Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Oct 30;66(Pt 11):o2979. doi: 10.1107/S1600536810043400

2-(2-Oxothio­lan-3-yl)isoindoline-1,3-dione

Abdul Rauf Raza a, Aisha Saddiqa a, M Nawaz Tahir b,*, Sadia Saddiq a
PMCID: PMC3009250  PMID: 21589145

Abstract

In the title compound, C12H9NO3S, the isoindoline-1,3-dione group is almost planar, with an r.m.s. deviation of 0.020 Å, whereas the heterocyclic ring approximates to an envelope with the methyl­ene group not adjacent to the S atom in the flap position. A short intra­molecular C—H⋯O contact generates an S(6) ring motif. In the crystal structure, weak aromatic π–π stacking inter­actions occur between the centroids of the benzene rings at a distance of 3.558 (2) Å.

Related literature

For background to isocoumarins, see: Hussain et al. (2001); Lee et al. (2001); Nozawa et al. (1981). For related crystal structures, see: Beck et al. (2007); Freer & Kraut (1965). For graph-set notation, see: Bernstein et al. (1995).graphic file with name e-66-o2979-scheme1.jpg

Experimental

Crystal data

  • C12H9NO3S

  • M r = 247.26

  • Monoclinic, Inline graphic

  • a = 8.0601 (13) Å

  • b = 6.9860 (11) Å

  • c = 19.709 (3) Å

  • β = 99.296 (9)°

  • V = 1095.2 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 296 K

  • 0.24 × 0.10 × 0.08 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.968, T max = 0.978

  • 14781 measured reflections

  • 1934 independent reflections

  • 1105 reflections with I > 2σ(I)

  • R int = 0.093

Refinement

  • R[F 2 > 2σ(F 2)] = 0.055

  • wR(F 2) = 0.151

  • S = 1.02

  • 1934 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.31 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810043400/hb5705sup1.cif

e-66-o2979-sup1.cif (16.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810043400/hb5705Isup2.hkl

e-66-o2979-Isup2.hkl (93.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10B⋯O1 0.97 2.52 3.149 (5) 122

Acknowledgments

The authors acknowledge the provision of funds for the purchase of the diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan.

supplementary crystallographic information

Comment

Isocoumarins are important class of naturally occurring compounds. Their structure is similar to coumarin but with inverted lactone ring. They exhibit a wide range of biological activities such as antimicrobial (Hussain et al., 2001), anti-fungal (Nozawa et al., 1981), anti-angiogenic (Lee et al., 2001). The title compound (I, Fig. 1) was obtained as an interesting side-product during the synthesis of isocoumarin.

The crystal structure of D,L-homocysteine thiolactone hydrochloride (Freer & Kraut, 1965) and (R*)-2-(4-Chlorophenyl)-N-(hept-4-yl)-2-((S*)-2- oxotetrahydrothiophen-3-ylamino)acetamide (Beck et al., 2007) have been reported which contain the heterocyclic ring.

The title compound essentially consists of monomers. In (I), the 2-benzoazole-1,3-dione group (C1–C8/N1/O1/O2) is planar with r.m.s. deviation of 0.0196 Å. The heterocyclic ring (C9/C10/C11/S1/C12) is not planar as the r.m.s. deviation of the plane is 0.1511 Å. The dihedral angle between these two groups is 88.05 (10)°. There exist weak intramolecular H-bondings of C—H···O type (Table 1, Fig. 1) completing S(5) and S(6) ring motifs (Bernstein et al., 1995). There exist π–π interaction between the centroids of benzene rings at a distance of 3.558 (2) Å [symmetry: 1 - x, - y, - z].

Experimental

Homophthallic acid (1.0 g, 5.5 mmol, 1 eq) was added to 4-(methylthio)-2-(1,3-dioxoisoindolin-2-yl)butanoyl chloride (6.5 g, 0.022 mol, 4 eq) and the mixture was heated at 473 K with continuous stirring for 6 h. The crude product was added to chilled water (20 ml), partitioned with EtOAc (3 × 25 ml), organic layer was dried over anhydrous Na2SO4, filtered and concentrated under reduced pressure. The column chromatographic separation using EtOAc and n-hexane (3:7) as mobile phase afforded the title compound (I) as colourless needles.

Refinement

The H atoms were positioned geometrically with C—H = 0.93–0.97 Å and were included in the refinement in the riding model approximation, with Uiso(H) = xUeq(C), where x = 1.2 for all H atoms.

Figures

Fig. 1.

Fig. 1.

View of (I) with displacement ellipsoids drawn at the 50% probability level.

Crystal data

C12H9NO3S F(000) = 512
Mr = 247.26 Dx = 1.500 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 1105 reflections
a = 8.0601 (13) Å θ = 2.1–25.0°
b = 6.9860 (11) Å µ = 0.29 mm1
c = 19.709 (3) Å T = 296 K
β = 99.296 (9)° Needle, colourless
V = 1095.2 (3) Å3 0.24 × 0.10 × 0.08 mm
Z = 4

Data collection

Bruker Kappa APEXII CCD diffractometer 1934 independent reflections
Radiation source: fine-focus sealed tube 1105 reflections with I > 2σ(I)
graphite Rint = 0.093
Detector resolution: 8.2 pixels mm-1 θmax = 25.0°, θmin = 2.1°
ω scans h = −9→9
Absorption correction: multi-scan (SADABS; Bruker, 2005) k = −8→8
Tmin = 0.968, Tmax = 0.978 l = −23→23
14781 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.151 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0651P)2 + 0.3208P] where P = (Fo2 + 2Fc2)/3
1934 reflections (Δ/σ)max < 0.001
154 parameters Δρmax = 0.40 e Å3
0 restraints Δρmin = −0.31 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 1.27260 (14) 0.17317 (15) 0.21281 (6) 0.0666 (4)
O1 1.0043 (4) 0.2417 (4) 0.01824 (15) 0.0690 (11)
O2 0.6135 (4) 0.3134 (4) 0.15927 (16) 0.0694 (11)
O3 1.0050 (3) −0.0304 (4) 0.16664 (14) 0.0619 (11)
N1 0.8391 (4) 0.2932 (4) 0.10189 (16) 0.0463 (11)
C1 0.8677 (5) 0.2558 (5) 0.0348 (2) 0.0496 (14)
C2 0.6994 (5) 0.2417 (5) −0.0077 (2) 0.0445 (14)
C3 0.6538 (6) 0.2073 (5) −0.0763 (2) 0.0600 (16)
C4 0.4821 (7) 0.1996 (6) −0.1015 (2) 0.0724 (19)
C5 0.3638 (6) 0.2223 (6) −0.0585 (3) 0.073 (2)
C6 0.4108 (5) 0.2546 (5) 0.0105 (3) 0.0580 (16)
C7 0.5801 (4) 0.2646 (5) 0.0350 (2) 0.0469 (14)
C8 0.6676 (5) 0.2926 (5) 0.1061 (2) 0.0486 (14)
C9 0.9686 (4) 0.3132 (5) 0.1613 (2) 0.0492 (12)
C10 1.0927 (5) 0.4715 (5) 0.1568 (2) 0.0537 (16)
C11 1.2487 (5) 0.4309 (5) 0.2093 (2) 0.0553 (16)
C12 1.0662 (5) 0.1259 (5) 0.17663 (18) 0.0444 (12)
H3 0.73362 0.18977 −0.10491 0.0718*
H4 0.44640 0.17879 −0.14821 0.0870*
H5 0.25006 0.21559 −0.07677 0.0880*
H6 0.33150 0.26915 0.03956 0.0696*
H9 0.91266 0.34070 0.20085 0.0591*
H10A 1.04437 0.59374 0.16649 0.0646*
H10B 1.12157 0.47652 0.11092 0.0646*
H11A 1.23521 0.48081 0.25402 0.0667*
H11B 1.34670 0.49028 0.19538 0.0667*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0529 (7) 0.0572 (7) 0.0828 (9) 0.0032 (5) −0.0094 (6) 0.0022 (6)
O1 0.0456 (18) 0.086 (2) 0.078 (2) −0.0061 (15) 0.0178 (16) −0.0142 (16)
O2 0.0619 (19) 0.075 (2) 0.076 (2) −0.0060 (16) 0.0255 (17) −0.0102 (16)
O3 0.0674 (19) 0.0400 (16) 0.078 (2) −0.0076 (14) 0.0106 (16) −0.0004 (14)
N1 0.0420 (19) 0.0466 (18) 0.049 (2) 0.0011 (14) 0.0038 (16) 0.0021 (15)
C1 0.040 (2) 0.042 (2) 0.067 (3) −0.0027 (18) 0.009 (2) 0.0031 (18)
C2 0.043 (2) 0.037 (2) 0.052 (3) −0.0082 (16) 0.003 (2) 0.0049 (17)
C3 0.069 (3) 0.051 (2) 0.058 (3) −0.013 (2) 0.004 (2) 0.009 (2)
C4 0.091 (4) 0.056 (3) 0.059 (3) −0.017 (3) −0.022 (3) 0.010 (2)
C5 0.054 (3) 0.044 (3) 0.111 (5) −0.006 (2) −0.019 (3) 0.018 (3)
C6 0.041 (2) 0.037 (2) 0.092 (4) −0.0023 (18) −0.001 (2) 0.004 (2)
C7 0.039 (2) 0.029 (2) 0.069 (3) −0.0025 (16) −0.002 (2) 0.0051 (17)
C8 0.042 (2) 0.038 (2) 0.068 (3) −0.0018 (17) 0.016 (2) 0.0010 (19)
C9 0.046 (2) 0.048 (2) 0.053 (2) −0.0043 (18) 0.006 (2) −0.0034 (19)
C10 0.061 (3) 0.041 (2) 0.058 (3) −0.005 (2) 0.006 (2) −0.0018 (18)
C11 0.056 (3) 0.053 (2) 0.056 (3) −0.007 (2) 0.006 (2) −0.009 (2)
C12 0.048 (2) 0.042 (2) 0.044 (2) −0.0006 (18) 0.0098 (19) 0.0016 (17)

Geometric parameters (Å, °)

S1—C11 1.811 (4) C6—C7 1.374 (6)
S1—C12 1.733 (4) C7—C8 1.477 (5)
O1—C1 1.202 (5) C9—C10 1.503 (5)
O2—C8 1.207 (5) C9—C12 1.532 (5)
O3—C12 1.201 (5) C10—C11 1.521 (6)
N1—C1 1.403 (5) C3—H3 0.9300
N1—C8 1.398 (5) C4—H4 0.9300
N1—C9 1.444 (5) C5—H5 0.9300
C1—C2 1.478 (6) C6—H6 0.9300
C2—C3 1.364 (5) C9—H9 0.9800
C2—C7 1.386 (5) C10—H10A 0.9700
C3—C4 1.394 (7) C10—H10B 0.9700
C4—C5 1.383 (7) C11—H11A 0.9700
C5—C6 1.370 (8) C11—H11B 0.9700
C11—S1—C12 94.86 (18) S1—C12—O3 125.6 (3)
C1—N1—C8 111.7 (3) S1—C12—C9 110.3 (2)
C1—N1—C9 125.1 (3) O3—C12—C9 124.1 (3)
C8—N1—C9 123.0 (3) C2—C3—H3 121.00
O1—C1—N1 124.6 (4) C4—C3—H3 122.00
O1—C1—C2 129.6 (4) C3—C4—H4 119.00
N1—C1—C2 105.7 (3) C5—C4—H4 119.00
C1—C2—C3 130.5 (4) C4—C5—H5 119.00
C1—C2—C7 108.2 (3) C6—C5—H5 119.00
C3—C2—C7 121.3 (4) C5—C6—H6 121.00
C2—C3—C4 116.9 (4) C7—C6—H6 121.00
C3—C4—C5 121.4 (4) N1—C9—H9 107.00
C4—C5—C6 121.3 (5) C10—C9—H9 107.00
C5—C6—C7 117.2 (4) C12—C9—H9 107.00
C2—C7—C6 121.9 (4) C9—C10—H10A 110.00
C2—C7—C8 108.7 (3) C9—C10—H10B 110.00
C6—C7—C8 129.5 (4) C11—C10—H10A 110.00
O2—C8—N1 123.4 (4) C11—C10—H10B 110.00
O2—C8—C7 131.0 (4) H10A—C10—H10B 108.00
N1—C8—C7 105.6 (3) S1—C11—H11A 110.00
N1—C9—C10 115.1 (3) S1—C11—H11B 110.00
N1—C9—C12 111.0 (3) C10—C11—H11A 110.00
C10—C9—C12 108.3 (3) C10—C11—H11B 110.00
C9—C10—C11 107.9 (3) H11A—C11—H11B 109.00
S1—C11—C10 106.4 (2)
C12—S1—C11—C10 −19.3 (3) C1—C2—C7—C6 −178.6 (3)
C11—S1—C12—O3 −178.8 (4) C1—C2—C7—C8 −0.4 (4)
C11—S1—C12—C9 −0.9 (3) C3—C2—C7—C6 −0.3 (6)
C8—N1—C1—O1 −177.2 (3) C3—C2—C7—C8 178.0 (3)
C8—N1—C1—C2 3.5 (4) C2—C3—C4—C5 −1.2 (6)
C9—N1—C1—O1 −2.4 (6) C3—C4—C5—C6 0.5 (6)
C9—N1—C1—C2 178.3 (3) C4—C5—C6—C7 0.4 (6)
C1—N1—C8—O2 176.8 (3) C5—C6—C7—C2 −0.5 (5)
C1—N1—C8—C7 −3.8 (4) C5—C6—C7—C8 −178.3 (4)
C9—N1—C8—O2 1.9 (5) C2—C7—C8—O2 −178.1 (4)
C9—N1—C8—C7 −178.7 (3) C2—C7—C8—N1 2.5 (4)
C1—N1—C9—C10 59.6 (4) C6—C7—C8—O2 −0.1 (7)
C1—N1—C9—C12 −63.9 (4) C6—C7—C8—N1 −179.5 (4)
C8—N1—C9—C10 −126.2 (3) N1—C9—C10—C11 −160.7 (3)
C8—N1—C9—C12 110.3 (4) C12—C9—C10—C11 −35.8 (4)
O1—C1—C2—C3 0.8 (7) N1—C9—C12—S1 148.7 (2)
O1—C1—C2—C7 178.9 (4) N1—C9—C12—O3 −33.4 (5)
N1—C1—C2—C3 −180.0 (4) C10—C9—C12—S1 21.4 (4)
N1—C1—C2—C7 −1.8 (4) C10—C9—C12—O3 −160.7 (4)
C1—C2—C3—C4 179.0 (4) C9—C10—C11—S1 34.4 (4)
C7—C2—C3—C4 1.1 (5)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C10—H10B···O1 0.97 2.52 3.149 (5) 122

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5705).

References

  1. Beck, B., Srivastava, S. & Dömling, A. (2007). Heterocycles, 73, 177–182.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555-1573.
  3. Bruker (2005). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Bruker (2009). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  6. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  7. Freer, S. T. & Kraut, J. (1965). Acta Cryst.19, 992–1002. [DOI] [PubMed]
  8. Hussain, M. T., Rama, N. H. & Malik, A. (2001). Indian J. Chem. Sect. B, 40, 372–376.
  9. Lee, J. H., Park, Y. J., Kim, H. S., Hong, Y. S., Kim, K.-W. & Lee, J. J. (2001). J. Antibiot.54, 463–466. [DOI] [PubMed]
  10. Nozawa, K., Yamada, M., Tsuda, Y., Kawai, K. & Nakajima, S. (1981). Chem. Pharm. Bull.29, 2689–2691. [DOI] [PubMed]
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810043400/hb5705sup1.cif

e-66-o2979-sup1.cif (16.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810043400/hb5705Isup2.hkl

e-66-o2979-Isup2.hkl (93.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES