Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Oct 9;66(Pt 11):o2760–o2761. doi: 10.1107/S1600536810039164

5-Cyclo­hexyl-4-methyl-1H-pyrazol-3(2H)-one monohydrate

Tara Shahani a, Hoong-Kun Fun a,*,, R Venkat Ragavan b, V Vijayakumar b, S Sarveswari b
PMCID: PMC3009194  PMID: 21588963

Abstract

In the title compound, C10H16N2O·H2O, the cyclo­hexane ring is in a chair conformation and its least-squares plane makes a dihedral angle of 53.68 (5)° with the approximately planar pyrazole ring [maximum deviation = 0.034 (1) Å]. Pairs of inter­molecular N—H⋯O hydrogen bonds form inversion dimers between neighbouring pyrazolone mol­ecules, generating R 2 2(8) ring motifs. The pyrazolone and water mol­ecules are further linked by inter­molecular N—H⋯O, C—H⋯O and O—H⋯O hydrogen bonds into two-dimensional sheets parallel to the bc plane.

Related literature

For pyrazole derivatives and their microbial activities, see: Ragavan et al. (2009, 2010). For related structures, see: Shahani et al. (2009, 2010a ,b ,c ). For ring conformations, see: Cremer & Pople (1975). For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).graphic file with name e-66-o2760-scheme1.jpg

Experimental

Crystal data

  • C10H16N2O·H2O

  • M r = 198.26

  • Monoclinic, Inline graphic

  • a = 13.4959 (3) Å

  • b = 6.2497 (1) Å

  • c = 13.9268 (3) Å

  • β = 112.782 (1)°

  • V = 1083.02 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.46 × 0.27 × 0.23 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.962, T max = 0.981

  • 26403 measured reflections

  • 4715 independent reflections

  • 3863 reflections with I > 2σ(I)

  • R int = 0.033

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042

  • wR(F 2) = 0.117

  • S = 1.03

  • 4715 reflections

  • 199 parameters

  • All H-atom parameters refined

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.28 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810039164/is2608sup1.cif

e-66-o2760-sup1.cif (18KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810039164/is2608Isup2.hkl

e-66-o2760-Isup2.hkl (231KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O1Wi 0.889 (14) 1.866 (14) 2.7513 (9) 173.7 (12)
N2—H1N2⋯O1ii 0.924 (14) 1.842 (13) 2.7552 (9) 169.5 (13)
O1W—H1W1⋯O1 0.889 (17) 1.851 (17) 2.7354 (8) 173.2 (18)
O1W—H1W2⋯O1iii 0.860 (19) 1.961 (19) 2.8007 (9) 165.0 (16)
C5—H5A⋯O1Wi 0.987 (14) 2.503 (15) 3.4161 (12) 153.7 (11)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

HKF and TS thank Universiti Sains Malaysia (USM) for the Research University Grant (grant No. 1001/PFIZIK/811160). TS also thanks USM for the award of a research fellowship. VV is grateful to the DST-India for funding through the Young Scientist Scheme (Fast Track Proposal).

supplementary crystallographic information

Comment

Antibacterial and antifungal activities of the azoles are most widely studied and some of them are used in clinical practice as anti-microbial agents. However, the existence of azole-resistant strains had led to the development of new antimicrobial compounds. In particular, pyrazole derivatives are also extensively studied and used as antimicrobial agents. Pyrazole is an important class of heterocyclic compound and many pyrazole derivatives are reported to have the broad spectrum of biological activities, such as anti-inflammatory, antifungal, herbicidal, anti-tumour, cytotoxic and antiviral activities. Pyrazole derivatives also act as antiangiogenic agents, A3 adenosine receptor antagonists, neuropeptide YY5 receptor antagonists, kinase inhibitor for treatment of type-2 diabetes, hyperlipidemia, obesity, and thrombopiotinmimetics. Recently urea derivatives of pyrazoles have been reported as potent inhibitors of p38 kinase. Since the high electronegativity of halogens (particularly chlorine and fluorine) in the aromatic part of the drug molecules play an important role in enhancing their biological activity, we are interested to have 4-fluoro or 4-chloro substitution in the aryls of 1,5-diaryl pyrazoles. As part of our on-going research aiming on the synthesis of new antimicrobial compounds, we have reported the synthesis of novel pyrazole derivatives and their microbial activities (Ragavan et al., 2009, 2010).

The asymmetric unit of the title compound, (Fig. 1), consists of one 5-cyclohexyl-4-methyl-1H-pyrazol-3(2H)-one molecule (C1—C10/N1/N2/O1) and one water molecule. The 3-cyclohexyl-4-methyl-1 H-pyrazol-5-ol undergoes an enol-to-keto tautomerism during the crystallization process (Fig. 2). The cyclohexane ring is in a chair conformation with puckering parameters of Q = 0.5813 (10) Å, Θ = 177.06 (10)° and φ = 164.9 (19)° (Cremer & Pople, 1975), and its least-squares plane is at an angle of 53.68 (5)° with the approximately planar pyrazole ring (C7–C9/N1/N2; maximum deviation of 0.034 (1) Å at atom N2). The bond lengths (Allen et al., 1987) and angles are within normal ranges and comparable to those closely related structures (Shahani et al., 2009, 2010a,b,c)

In the crystal packing (Fig. 3), pairs of intermolecular N2—H1N2···O1 hydrogen bonds (Table 1) form dimers with neighbouring molecules, generating R22(8) ring motifs (Bernstein et al., 1995). The molecules are further linked by intermolecular N1—H1N1···O1W, C5—H5A···O1W, O1W—H1W1···O1 and O1W—H1W2 ···O1 hydrogen bonds (Table 1) into two-dimensional sheets parallel to the bc plane.

Experimental

The compound has been synthesized using the method available in the literature (Ragavan et al., 2010) and recrystallized using the ethanol-chloroform 1:1 mixture. Yield: 77%. m.p.: 205.4–206.2 °C.

Refinement

All H atoms were located in a difference fourier map and were refined freely [refined distances: N—H = 0.889 (14)–0.923 (14) Å, C—H = 0.93 (12)–1.022 (13) Å and O—H = 0.858 (18)–0.888 (17) Å].

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom numbering scheme.

Fig. 2.

Fig. 2.

Enol-to-keto tautomerism of the title compound during crystallization process.

Fig. 3.

Fig. 3.

The crystal packing of the title compound, viewed two-dimensional arrays parallel to the bc plane. Dashed lines indicate hydrogen bonds.

Crystal data

C10H16N2O·H2O F(000) = 432
Mr = 198.26 Dx = 1.216 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 9296 reflections
a = 13.4959 (3) Å θ = 3.0–34.7°
b = 6.2497 (1) Å µ = 0.09 mm1
c = 13.9268 (3) Å T = 100 K
β = 112.782 (1)° Block, colourless
V = 1083.02 (4) Å3 0.46 × 0.27 × 0.23 mm
Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 4715 independent reflections
Radiation source: fine-focus sealed tube 3863 reflections with I > 2σ(I)
graphite Rint = 0.033
φ and ω scans θmax = 35.0°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −20→21
Tmin = 0.962, Tmax = 0.981 k = −10→10
26403 measured reflections l = −21→21

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117 All H-atom parameters refined
S = 1.03 w = 1/[σ2(Fo2) + (0.0623P)2 + 0.2027P] where P = (Fo2 + 2Fc2)/3
4715 reflections (Δ/σ)max < 0.001
199 parameters Δρmax = 0.55 e Å3
0 restraints Δρmin = −0.28 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.47692 (5) 0.58283 (9) 0.36443 (4) 0.01649 (11)
N1 0.35298 (5) 0.86770 (11) 0.49923 (5) 0.01570 (12)
N2 0.43455 (5) 0.74179 (11) 0.49437 (5) 0.01560 (12)
C1 0.22589 (7) 1.31323 (13) 0.36124 (7) 0.02077 (15)
C2 0.12483 (7) 1.45257 (14) 0.33028 (7) 0.02375 (16)
C3 0.07738 (7) 1.44773 (14) 0.41354 (7) 0.02298 (16)
C4 0.05310 (7) 1.21880 (14) 0.43594 (7) 0.02146 (16)
C5 0.15219 (7) 1.07543 (13) 0.46434 (7) 0.01902 (14)
C6 0.19853 (6) 1.08190 (12) 0.37959 (6) 0.01492 (13)
C7 0.29215 (6) 0.93410 (11) 0.40136 (5) 0.01425 (13)
C8 0.41832 (6) 0.71084 (12) 0.39255 (5) 0.01420 (13)
C9 0.32907 (6) 0.83939 (12) 0.33169 (5) 0.01507 (13)
C10 0.28323 (7) 0.85575 (15) 0.21552 (6) 0.02220 (16)
O1W 0.39076 (5) 0.38748 (10) 0.17409 (5) 0.02017 (12)
H1A 0.2820 (10) 1.3696 (19) 0.4284 (10) 0.026 (3)*
H1B 0.2551 (10) 1.319 (2) 0.3063 (11) 0.030 (3)*
H2A 0.0700 (11) 1.398 (2) 0.2637 (11) 0.029 (3)*
H2B 0.1410 (11) 1.602 (2) 0.3181 (11) 0.033 (3)*
H3A 0.1301 (11) 1.516 (2) 0.4797 (10) 0.028 (3)*
H3B 0.0083 (10) 1.536 (2) 0.3909 (10) 0.027 (3)*
H4A −0.0056 (10) 1.161 (2) 0.3741 (11) 0.029 (3)*
H4B 0.0270 (10) 1.214 (2) 0.4932 (10) 0.028 (3)*
H5A 0.2079 (11) 1.124 (2) 0.5307 (11) 0.032 (3)*
H5B 0.1334 (10) 0.922 (2) 0.4749 (10) 0.025 (3)*
H6 0.1416 (10) 1.028 (2) 0.3127 (9) 0.020 (3)*
H10A 0.2285 (15) 0.956 (3) 0.1918 (15) 0.066 (5)*
H10B 0.3351 (14) 0.891 (3) 0.1877 (13) 0.053 (5)*
H10C 0.2553 (13) 0.719 (3) 0.1795 (14) 0.060 (5)*
H1N1 0.3647 (11) 0.938 (2) 0.5581 (11) 0.033 (3)*
H1N2 0.4682 (11) 0.646 (2) 0.5476 (11) 0.034 (3)*
H1W1 0.4222 (13) 0.442 (3) 0.2377 (13) 0.046 (4)*
H1W2 0.4323 (13) 0.284 (3) 0.1729 (13) 0.052 (5)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0200 (3) 0.0165 (2) 0.0143 (2) 0.00467 (19) 0.00818 (19) 0.00135 (18)
N1 0.0190 (3) 0.0166 (3) 0.0112 (2) 0.0047 (2) 0.0057 (2) 0.0004 (2)
N2 0.0187 (3) 0.0162 (3) 0.0116 (3) 0.0051 (2) 0.0056 (2) 0.0017 (2)
C1 0.0210 (3) 0.0161 (3) 0.0261 (4) 0.0025 (3) 0.0102 (3) 0.0048 (3)
C2 0.0251 (4) 0.0165 (3) 0.0282 (4) 0.0053 (3) 0.0088 (3) 0.0047 (3)
C3 0.0227 (4) 0.0170 (3) 0.0272 (4) 0.0040 (3) 0.0074 (3) −0.0051 (3)
C4 0.0197 (3) 0.0206 (4) 0.0257 (4) 0.0018 (3) 0.0105 (3) −0.0039 (3)
C5 0.0208 (3) 0.0179 (3) 0.0211 (3) 0.0028 (3) 0.0113 (3) 0.0010 (3)
C6 0.0158 (3) 0.0139 (3) 0.0145 (3) 0.0018 (2) 0.0053 (2) −0.0002 (2)
C7 0.0166 (3) 0.0135 (3) 0.0122 (3) 0.0015 (2) 0.0052 (2) 0.0010 (2)
C8 0.0173 (3) 0.0138 (3) 0.0118 (3) 0.0012 (2) 0.0060 (2) 0.0009 (2)
C9 0.0180 (3) 0.0156 (3) 0.0112 (3) 0.0034 (2) 0.0052 (2) 0.0015 (2)
C10 0.0275 (4) 0.0259 (4) 0.0118 (3) 0.0087 (3) 0.0059 (3) 0.0024 (3)
O1W 0.0246 (3) 0.0216 (3) 0.0139 (2) 0.0035 (2) 0.0071 (2) 0.0007 (2)

Geometric parameters (Å, °)

O1—C8 1.2880 (9) C4—C5 1.5290 (11)
N1—C7 1.3555 (9) C4—H4A 0.985 (14)
N1—N2 1.3760 (9) C4—H4B 0.989 (13)
N1—H1N1 0.889 (14) C5—C6 1.5354 (10)
N2—C8 1.3622 (9) C5—H5A 0.986 (14)
N2—H1N2 0.923 (14) C5—H5B 1.020 (13)
C1—C2 1.5326 (12) C6—C7 1.4982 (10)
C1—C6 1.5378 (11) C6—H6 1.009 (12)
C1—H1A 1.012 (13) C7—C9 1.3836 (10)
C1—H1B 0.987 (13) C8—C9 1.4226 (10)
C2—C3 1.5267 (13) C9—C10 1.4953 (11)
C2—H2A 0.995 (14) C10—H10A 0.93 (2)
C2—H2B 0.986 (14) C10—H10B 0.948 (17)
C3—C4 1.5267 (13) C10—H10C 0.987 (19)
C3—H3A 1.013 (14) O1W—H1W1 0.888 (17)
C3—H3B 1.022 (13) O1W—H1W2 0.858 (18)
C7—N1—N2 108.07 (6) H4A—C4—H4B 106.1 (11)
C7—N1—H1N1 126.7 (9) C4—C5—C6 111.20 (7)
N2—N1—H1N1 118.0 (9) C4—C5—H5A 109.6 (8)
C8—N2—N1 108.86 (6) C6—C5—H5A 108.8 (8)
C8—N2—H1N2 125.1 (9) C4—C5—H5B 110.4 (7)
N1—N2—H1N2 119.0 (8) C6—C5—H5B 109.5 (7)
C2—C1—C6 109.64 (7) H5A—C5—H5B 107.3 (11)
C2—C1—H1A 109.2 (7) C7—C6—C5 113.01 (6)
C6—C1—H1A 108.4 (7) C7—C6—C1 112.05 (6)
C2—C1—H1B 110.0 (8) C5—C6—C1 110.36 (6)
C6—C1—H1B 110.7 (8) C7—C6—H6 105.2 (7)
H1A—C1—H1B 108.9 (10) C5—C6—H6 108.0 (7)
C3—C2—C1 111.37 (7) C1—C6—H6 107.9 (7)
C3—C2—H2A 108.8 (8) N1—C7—C9 109.38 (6)
C1—C2—H2A 109.1 (8) N1—C7—C6 121.81 (6)
C3—C2—H2B 109.6 (8) C9—C7—C6 128.78 (7)
C1—C2—H2B 110.7 (8) O1—C8—N2 122.31 (7)
H2A—C2—H2B 107.2 (11) O1—C8—C9 130.36 (6)
C2—C3—C4 111.10 (7) N2—C8—C9 107.32 (6)
C2—C3—H3A 109.2 (7) C7—C9—C8 105.99 (6)
C4—C3—H3A 109.7 (8) C7—C9—C10 128.25 (7)
C2—C3—H3B 110.8 (7) C8—C9—C10 125.68 (7)
C4—C3—H3B 109.0 (8) C9—C10—H10A 111.8 (12)
H3A—C3—H3B 106.9 (11) C9—C10—H10B 113.4 (10)
C3—C4—C5 111.51 (7) H10A—C10—H10B 108.0 (15)
C3—C4—H4A 109.1 (8) C9—C10—H10C 114.0 (11)
C5—C4—H4A 109.8 (8) H10A—C10—H10C 108.0 (15)
C3—C4—H4B 111.4 (8) H10B—C10—H10C 101.0 (14)
C5—C4—H4B 108.8 (8) H1W1—O1W—H1W2 104.0 (14)
C7—N1—N2—C8 −6.34 (8) C5—C6—C7—C9 154.47 (8)
C6—C1—C2—C3 57.93 (10) C1—C6—C7—C9 −80.10 (10)
C1—C2—C3—C4 −56.21 (10) N1—N2—C8—O1 −173.49 (7)
C2—C3—C4—C5 54.34 (10) N1—N2—C8—C9 5.81 (8)
C3—C4—C5—C6 −54.98 (9) N1—C7—C9—C8 −0.75 (9)
C4—C5—C6—C7 −176.77 (7) C6—C7—C9—C8 −178.70 (7)
C4—C5—C6—C1 56.89 (9) N1—C7—C9—C10 176.30 (8)
C2—C1—C6—C7 175.19 (7) C6—C7—C9—C10 −1.65 (14)
C2—C1—C6—C5 −57.94 (9) O1—C8—C9—C7 176.10 (8)
N2—N1—C7—C9 4.32 (9) N2—C8—C9—C7 −3.12 (8)
N2—N1—C7—C6 −177.56 (6) O1—C8—C9—C10 −1.05 (14)
C5—C6—C7—N1 −23.26 (10) N2—C8—C9—C10 179.74 (8)
C1—C6—C7—N1 102.18 (8)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1N1···O1Wi 0.889 (14) 1.866 (14) 2.7513 (9) 173.7 (12)
N2—H1N2···O1ii 0.924 (14) 1.842 (13) 2.7552 (9) 169.5 (13)
O1W—H1W1···O1 0.889 (17) 1.851 (17) 2.7354 (8) 173.2 (18)
O1W—H1W2···O1iii 0.860 (19) 1.961 (19) 2.8007 (9) 165.0 (16)
C5—H5A···O1Wi 0.987 (14) 2.503 (15) 3.4161 (12) 153.7 (11)

Symmetry codes: (i) x, −y+3/2, z+1/2; (ii) −x+1, −y+1, −z+1; (iii) −x+1, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2608).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  3. Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  5. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  6. Ragavan, R. V., Vijayakumar, V. & Kumari, N. S. (2009). Eur. J. Med. Chem.44, 3852–3857. [DOI] [PubMed]
  7. Ragavan, R. V., Vijayakumar, V. & Kumari, N. S. (2010). Eur. J. Med. Chem.45, 1173–1180. [DOI] [PubMed]
  8. Shahani, T., Fun, H.-K., Ragavan, R. V., Vijayakumar, V. & Sarveswari, S. (2009). Acta Cryst. E65, o3249–o3250. [DOI] [PMC free article] [PubMed]
  9. Shahani, T., Fun, H.-K., Ragavan, R. V., Vijayakumar, V. & Sarveswari, S. (2010a). Acta Cryst. E66, o142–o143. [DOI] [PMC free article] [PubMed]
  10. Shahani, T., Fun, H.-K., Ragavan, R. V., Vijayakumar, V. & Sarveswari, S. (2010b). Acta Cryst. E66, o1357–o1358. [DOI] [PMC free article] [PubMed]
  11. Shahani, T., Fun, H.-K., Ragavan, R. V., Vijayakumar, V. & Sarveswari, S. (2010c). Acta Cryst. E66, o1482–o1483. [DOI] [PMC free article] [PubMed]
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810039164/is2608sup1.cif

e-66-o2760-sup1.cif (18KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810039164/is2608Isup2.hkl

e-66-o2760-Isup2.hkl (231KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES