Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Oct 23;66(Pt 11):o2902–o2903. doi: 10.1107/S1600536810042170

2,7-Dimeth­oxy-1,8-bis­(4-phen­oxy­benzo­yl)naphthalene

Daichi Hijikata a, Teruhisa Takada a, Atsushi Nagasawa a, Akiko Okamoto a, Noriyuki Yonezawa a,*
PMCID: PMC3009209  PMID: 21589079

Abstract

In the title mol­ecule {systematic name: [2,7-dimethoxy-8-(4-phenoxybenzoyl)naphthalen-1-yl](4-phenoxyphenyl)methan­one}, C38H28O6, the 4-phen­oxy­benzoyl units adopt a syn orientation with respect to the naphthalene ring system. The inter­nal benzene rings, A and B, make dihedral angles of 86.72 (5) and 79.22 (5)° with the naphthalene ring system. The two terminal benzene rings, C and D, of the 4-phen­oxy­benzoyl groups are twisted with respect to benzene rings A and B, with dihedral angles of A/C = 62.72 (8) and B/D = 87.61 (6)°. In the crystal, H atoms in the naphthalene system make two types of inter­molecular C—H⋯O inter­actions with the carbonyl O atom and the phenyl etheral O atom of neighbouring mol­ecules. Mol­ecules are further linked by C—H⋯π inter­actions involving a H atom of terminal benzene ring D and the π-system of the inter­nal benzene ring A, forming dimers centered about an inversion center.

Related literature

For the syntheses of aroylated naphthalene compounds via electrophilic aromatic substitution of naphthalene derivatives, see: Okamoto & Yonezawa (2009). For the structures of closely related compounds, see: Nakaema et al. (2007, 2008); Mitsui et al. (2010); Muto et al. (2010); Watanabe et al. (2010a,b ).graphic file with name e-66-o2902-scheme1.jpg

Experimental

Crystal data

  • C38H28O6

  • M r = 580.60

  • Monoclinic, Inline graphic

  • a = 12.0733 (4) Å

  • b = 12.4806 (4) Å

  • c = 19.8094 (6) Å

  • β = 91.115 (2)°

  • V = 2984.36 (15) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.71 mm−1

  • T = 193 K

  • 0.50 × 0.30 × 0.30 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: numerical (NUMABS; Higashi, 1999) T min = 0.720, T max = 0.816

  • 54106 measured reflections

  • 5458 independent reflections

  • 4862 reflections with I > 2σ(I)

  • R int = 0.038

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036

  • wR(F 2) = 0.099

  • S = 1.04

  • 5458 reflections

  • 400 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.13 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810042170/su2217sup1.cif

e-66-o2902-sup1.cif (27.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810042170/su2217Isup2.hkl

e-66-o2902-Isup2.hkl (261.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg3 is the centroid of ring A (C12–C17).

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O2i 0.95 2.44 3.1479 (17) 131
C6—H6⋯O6ii 0.95 2.56 3.3293 (16) 138
C35—H35⋯Cg3iii 0.95 2.78 3.6528 (17) 153

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors express their gratitude to Professor Keiichi Noguchi, Instrumentation Analysis Center, Tokyo University of Agriculture & Technology, for his technical advice. This work was partially supported by the Ogasawara Foundation for the Promotion of Science & Engineering, Tokyo, Japan.

supplementary crystallographic information

Comment

In the course of our studies on selective electrophilic aromatic aroylation of 2,7-dimethoxynaphthalene, peri-aroylnaphthalene compounds have proved to be formed regioselectively by the aid of a suitable acidic mediator (Okamoto & Yonezawa, 2009). Recently, we reported on the crystal structures of three such compounds, 1,8-dibenzoyl-2,7-dimethoxynaphthalene (Nakaema et al., 2008), bis(4-bromophenyl)(2,7-dimethoxynaphthalene-1,8-diyl)dimethanone (Watanabe et al., 2010a), and 1,8-bis(4-methylbenzoyl)-2,7-dimethoxynaphthalene (Muto et al., 2010). The aroyl groups at the 1,8-positions of the naphthalene rings in these compounds are twisted almost perpendicularly but a little tilted toward the exo sides against the naphthalene ring. In addition, 1,8-bis(4-chlorobenzoyl)-7-methoxynaphthalen-2-ol ethanol monosolvate (Mitsui et al., 2010), which was formed by selective demethylation at the 2-methoxy group of 1,8-bis(4-chlorobenzoyl)-2,7-dimethoxynaphthalene (Nakaema et al., 2007), solely has two syn-oriented chlorobenzoyl groups bonding to the naphthalene ring system, and in this molecule the 2-hydroxy group forms intramolecular hydrogen bonds with the carbonyl oxygen atom. As a part of our continuous studies on the molecular structures of this kind of homologous molecules, the crystal structure of the title compound, 1,8-bis(4-phenoxybenzoyl)-2,7-dimethoxynaphthalene, synthesized via nucleophilic aromatic substitution of (2,7-dimethoxynaphthalene-1,8-diyl)bis(4-fluorophenyl)dimethanone (Watanabe et al., 2010b), is reported herein.

In the title molecule, illustrated in Fig. 1, two intervenient benzene rings, A (C12–C17) and B (C25–C30), are in a syn orientation with respect to the naphthalene ring system (C1–C10), and make dihedral angles of 86.72 (5) and 79.22 (5)°, respectively, with the naphthalene ring system. Furthermore, the dihedral angles between benzene rings A and B and the terminal benzene rings C (C18–C23) and D (C31–C36)] are A/C = 62.72 (8), B/D = 87.61 (6)°. Benzene rings A and B are configurated almost parallel to one another, the dihedral angle A/B being only 12.20 (6)°. On the other hand, benzene rings C and D are far from being parallel to one another with a dihedral angle C/D of 64.10 (8)°.

In the crystal, hydrogen atoms in the naphthalene ring form two types of intermolecular C—H···O interactions with the carbonyl oxygen atom (C3—H3···O2i = 2.44 Å; see Fig. 2 and Table 1) and the phenyl ethereal oxygen atom (C6—H6···O6ii = 2.56 Å; see Fig. 2 and Table 1). Moreover, molecules are linked by C—H···π interactions forming dimeric pairs. The terminal benzene ring D acts as a hydrogen-bond donor and the π system of the intervenient benzene ring A (with centroid Cg3) of an adjacent molecule acts as an acceptor (C35—H35···Cg3iii = 2.78 Å; see Fig. 3 and Table 1).

Experimental

In a 10 ml one-necked flask equipped with a condenser, (2,7-dimethoxynaphthalene-1,8-diyl)bis(4-fluorophenyl)dimethanone (1.0 mmol, 432.4 mg), phenol (4.0 mmol, 376.4 mg), potassium carbonate (8.0 mmol, 1.10 g) and freshly distilled DMAc (2.0 ml) were stirred at 423 K for 6 h. This mixture was then added dropwise into methanol (20 ml) resulting in the formation of a pale yellow precipitate. The crude material was purified by column chromatography (silica gel, hexane: AcOEt= 2:1) to give the title compound (yield 104 mg, 18%). The isolated product was recrystallized from acetone to give block-like yellow single-crystals of the title compound. M.p. 441.6–444.4 K; 1HNMR δ (300 MHz, CDCl3): 3.72 (6H, s), 6.82–6.94 (4H, m), 7.09 (4H, d, J=7.5 Hz), 7.14–7.21 (4H, m), 7.36 (4H, t, J=8.4 Hz), 7.55–7.78 (4H,m), 7.92 (2H, d, J=7.5 Hz) p.p.m.; 13CNMR δ (75 MHz, CDCl3): 56.442, 111.128, 116.575, 120.274, 121.440, 124.345, 125.415, 129.467, 129.850, 131.360, 131.876, 133.424, 155.405, 155.998, 161.474, 195.057 p.p.m.; IR (KBr): 1673 (C=O), 1267 (Ar—O—Me) cm-1; HRMS (m/z): [M + H]+ calcd for C38H29O6, 581.1964 found, 581.82.

Refinement

All H atoms were found in a difference Fourier map and were subsequently refined as riding atoms: C—H = 0.95 (aromatic) and 0.98 (methyl) Å, with Uiso(H) = 1.2 Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title molecule, showing 50% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

A partial crystal packing diagram of the title compound. The intermolecular C—H···O interactions are shown as double dashed lines (see Table 1 for details).

Fig. 3.

Fig. 3.

The dimeric pairs of the title molecule formed via C—H···π interactions, shown as double dashed lines (see Table 1 for details).

Crystal data

C38H28O6 F(000) = 1216
Mr = 580.60 Dx = 1.292 Mg m3
Monoclinic, P21/n Cu Kα radiation, λ = 1.54187 Å
Hall symbol: -P 2yn Cell parameters from 37382 reflections
a = 12.0733 (4) Å θ = 3.5–68.3°
b = 12.4806 (4) Å µ = 0.71 mm1
c = 19.8094 (6) Å T = 193 K
β = 91.115 (2)° Block, yellow
V = 2984.36 (15) Å3 0.50 × 0.30 × 0.30 mm
Z = 4

Data collection

Rigaku R-AXIS RAPID diffractometer 5458 independent reflections
Radiation source: rotating anode 4862 reflections with I > 2σ(I)
graphite Rint = 0.038
Detector resolution: 10.00 pixels mm-1 θmax = 68.3°, θmin = 4.2°
ω scans h = −14→14
Absorption correction: numerical (NUMABS; Higashi, 1999) k = −15→15
Tmin = 0.720, Tmax = 0.816 l = −23→23
54106 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036 H-atom parameters constrained
wR(F2) = 0.099 w = 1/[σ2(Fo2) + (0.0496P)2 + 0.5589P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max = 0.001
5458 reflections Δρmax = 0.16 e Å3
400 parameters Δρmin = −0.13 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.00337 (19)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.96053 (8) 0.06684 (7) 0.81736 (5) 0.0546 (2)
O2 0.77701 (9) −0.00287 (7) 0.90988 (5) 0.0586 (3)
O3 0.97983 (8) 0.27793 (8) 0.73618 (5) 0.0584 (3)
O4 0.51924 (8) 0.06935 (9) 0.91941 (5) 0.0615 (3)
O5 1.08799 (8) 0.36651 (9) 1.06682 (5) 0.0620 (3)
O6 0.79851 (8) 0.28865 (8) 1.16825 (4) 0.0556 (3)
C1 0.83140 (10) 0.20657 (9) 0.79447 (6) 0.0406 (3)
C2 0.86712 (11) 0.27048 (10) 0.74219 (6) 0.0471 (3)
C3 0.79253 (12) 0.32401 (11) 0.69846 (7) 0.0522 (3)
H3 0.8189 0.3692 0.6637 0.063*
C4 0.68212 (12) 0.30989 (11) 0.70687 (6) 0.0510 (3)
H4 0.6314 0.3447 0.6769 0.061*
C5 0.64066 (10) 0.24509 (10) 0.75887 (6) 0.0447 (3)
C6 0.52610 (11) 0.22967 (12) 0.76518 (7) 0.0542 (3)
H6 0.4772 0.2613 0.7328 0.065*
C7 0.48293 (11) 0.17099 (13) 0.81612 (7) 0.0579 (4)
H7 0.4053 0.1600 0.8186 0.069*
C8 0.55556 (11) 0.12678 (11) 0.86504 (7) 0.0493 (3)
C9 0.66870 (10) 0.13650 (9) 0.86044 (6) 0.0408 (3)
C10 0.71611 (10) 0.19418 (9) 0.80557 (6) 0.0394 (3)
C11 0.92353 (10) 0.15289 (9) 0.83493 (6) 0.0405 (3)
C12 0.96973 (9) 0.21139 (9) 0.89451 (6) 0.0388 (3)
C13 0.92476 (9) 0.30783 (9) 0.91570 (6) 0.0407 (3)
H13 0.8647 0.3388 0.8909 0.049*
C14 0.96670 (10) 0.35918 (10) 0.97258 (6) 0.0446 (3)
H14 0.9354 0.4250 0.9870 0.054*
C15 1.05418 (10) 0.31414 (11) 1.00819 (6) 0.0478 (3)
C16 1.10038 (11) 0.21766 (11) 0.98832 (7) 0.0535 (3)
H16 1.1600 0.1867 1.0135 0.064*
C17 1.05836 (11) 0.16749 (10) 0.93132 (7) 0.0477 (3)
H17 1.0903 0.1020 0.9169 0.057*
C18 1.19700 (12) 0.39961 (11) 1.07515 (7) 0.0522 (3)
C19 1.27352 (14) 0.39668 (15) 1.02490 (8) 0.0715 (4)
H19 1.2535 0.3709 0.9812 0.086*
C20 1.38027 (17) 0.4318 (2) 1.03878 (11) 0.0967 (7)
H20 1.4343 0.4283 1.0046 0.116*
C21 1.40910 (18) 0.47185 (18) 1.10142 (11) 0.0946 (6)
H21 1.4825 0.4962 1.1105 0.113*
C22 1.33065 (17) 0.47633 (14) 1.15093 (9) 0.0758 (5)
H22 1.3501 0.5042 1.1942 0.091*
C23 1.22396 (14) 0.44059 (11) 1.13820 (7) 0.0602 (4)
H23 1.1699 0.4441 1.1723 0.072*
C24 0.73586 (10) 0.08501 (9) 0.91703 (6) 0.0412 (3)
C25 0.74864 (9) 0.14370 (9) 0.98181 (6) 0.0388 (3)
C26 0.69332 (10) 0.23842 (10) 0.99588 (6) 0.0423 (3)
H26 0.6442 0.2685 0.9629 0.051*
C27 0.70890 (10) 0.28958 (11) 1.05731 (6) 0.0458 (3)
H27 0.6706 0.3542 1.0667 0.055*
C28 0.78094 (10) 0.24554 (10) 1.10496 (6) 0.0441 (3)
C29 0.83819 (11) 0.15178 (10) 1.09148 (6) 0.0487 (3)
H29 0.8880 0.1224 1.1242 0.058*
C30 0.82200 (11) 0.10197 (10) 1.03023 (6) 0.0461 (3)
H30 0.8614 0.0380 1.0207 0.055*
C31 0.77444 (11) 0.39731 (11) 1.17747 (6) 0.0477 (3)
C32 0.68244 (12) 0.42435 (12) 1.21339 (7) 0.0569 (4)
H32 0.6344 0.3705 1.2300 0.068*
C33 0.66113 (13) 0.53178 (13) 1.22497 (8) 0.0651 (4)
H33 0.5974 0.5521 1.2493 0.078*
C34 0.73172 (13) 0.60918 (13) 1.20139 (8) 0.0637 (4)
H34 0.7169 0.6827 1.2097 0.076*
C35 0.82377 (13) 0.58022 (13) 1.16573 (8) 0.0625 (4)
H35 0.8722 0.6339 1.1494 0.075*
C36 0.84602 (12) 0.47327 (12) 1.15348 (7) 0.0561 (3)
H36 0.9095 0.4528 1.1290 0.067*
C37 1.02198 (14) 0.34475 (15) 0.68454 (9) 0.0741 (5)
H37A 1.1031 0.3439 0.6867 0.089*
H37B 0.9955 0.4182 0.6909 0.089*
H37C 0.9964 0.3182 0.6404 0.089*
C38 0.40630 (15) 0.0786 (2) 0.93694 (12) 0.1008 (7)
H38A 0.3948 0.0437 0.9806 0.121*
H38B 0.3598 0.0439 0.9023 0.121*
H38C 0.3863 0.1545 0.9401 0.121*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0598 (6) 0.0431 (5) 0.0604 (6) 0.0113 (4) −0.0108 (4) −0.0065 (4)
O2 0.0817 (7) 0.0420 (5) 0.0514 (5) 0.0130 (5) −0.0147 (5) −0.0058 (4)
O3 0.0499 (5) 0.0617 (6) 0.0636 (6) 0.0012 (4) 0.0039 (4) 0.0206 (5)
O4 0.0488 (5) 0.0698 (7) 0.0658 (6) −0.0101 (5) 0.0012 (4) 0.0149 (5)
O5 0.0549 (6) 0.0761 (7) 0.0546 (6) −0.0006 (5) −0.0087 (4) −0.0167 (5)
O6 0.0719 (6) 0.0533 (6) 0.0411 (5) 0.0076 (5) −0.0123 (4) −0.0064 (4)
C1 0.0459 (6) 0.0357 (6) 0.0399 (6) 0.0017 (5) −0.0052 (5) 0.0007 (5)
C2 0.0492 (7) 0.0438 (7) 0.0481 (7) 0.0032 (5) −0.0007 (5) 0.0045 (5)
C3 0.0610 (8) 0.0491 (8) 0.0462 (7) 0.0042 (6) −0.0033 (6) 0.0116 (6)
C4 0.0593 (8) 0.0491 (7) 0.0440 (7) 0.0091 (6) −0.0120 (6) 0.0050 (6)
C5 0.0491 (7) 0.0430 (7) 0.0414 (6) 0.0049 (5) −0.0106 (5) −0.0018 (5)
C6 0.0494 (7) 0.0581 (8) 0.0545 (8) 0.0052 (6) −0.0163 (6) 0.0021 (6)
C7 0.0407 (7) 0.0666 (9) 0.0660 (9) −0.0031 (6) −0.0106 (6) 0.0031 (7)
C8 0.0481 (7) 0.0477 (7) 0.0519 (7) −0.0055 (6) −0.0038 (6) 0.0015 (6)
C9 0.0445 (6) 0.0374 (6) 0.0400 (6) −0.0013 (5) −0.0073 (5) −0.0025 (5)
C10 0.0452 (6) 0.0351 (6) 0.0377 (6) 0.0013 (5) −0.0081 (5) −0.0038 (5)
C11 0.0411 (6) 0.0356 (6) 0.0448 (6) 0.0009 (5) −0.0015 (5) 0.0042 (5)
C12 0.0381 (6) 0.0349 (6) 0.0433 (6) −0.0012 (5) −0.0016 (5) 0.0054 (5)
C13 0.0369 (6) 0.0359 (6) 0.0492 (7) −0.0001 (5) −0.0035 (5) 0.0058 (5)
C14 0.0423 (6) 0.0381 (6) 0.0535 (7) −0.0013 (5) 0.0008 (5) −0.0017 (5)
C15 0.0455 (7) 0.0513 (7) 0.0465 (7) −0.0035 (6) −0.0041 (5) −0.0029 (6)
C16 0.0509 (7) 0.0552 (8) 0.0537 (8) 0.0085 (6) −0.0150 (6) 0.0020 (6)
C17 0.0497 (7) 0.0411 (7) 0.0521 (7) 0.0088 (5) −0.0073 (6) 0.0027 (5)
C18 0.0560 (8) 0.0464 (7) 0.0534 (7) 0.0011 (6) −0.0158 (6) 0.0014 (6)
C19 0.0657 (10) 0.0865 (12) 0.0619 (9) −0.0152 (8) −0.0117 (7) −0.0112 (8)
C20 0.0701 (11) 0.1271 (18) 0.0927 (14) −0.0304 (12) −0.0038 (10) −0.0231 (13)
C21 0.0769 (12) 0.1078 (16) 0.0979 (15) −0.0283 (11) −0.0281 (11) −0.0112 (12)
C22 0.0966 (13) 0.0629 (10) 0.0665 (10) −0.0146 (9) −0.0363 (10) −0.0002 (8)
C23 0.0814 (10) 0.0475 (8) 0.0508 (8) −0.0021 (7) −0.0179 (7) 0.0023 (6)
C24 0.0459 (6) 0.0358 (6) 0.0418 (6) −0.0033 (5) −0.0029 (5) 0.0021 (5)
C25 0.0422 (6) 0.0348 (6) 0.0392 (6) −0.0049 (5) −0.0026 (5) 0.0039 (5)
C26 0.0403 (6) 0.0453 (7) 0.0411 (6) 0.0026 (5) −0.0060 (5) 0.0010 (5)
C27 0.0447 (6) 0.0462 (7) 0.0464 (7) 0.0065 (5) −0.0040 (5) −0.0048 (5)
C28 0.0478 (7) 0.0461 (7) 0.0382 (6) −0.0042 (5) −0.0034 (5) −0.0021 (5)
C29 0.0580 (8) 0.0434 (7) 0.0441 (7) 0.0031 (6) −0.0138 (6) 0.0043 (5)
C30 0.0567 (7) 0.0348 (6) 0.0463 (7) 0.0020 (5) −0.0076 (5) 0.0034 (5)
C31 0.0519 (7) 0.0522 (8) 0.0387 (6) −0.0001 (6) −0.0077 (5) −0.0075 (5)
C32 0.0554 (8) 0.0596 (9) 0.0558 (8) −0.0123 (7) 0.0045 (6) −0.0102 (7)
C33 0.0582 (8) 0.0671 (10) 0.0706 (10) −0.0053 (7) 0.0151 (7) −0.0195 (8)
C34 0.0663 (9) 0.0533 (8) 0.0719 (10) −0.0056 (7) 0.0077 (7) −0.0161 (7)
C35 0.0629 (9) 0.0602 (9) 0.0646 (9) −0.0141 (7) 0.0077 (7) −0.0052 (7)
C36 0.0517 (8) 0.0661 (9) 0.0506 (7) −0.0023 (7) 0.0063 (6) −0.0075 (7)
C37 0.0649 (9) 0.0804 (11) 0.0774 (11) 0.0013 (8) 0.0147 (8) 0.0301 (9)
C38 0.0584 (10) 0.1314 (19) 0.1134 (16) −0.0008 (11) 0.0215 (10) 0.0495 (14)

Geometric parameters (Å, °)

O1—C11 1.2167 (14) C18—C23 1.3826 (19)
O2—C24 1.2135 (15) C19—C20 1.384 (2)
O3—C2 1.3714 (16) C19—H19 0.9500
O3—C37 1.4217 (17) C20—C21 1.376 (3)
O4—C8 1.3727 (16) C20—H20 0.9500
O4—C38 1.418 (2) C21—C22 1.378 (3)
O5—C18 1.3863 (17) C21—H21 0.9500
O5—C15 1.3871 (15) C22—C23 1.382 (2)
O6—C28 1.3771 (14) C22—H22 0.9500
O6—C31 1.3996 (16) C23—H23 0.9500
C1—C2 1.3829 (17) C24—C25 1.4832 (16)
C1—C10 1.4219 (17) C25—C26 1.3887 (17)
C1—C11 1.5145 (16) C25—C30 1.3938 (16)
C2—C3 1.4061 (18) C26—C27 1.3839 (17)
C3—C4 1.358 (2) C26—H26 0.9500
C3—H3 0.9500 C27—C28 1.3847 (17)
C4—C5 1.4092 (19) C27—H27 0.9500
C4—H4 0.9500 C28—C29 1.3877 (18)
C5—C6 1.4045 (19) C29—C30 1.3738 (18)
C5—C10 1.4339 (16) C29—H29 0.9500
C6—C7 1.359 (2) C30—H30 0.9500
C6—H6 0.9500 C31—C32 1.3729 (19)
C7—C8 1.4070 (19) C31—C36 1.374 (2)
C7—H7 0.9500 C32—C33 1.385 (2)
C8—C9 1.3761 (17) C32—H32 0.9500
C9—C10 1.4323 (17) C33—C34 1.376 (2)
C9—C24 1.5139 (16) C33—H33 0.9500
C11—C12 1.4871 (16) C34—C35 1.377 (2)
C12—C13 1.3887 (17) C34—H34 0.9500
C12—C17 1.3952 (16) C35—C36 1.384 (2)
C13—C14 1.3838 (17) C35—H35 0.9500
C13—H13 0.9500 C36—H36 0.9500
C14—C15 1.3783 (18) C37—H37A 0.9800
C14—H14 0.9500 C37—H37B 0.9800
C15—C16 1.3873 (19) C37—H37C 0.9800
C16—C17 1.3792 (18) C38—H38A 0.9800
C16—H16 0.9500 C38—H38B 0.9800
C17—H17 0.9500 C38—H38C 0.9800
C18—C19 1.372 (2)
C2—O3—C37 118.15 (11) C21—C20—H20 119.6
C8—O4—C38 118.24 (12) C19—C20—H20 119.6
C18—O5—C15 120.22 (11) C20—C21—C22 119.42 (18)
C28—O6—C31 117.95 (10) C20—C21—H21 120.3
C2—C1—C10 119.93 (11) C22—C21—H21 120.3
C2—C1—C11 114.52 (11) C21—C22—C23 120.55 (16)
C10—C1—C11 125.54 (10) C21—C22—H22 119.7
O3—C2—C1 115.37 (11) C23—C22—H22 119.7
O3—C2—C3 122.61 (12) C22—C23—C18 119.11 (17)
C1—C2—C3 122.01 (12) C22—C23—H23 120.4
C4—C3—C2 118.77 (12) C18—C23—H23 120.4
C4—C3—H3 120.6 O2—C24—C25 120.76 (11)
C2—C3—H3 120.6 O2—C24—C9 120.79 (11)
C3—C4—C5 121.84 (12) C25—C24—C9 118.44 (10)
C3—C4—H4 119.1 C26—C25—C30 118.80 (11)
C5—C4—H4 119.1 C26—C25—C24 123.49 (10)
C6—C5—C4 120.53 (11) C30—C25—C24 117.70 (11)
C6—C5—C10 119.75 (12) C27—C26—C25 120.77 (11)
C4—C5—C10 119.71 (12) C27—C26—H26 119.6
C7—C6—C5 122.17 (12) C25—C26—H26 119.6
C7—C6—H6 118.9 C26—C27—C28 119.28 (12)
C5—C6—H6 118.9 C26—C27—H27 120.4
C6—C7—C8 118.68 (13) C28—C27—H27 120.4
C6—C7—H7 120.7 O6—C28—C27 123.30 (11)
C8—C7—H7 120.7 O6—C28—C29 115.86 (11)
O4—C8—C9 115.52 (11) C27—C28—C29 120.81 (11)
O4—C8—C7 122.74 (12) C30—C29—C28 119.26 (11)
C9—C8—C7 121.73 (12) C30—C29—H29 120.4
C8—C9—C10 120.43 (11) C28—C29—H29 120.4
C8—C9—C24 115.57 (11) C29—C30—C25 121.08 (12)
C10—C9—C24 124.00 (10) C29—C30—H30 119.5
C1—C10—C9 125.36 (10) C25—C30—H30 119.5
C1—C10—C5 117.62 (11) C32—C31—C36 122.03 (13)
C9—C10—C5 117.00 (11) C32—C31—O6 118.55 (13)
O1—C11—C12 121.75 (11) C36—C31—O6 119.34 (12)
O1—C11—C1 120.60 (11) C31—C32—C33 118.59 (14)
C12—C11—C1 117.59 (10) C31—C32—H32 120.7
C13—C12—C17 118.87 (11) C33—C32—H32 120.7
C13—C12—C11 121.50 (10) C34—C33—C32 120.34 (14)
C17—C12—C11 119.60 (11) C34—C33—H33 119.8
C14—C13—C12 120.57 (11) C32—C33—H33 119.8
C14—C13—H13 119.7 C35—C34—C33 120.08 (15)
C12—C13—H13 119.7 C35—C34—H34 120.0
C15—C14—C13 119.50 (12) C33—C34—H34 120.0
C15—C14—H14 120.2 C34—C35—C36 120.31 (14)
C13—C14—H14 120.2 C34—C35—H35 119.8
C14—C15—O5 116.51 (12) C36—C35—H35 119.8
C14—C15—C16 121.14 (12) C31—C36—C35 118.64 (13)
O5—C15—C16 122.21 (12) C31—C36—H36 120.7
C17—C16—C15 118.87 (12) C35—C36—H36 120.7
C17—C16—H16 120.6 O3—C37—H37A 109.5
C15—C16—H16 120.6 O3—C37—H37B 109.5
C16—C17—C12 121.04 (12) H37A—C37—H37B 109.5
C16—C17—H17 119.5 O3—C37—H37C 109.5
C12—C17—H17 119.5 H37A—C37—H37C 109.5
C19—C18—C23 121.03 (14) H37B—C37—H37C 109.5
C19—C18—O5 123.84 (12) O4—C38—H38A 109.5
C23—C18—O5 115.09 (13) O4—C38—H38B 109.5
C18—C19—C20 119.02 (16) H38A—C38—H38B 109.5
C18—C19—H19 120.5 O4—C38—H38C 109.5
C20—C19—H19 120.5 H38A—C38—H38C 109.5
C21—C20—C19 120.8 (2) H38B—C38—H38C 109.5
C37—O3—C2—C1 −178.33 (13) C18—O5—C15—C14 −123.87 (13)
C37—O3—C2—C3 1.6 (2) C18—O5—C15—C16 60.33 (18)
C10—C1—C2—O3 179.42 (11) C14—C15—C16—C17 0.9 (2)
C11—C1—C2—O3 −1.79 (16) O5—C15—C16—C17 176.54 (12)
C10—C1—C2—C3 −0.50 (19) C15—C16—C17—C12 −1.0 (2)
C11—C1—C2—C3 178.30 (12) C13—C12—C17—C16 0.78 (19)
O3—C2—C3—C4 178.22 (12) C11—C12—C17—C16 −177.51 (12)
C1—C2—C3—C4 −1.9 (2) C15—O5—C18—C19 8.8 (2)
C2—C3—C4—C5 1.3 (2) C15—O5—C18—C23 −173.45 (12)
C3—C4—C5—C6 −178.26 (13) C23—C18—C19—C20 2.4 (3)
C3—C4—C5—C10 1.5 (2) O5—C18—C19—C20 179.97 (17)
C4—C5—C6—C7 −177.53 (14) C18—C19—C20—C21 −1.7 (3)
C10—C5—C6—C7 2.7 (2) C19—C20—C21—C22 0.3 (4)
C5—C6—C7—C8 1.7 (2) C20—C21—C22—C23 0.3 (3)
C38—O4—C8—C9 164.34 (16) C21—C22—C23—C18 0.4 (3)
C38—O4—C8—C7 −17.1 (2) C19—C18—C23—C22 −1.7 (2)
C6—C7—C8—O4 177.86 (13) O5—C18—C23—C22 −179.52 (13)
C6—C7—C8—C9 −3.7 (2) C8—C9—C24—O2 98.63 (15)
O4—C8—C9—C10 179.63 (11) C10—C9—C24—O2 −82.66 (16)
C7—C8—C9—C10 1.0 (2) C8—C9—C24—C25 −80.37 (14)
O4—C8—C9—C24 −1.60 (17) C10—C9—C24—C25 98.34 (14)
C7—C8—C9—C24 179.81 (12) O2—C24—C25—C26 −172.30 (12)
C2—C1—C10—C9 −175.50 (12) C9—C24—C25—C26 6.70 (17)
C11—C1—C10—C9 5.84 (19) O2—C24—C25—C30 9.04 (18)
C2—C1—C10—C5 3.26 (17) C9—C24—C25—C30 −171.96 (11)
C11—C1—C10—C5 −175.39 (11) C30—C25—C26—C27 −1.23 (18)
C8—C9—C10—C1 −177.92 (12) C24—C25—C26—C27 −179.88 (11)
C24—C9—C10—C1 3.42 (19) C25—C26—C27—C28 0.25 (19)
C8—C9—C10—C5 3.31 (17) C31—O6—C28—C27 −22.47 (18)
C24—C9—C10—C5 −175.35 (11) C31—O6—C28—C29 159.22 (12)
C6—C5—C10—C1 176.01 (11) C26—C27—C28—O6 −177.55 (11)
C4—C5—C10—C1 −3.76 (17) C26—C27—C28—C29 0.68 (19)
C6—C5—C10—C9 −5.12 (17) O6—C28—C29—C30 177.76 (12)
C4—C5—C10—C9 175.10 (11) C27—C28—C29—C30 −0.6 (2)
C2—C1—C11—O1 −87.22 (15) C28—C29—C30—C25 −0.4 (2)
C10—C1—C11—O1 91.50 (16) C26—C25—C30—C29 1.33 (19)
C2—C1—C11—C12 90.10 (13) C24—C25—C30—C29 −179.95 (12)
C10—C1—C11—C12 −91.18 (14) C28—O6—C31—C32 107.42 (14)
O1—C11—C12—C13 −177.79 (11) C28—O6—C31—C36 −75.86 (15)
C1—C11—C12—C13 4.92 (16) C36—C31—C32—C33 0.7 (2)
O1—C11—C12—C17 0.44 (18) O6—C31—C32—C33 177.33 (13)
C1—C11—C12—C17 −176.85 (11) C31—C32—C33—C34 −0.7 (2)
C17—C12—C13—C14 −0.39 (18) C32—C33—C34—C35 0.4 (3)
C11—C12—C13—C14 177.86 (11) C33—C34—C35—C36 −0.1 (2)
C12—C13—C14—C15 0.28 (18) C32—C31—C36—C35 −0.4 (2)
C13—C14—C15—O5 −176.41 (11) O6—C31—C36—C35 −177.04 (12)
C13—C14—C15—C16 −0.6 (2) C34—C35—C36—C31 0.1 (2)

Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of ring A (C12–C17).
D—H···A D—H H···A D···A D—H···A
C3—H3···O2i 0.95 2.44 3.1479 (17) 131
C6—H6···O6ii 0.95 2.56 3.3293 (16) 138
C35—H35···Cg3iii 0.95 2.78 3.6528 (17) 153

Symmetry codes: (i) −x+3/2, y+1/2, −z+3/2; (ii) x−1/2, −y+1/2, z−1/2; (iii) −x+2, −y+1, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2217).

References

  1. Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst.38, 381–388.
  2. Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory. Tennessee, USA.
  3. Higashi, T. (1999). NUMABS Rigaku Corporation, Tokyo, Japan.
  4. Mitsui, R., Nagasawa, A., Noguchi, K., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o1790. [DOI] [PMC free article] [PubMed]
  5. Muto, T., Kato, Y., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2752. [DOI] [PMC free article] [PubMed]
  6. Nakaema, K., Okamoto, A., Noguchi, K. & Yonezawa, N. (2007). Acta Cryst. E63, o4120.
  7. Nakaema, K., Watanabe, S., Okamoto, A., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o807. [DOI] [PMC free article] [PubMed]
  8. Okamoto, A. & Yonezawa, N. (2009). Chem. Lett.38, 914–915.
  9. Rigaku (1998). PROCESS-AUTO Rigaku Corporation, Tokyo, Japan.
  10. Rigaku/MSC (2004). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Watanabe, S., Nagasawa, A., Okamoto, A., Noguchi, K. & Yonezawa, N. (2010b). Acta Cryst. E66, o329. [DOI] [PMC free article] [PubMed]
  13. Watanabe, S., Nakaema, K., Muto, T., Okamoto, A. & Yonezawa, N. (2010a). Acta Cryst. E66, o403. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810042170/su2217sup1.cif

e-66-o2902-sup1.cif (27.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810042170/su2217Isup2.hkl

e-66-o2902-Isup2.hkl (261.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES