8—C9—C10—C5 2.5 (3) C9—C18—C19—C24 174.19 (18)
C18—C9—C10—C5 −169.0 (2) C24—C19—C20—C21 0.6 (3)
C2—C1—C10—C9 179.0 (2) C18—C19—C20—C21 178.9 (2)
C11—C1—C10—C9 7.9 (4) C19—C20—C21—C22 −0.7 (3)
C2—C1—C10—C5 1.1 (4) C20—C21—C22—C23 0.5 (3)
C11—C1—C10—C5 −170.1 (2) C20—C21—C22—C28 −179.9 (2)
C6—C5—C10—C9 −2.4 (4) C21—C22—C23—C24 −0.2 (3)
C4—C5—C10—C9 178.2 (2) C28—C22—C23—C24 −179.8 (2)
C6—C5—C10—C1 175.8 (2) C22—C23—C24—C19 0.1 (3)
C4—C5—C10—C1 −3.7 (4) C20—C19—C24—C23 −0.4 (3)
C2—C1—C11—O1 −103.5 (3) C18—C19—C24—C23 −178.7 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C14—H14···O1i 0.95 2.52 3.465 (3) 175
C21—H21···O2ii 0.95 2.38 3.295 (3) 162

Symmetry codes: (i) x, y, z−1; (ii) x, y, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: OM2367).

References

  1. Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst.38, 381–388.
  2. Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory. Tennessee, USA.
  3. Higashi, T. (1999). NUMABS Rigaku Corporation, Tokyo, Japan.
  4. Nakaema, K., Okamoto, A., Noguchi, K. & Yonezawa, N. (2007). Acta Cryst. E63, o4120.
  5. Nakaema, K., Watanabe, S., Okamoto, A., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o807. [DOI] [PMC free article] [PubMed]
  6. Okamoto, A. & Yonezawa, N. (2009). Chem. Lett.38, 914–915.
  7. Rigaku (1998). PROCESS-AUTO Rigaku Corporation, Tokyo, Japan.
  8. Rigaku/MSC (2004). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Watanabe, S., Nagasawa, A., Okamoto, A., Noguchi, K. & Yonezawa, N. (2010a). Acta Cryst. E66, o329. [DOI] [PMC free article] [PubMed]
  11. Watanabe, S., Nakaema, K., Muto, T., Okamoto, A. & Yonezawa, N. (2010b). Acta Cryst. E66, o403. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810039620/om2367sup1.cif

e-66-o2752-sup1.cif (23.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810039620/om2367Isup2.hkl

e-66-o2752-Isup2.hkl (101.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES