Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Oct 31;66(Pt 11):o3016. doi: 10.1107/S1600536810043801

(Z)-Ethyl 2-(4-chloro­phen­yl)-3-[(2,4-difluoro­phen­yl)amino]­prop-2-enoate

Zhu-Ping Xiao a,*, Xu-Dong Wang a, Tian Liu a, Jian Zhu a, Zhi-Ping Li a
PMCID: PMC3009196  PMID: 21589175

Abstract

In the title compound, C17H14ClF2NO2, the amino­acrylo­yloxy group makes dihedral angles of 47.55 (11)° with the 4-chloro­phenyl group and 8.74 (12)° with the difluoro­phenyl group; the dihedral angle between the rings is 52.32 (11)°. The structure of the title compound reveals a Z configuration with respect to the C=C double bond in the amino­acrylate fragment. A bifurcated intramolecular N—H⋯(O,F) hydrogen bond occurs. In the crystal, molecules are linked into chains by C—H⋯O hydrogen bonds.

Related literature

For background to Schiff bases, see: You & Zhu, 2006. For applications of enamines, see: Xiao et al. (2007, 2008a ,b ,c ).graphic file with name e-66-o3016-scheme1.jpg

Experimental

Crystal data

  • C17H14ClF2NO2

  • M r = 337.74

  • Monoclinic, Inline graphic

  • a = 16.276 (3) Å

  • b = 7.5030 (15) Å

  • c = 13.812 (3) Å

  • β = 111.11 (3)°

  • V = 1573.5 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 298 K

  • 0.30 × 0.10 × 0.10 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: ψ scan (North et al., 1968) T min = 0.923, T max = 0.973

  • 2957 measured reflections

  • 2824 independent reflections

  • 1566 reflections with I > 2σ(I)

  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.065

  • wR(F 2) = 0.170

  • S = 0.99

  • 2824 reflections

  • 213 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: SMART (Bruker, 2007); cell refinement: SMART; data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810043801/bq2244sup1.cif

e-66-o3016-sup1.cif (18.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810043801/bq2244Isup2.hkl

e-66-o3016-Isup2.hkl (138.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H18⋯F1 0.83 (3) 2.29 (3) 2.674 (3) 108 (3)
N1—H18⋯O1 0.83 (3) 2.07 (3) 2.675 (4) 129 (3)
C6—H6⋯O1i 0.93 2.51 3.321 (4) 146

Symmetry code: (i) Inline graphic.

Acknowledgments

This work was financed by the Scientific Research Fund of Hunan Provincial Education Department (Project No. 09B083) and by a grant from Jishou University for talent introduction (project No. JSDXKYZZ0801).

supplementary crystallographic information

Comment

A 2-aryl-3-arylaminoacrylate contains characteristic N—C═C bond and is therefore identified as enamine. It is well known that Schiff base harbors an N═C—C bond, which indicates that an enamine is the tautomeric isomer of the correspond Schiff base. Enamines, like Schiff bases (You & Zhu, 2006), show good antimicrobial activities (Xiao et al., 2007; Xiao et al., 2008a), especially against bacterium. On the other hand, an enamine is the key intermediate for anticancer agents, 3-arylquinolone (Xiao et al., 2008b) and 3-arylquinoline (Xiao et al., 2008c). In a continuation of our work on the structural characterization of enamine derivatives, we report herein the crystal structure of the title compound, (I).

The bond length of C13—N1 (1.344 (4) Å) is shorter than standard C—N single bond (1.48 Å) but longer than C—N double bond (1.28 Å), indicating that the p orbital of N1 is conjugated with the π molecular orbital of C13—C14 double bond. For the same reason, C1—N1 (1.394 (4) Å) is single bond with some double-bond character. The stereochemistry of the double bond in aminoacrylate moiety was assigned as (E)-configuration based on X-ray crystallography (Fig. 1) of the title compound.

Aminoacryloyloxy moiety, O2—C15—O1—C14—C13, forms a plane with the mean deviation of 0.0249 Å, which makes a dihedral angle of 47.55 (11) ° with the 4-chlorophenyl group and 8.74 (12) ° with the difluorophenyl group. The molecules are linked through intermolecular C—H···O hydrogen bonds, forming an infinite one-dimensional ribbons (Table 1, Fig. 2).

Experimental

Equimolar quantities (6 mmol) of ethyl 2-(4-chlorophenyl)-3-oxopropanoate (1.36 g) and 2,4-difluorobenzenamine (0.77 g) in absolute alcohol (18 ml) were heated at 344–354 K for 2 h. The excess solvent was removed under reduced pressure. The residue was purified by a flash chromatography with EtOAc–petrolum ether (1:6, v/v) to afford two fractions. The second fraction gave a E-isomer, and the first fraction, after partial solvent evaporated, furnished colorless blocks of (I) suitable for single-crystal structure determination.

Refinement

The H atom bonded to N1 was located in a difference Fourier map. All other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H = 0.93, 0.96 and 0.97 Å for the aromatic, CH3 and CH2 type H atoms, respectively. Uiso = 1.2Ueq(parent atoms) were assigned for aromatic and CH2 type H-atoms and 1.5Ueq(parent atoms) for CH3 type H-atoms.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

An infinite two-dimensional ribbon is formed through intermolecular C—H···O hydrogen bonds.

Crystal data

C17H14ClF2NO2 F(000) = 696
Mr = 337.74 Dx = 1.426 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 1318 reflections
a = 16.276 (3) Å θ = 1.8–24.7°
b = 7.5030 (15) Å µ = 0.27 mm1
c = 13.812 (3) Å T = 298 K
β = 111.11 (3)° Block, colourless
V = 1573.5 (5) Å3 0.30 × 0.10 × 0.10 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer 2824 independent reflections
Radiation source: fine-focus sealed tube 1566 reflections with I > 2σ(I)
graphite Rint = 0.027
φ and ω scans θmax = 25.3°, θmin = 1.3°
Absorption correction: ψ scan (North et al., 1968) h = −19→18
Tmin = 0.923, Tmax = 0.973 k = −9→0
2957 measured reflections l = 0→16

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.170 H atoms treated by a mixture of independent and constrained refinement
S = 0.99 w = 1/[σ2(Fo2) + (0.0804P)2] where P = (Fo2 + 2Fc2)/3
2824 reflections (Δ/σ)max < 0.001
213 parameters Δρmax = 0.26 e Å3
0 restraints Δρmin = −0.29 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 1.0185 (2) 0.7793 (5) 0.9700 (2) 0.0447 (9)
C2 1.1023 (2) 0.7723 (5) 1.0451 (2) 0.0473 (9)
C3 1.1764 (2) 0.8338 (5) 1.0316 (3) 0.0575 (10)
H3 1.2316 0.8267 1.0841 0.069*
C4 1.1653 (2) 0.9062 (6) 0.9370 (3) 0.0591 (10)
C5 1.0852 (3) 0.9180 (5) 0.8598 (3) 0.0614 (11)
H5 1.0799 0.9696 0.7966 0.074*
C6 1.0122 (2) 0.8536 (5) 0.8756 (3) 0.0561 (10)
H6 0.9575 0.8598 0.8222 0.067*
C7 0.7054 (2) 0.6470 (5) 0.8669 (2) 0.0418 (8)
C8 0.6325 (2) 0.7235 (5) 0.8805 (3) 0.0534 (10)
H8 0.6377 0.7669 0.9456 0.064*
C9 0.5528 (2) 0.7365 (5) 0.7997 (3) 0.0568 (10)
H9 0.5046 0.7872 0.8103 0.068*
C10 0.5451 (2) 0.6741 (5) 0.7036 (3) 0.0538 (10)
C11 0.6148 (2) 0.5949 (5) 0.6881 (3) 0.0567 (10)
H11 0.6087 0.5507 0.6229 0.068*
C12 0.6946 (2) 0.5807 (5) 0.7697 (2) 0.0474 (9)
H12 0.7418 0.5255 0.7590 0.057*
C13 0.8638 (2) 0.7024 (5) 0.9292 (2) 0.0463 (9)
H13 0.8524 0.7370 0.8610 0.056*
C14 0.7936 (2) 0.6482 (5) 0.9515 (2) 0.0423 (8)
C15 0.8066 (2) 0.5946 (5) 1.0578 (2) 0.0480 (9)
C16 0.7412 (2) 0.4743 (6) 1.1713 (2) 0.0622 (11)
H16A 0.7579 0.5751 1.2184 0.075*
H16B 0.7856 0.3821 1.1972 0.075*
C17 0.6536 (2) 0.4057 (6) 1.1638 (3) 0.0708 (12)
H17A 0.6094 0.4936 1.1312 0.106*
H17B 0.6540 0.3807 1.2321 0.106*
H17C 0.6408 0.2985 1.1231 0.106*
Cl1 0.44479 (7) 0.69755 (18) 0.60035 (8) 0.0887 (5)
F1 1.10991 (12) 0.7013 (3) 1.13887 (14) 0.0654 (7)
F2 1.23767 (15) 0.9700 (4) 0.92091 (18) 0.0856 (8)
N1 0.94818 (18) 0.7123 (4) 0.9939 (2) 0.0483 (8)
O1 0.87698 (16) 0.6036 (4) 1.13063 (17) 0.0660 (8)
O2 0.73408 (15) 0.5283 (3) 1.06790 (16) 0.0521 (7)
H18 0.961 (2) 0.673 (4) 1.054 (3) 0.050 (11)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0458 (19) 0.047 (2) 0.0377 (18) 0.0000 (17) 0.0109 (15) −0.0070 (17)
C2 0.047 (2) 0.056 (2) 0.0355 (18) 0.0045 (18) 0.0104 (15) −0.0033 (17)
C3 0.041 (2) 0.077 (3) 0.049 (2) −0.006 (2) 0.0093 (16) −0.010 (2)
C4 0.052 (2) 0.070 (3) 0.062 (2) −0.007 (2) 0.028 (2) −0.011 (2)
C5 0.070 (3) 0.073 (3) 0.044 (2) −0.002 (2) 0.024 (2) 0.001 (2)
C6 0.049 (2) 0.073 (3) 0.0389 (19) −0.004 (2) 0.0072 (16) −0.0010 (19)
C7 0.0405 (18) 0.043 (2) 0.0397 (18) −0.0037 (16) 0.0115 (14) 0.0044 (16)
C8 0.047 (2) 0.063 (2) 0.045 (2) 0.0019 (19) 0.0100 (16) −0.0049 (19)
C9 0.043 (2) 0.062 (3) 0.061 (2) 0.0066 (19) 0.0144 (18) 0.005 (2)
C10 0.045 (2) 0.055 (2) 0.046 (2) −0.0034 (19) −0.0015 (16) 0.0091 (18)
C11 0.058 (2) 0.065 (3) 0.0392 (19) −0.005 (2) 0.0082 (17) −0.0021 (19)
C12 0.0463 (19) 0.054 (2) 0.0399 (18) 0.0003 (18) 0.0130 (15) −0.0008 (17)
C13 0.047 (2) 0.053 (2) 0.0334 (17) 0.0049 (18) 0.0082 (15) 0.0008 (16)
C14 0.0426 (19) 0.048 (2) 0.0317 (17) 0.0011 (17) 0.0079 (14) −0.0009 (15)
C15 0.047 (2) 0.052 (2) 0.0404 (19) −0.0026 (18) 0.0103 (16) −0.0019 (17)
C16 0.069 (3) 0.077 (3) 0.0365 (19) −0.007 (2) 0.0138 (18) 0.001 (2)
C17 0.075 (3) 0.081 (3) 0.058 (2) −0.013 (3) 0.026 (2) 0.000 (2)
Cl1 0.0566 (7) 0.1127 (10) 0.0672 (7) 0.0014 (7) −0.0135 (5) 0.0174 (7)
F1 0.0531 (12) 0.0978 (18) 0.0363 (11) −0.0016 (12) 0.0051 (9) 0.0110 (12)
F2 0.0689 (15) 0.119 (2) 0.0838 (17) −0.0253 (15) 0.0458 (13) −0.0121 (16)
N1 0.0402 (17) 0.063 (2) 0.0353 (16) −0.0006 (15) 0.0063 (13) 0.0050 (16)
O1 0.0500 (15) 0.099 (2) 0.0373 (14) −0.0152 (15) 0.0018 (12) 0.0058 (14)
O2 0.0481 (14) 0.0676 (17) 0.0374 (12) −0.0045 (13) 0.0116 (10) 0.0026 (12)

Geometric parameters (Å, °)

C1—C2 1.385 (4) C10—C11 1.364 (5)
C1—C6 1.387 (5) C10—Cl1 1.747 (3)
C1—N1 1.394 (4) C11—C12 1.384 (5)
C2—F1 1.365 (4) C11—H11 0.9300
C2—C3 1.365 (5) C12—H12 0.9300
C3—C4 1.366 (5) C13—N1 1.344 (4)
C3—H3 0.9300 C13—C14 1.348 (5)
C4—C5 1.357 (5) C13—H13 0.9300
C4—F2 1.362 (4) C14—C15 1.463 (4)
C5—C6 1.371 (5) C15—O1 1.225 (4)
C5—H5 0.9300 C15—O2 1.333 (4)
C6—H6 0.9300 C16—O2 1.449 (4)
C7—C12 1.383 (4) C16—C17 1.484 (5)
C7—C8 1.390 (5) C16—H16A 0.9700
C7—C14 1.489 (4) C16—H16B 0.9700
C8—C9 1.377 (4) C17—H17A 0.9600
C8—H8 0.9300 C17—H17B 0.9600
C9—C10 1.370 (5) C17—H17C 0.9600
C9—H9 0.9300 N1—H18 0.83 (3)
C2—C1—C6 116.0 (3) C10—C11—H11 120.2
C2—C1—N1 118.7 (3) C12—C11—H11 120.2
C6—C1—N1 125.3 (3) C7—C12—C11 121.1 (3)
F1—C2—C3 118.6 (3) C7—C12—H12 119.4
F1—C2—C1 117.0 (3) C11—C12—H12 119.4
C3—C2—C1 124.4 (3) N1—C13—C14 127.8 (3)
C2—C3—C4 116.4 (3) N1—C13—H13 116.1
C2—C3—H3 121.8 C14—C13—H13 116.1
C4—C3—H3 121.8 C13—C14—C15 119.0 (3)
C5—C4—F2 119.4 (4) C13—C14—C7 118.7 (3)
C5—C4—C3 122.5 (4) C15—C14—C7 122.4 (3)
F2—C4—C3 118.1 (4) O1—C15—O2 122.4 (3)
C4—C5—C6 119.6 (4) O1—C15—C14 124.3 (3)
C4—C5—H5 120.2 O2—C15—C14 113.2 (3)
C6—C5—H5 120.2 O2—C16—C17 107.1 (3)
C5—C6—C1 121.1 (3) O2—C16—H16A 110.3
C5—C6—H6 119.5 C17—C16—H16A 110.3
C1—C6—H6 119.5 O2—C16—H16B 110.3
C12—C7—C8 117.7 (3) C17—C16—H16B 110.3
C12—C7—C14 120.8 (3) H16A—C16—H16B 108.6
C8—C7—C14 121.3 (3) C16—C17—H17A 109.5
C9—C8—C7 121.3 (3) C16—C17—H17B 109.5
C9—C8—H8 119.3 H17A—C17—H17B 109.5
C7—C8—H8 119.3 C16—C17—H17C 109.5
C10—C9—C8 119.5 (4) H17A—C17—H17C 109.5
C10—C9—H9 120.3 H17B—C17—H17C 109.5
C8—C9—H9 120.3 C13—N1—C1 126.4 (3)
C11—C10—C9 120.7 (3) C13—N1—H18 118 (2)
C11—C10—Cl1 120.1 (3) C1—N1—H18 116 (2)
C9—C10—Cl1 119.3 (3) C15—O2—C16 116.6 (3)
C10—C11—C12 119.7 (3)
C6—C1—C2—F1 179.4 (3) C8—C7—C12—C11 1.9 (5)
N1—C1—C2—F1 −0.8 (5) C14—C7—C12—C11 −173.6 (3)
C6—C1—C2—C3 0.4 (6) C10—C11—C12—C7 −0.6 (6)
N1—C1—C2—C3 −179.8 (4) N1—C13—C14—C15 1.0 (6)
F1—C2—C3—C4 −179.0 (3) N1—C13—C14—C7 −179.7 (3)
C1—C2—C3—C4 −0.1 (6) C12—C7—C14—C13 44.5 (5)
C2—C3—C4—C5 0.3 (6) C8—C7—C14—C13 −130.9 (4)
C2—C3—C4—F2 179.6 (3) C12—C7—C14—C15 −136.2 (3)
F2—C4—C5—C6 179.8 (4) C8—C7—C14—C15 48.4 (5)
C3—C4—C5—C6 −0.9 (6) C13—C14—C15—O1 3.8 (6)
C4—C5—C6—C1 1.2 (6) C7—C14—C15—O1 −175.5 (4)
C2—C1—C6—C5 −1.0 (5) C13—C14—C15—O2 −174.1 (3)
N1—C1—C6—C5 179.2 (4) C7—C14—C15—O2 6.5 (5)
C12—C7—C8—C9 −1.3 (6) C14—C13—N1—C1 −175.8 (4)
C14—C7—C8—C9 174.2 (3) C2—C1—N1—C13 −177.2 (3)
C7—C8—C9—C10 −0.5 (6) C6—C1—N1—C13 2.6 (6)
C8—C9—C10—C11 1.9 (6) O1—C15—O2—C16 2.9 (5)
C8—C9—C10—Cl1 −177.9 (3) C14—C15—O2—C16 −179.2 (3)
C9—C10—C11—C12 −1.3 (6) C17—C16—O2—C15 180.0 (3)
Cl1—C10—C11—C12 178.5 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H18···F1 0.83 (3) 2.29 (3) 2.674 (3) 108 (3)
N1—H18···O1 0.83 (3) 2.07 (3) 2.675 (4) 129 (3)
C6—H6···O1i 0.93 2.51 3.321 (4) 146

Symmetry codes: (i) x, −y+3/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2244).

References

  1. Bruker (2007). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  3. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  4. Xiao, Z.-P., Fang, R.-Q., Li, H.-Q., Xue, J.-Y., Zheng, Y. & Zhu, H.-L. (2008a). Eur. J. Med. Chem.43, 1828–1836. [DOI] [PubMed]
  5. Xiao, Z.-P., Li, H.-Q., Shi, L., Lv, P.-C., Song, Z.-C. & Zhu, H.-L. (2008b). ChemMedChem, 3, 1077–1082. [DOI] [PubMed]
  6. Xiao, Z.-P., Lv, P.-C., Xu, S.-P., Zhu, T.-T. & Zhu, H.-L. (2008c). ChemMedChem3, 1516–1519. [DOI] [PubMed]
  7. Xiao, Z.-P., Xue, J.-Y., Tan, S.-H., Li, H.-Q. & Zhu, H. L. (2007). Bioorg. Med. Chem.15, 4212–4219. [DOI] [PubMed]
  8. You, Z.-L. & Zhu, H. L. (2006). Z. Anorg. Allg. Chem.632, 140–146.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810043801/bq2244sup1.cif

e-66-o3016-sup1.cif (18.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810043801/bq2244Isup2.hkl

e-66-o3016-Isup2.hkl (138.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES