Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Oct 31;66(Pt 11):o3022–o3023. doi: 10.1107/S1600536810043837

3-[(E)-3-(2,4-Dichloro­phen­yl)prop-2-en­oyl]-4-hy­droxy-2H-chromen-2-one

Mohammad Asad a, Chuan-Wei Oo a,, Hasnah Osman a, Ching Kheng Quah b,§, Hoong-Kun Fun b,*,
PMCID: PMC3009251  PMID: 21589179

Abstract

In the title compound, C18H10Cl2O4, the chromen-2-one ring system is almost planar [maximum deviation = 0.028 (1) Å] and is inclined at an angle of 16.35 (4)° with respect to the benzene ring. The C=C bond has an E configuration. The mol­ecular conformation is stabilized by an almost symmetric intra­molecular O⋯H⋯O hydrogen bond and a C—H⋯O inter­action, both of which form S(6) ring motifs. In the crystal structure, mol­ecules are linked into sheets lying parallel to (100) via inter­molecular C—H⋯O hydrogen bonds. The crystal packing is further consolidated by π–π stacking inter­actions [centroid-to-centroid separation = 3.6615 (6) Å].

Related literature

For general background to and the biological activity of chalcones, see: Claisen et al. (1881); Siddiqui et al. (2008); Harborne & Mabry (1982); Bandgar et al. (2010). For related structures, see: Arshad et al. (2010); Asad et al. (2010). For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).graphic file with name e-66-o3022-scheme1.jpg

Experimental

Crystal data

  • C18H10Cl2O4

  • M r = 361.16

  • Monoclinic, Inline graphic

  • a = 4.5233 (2) Å

  • b = 21.2099 (9) Å

  • c = 15.6304 (7) Å

  • β = 91.607 (1)°

  • V = 1498.97 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.45 mm−1

  • T = 100 K

  • 0.35 × 0.15 × 0.09 mm

Data collection

  • Bruker SMART APEXII DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.857, T max = 0.959

  • 25117 measured reflections

  • 6698 independent reflections

  • 5270 reflections with I > 2σ(I)

  • R int = 0.033

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036

  • wR(F 2) = 0.101

  • S = 1.05

  • 6698 reflections

  • 222 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.34 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810043837/hb5700sup1.cif

e-66-o3022-sup1.cif (19.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810043837/hb5700Isup2.hkl

e-66-o3022-Isup2.hkl (327.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H1O⋯O4 1.27 (2) 1.17 (2) 2.3947 (11) 156 (2)
C11—H11A⋯O2 0.93 2.29 2.8704 (12) 120
C4—H4A⋯O4i 0.93 2.45 3.2514 (13) 144
C17—H17A⋯O1ii 0.93 2.54 3.3966 (13) 154

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors are grateful to Universiti Sains Malaysia (USM) for providing the necessary research facilities and RU research funding under grant No. 1001/PKIMIA/811134. HKF and CKQ thank USM for Research University Grant No. 1001/PFIZIK/811160. MA thanks USM for the award of a postdoctoral fellowship. CKQ thanks USM for the award of a USM fellowship.

supplementary crystallographic information

Comment

Chalcones are generally prepared from aldehydes and methyl ketones under basic conditions by applying the Claisen–Schmidt condensation (Claisen et al., 1881; Siddiqui et al., 2008). A large number of chalcones and their derivatives are found in natural and synthetic products and are also biogenetically precursors of known flavonoids, isoflavonoids (Harborne & Mabry, 1982) which exhibited a potential variety of biological activities (Bandgar et al., 2010).

In the title molecule, (I), (Fig. 1), the chromen-2-one (O1/C1–C9) ring system is nearly planar (maximum deviation = 0.028 (1) Å for atom C1) and is inclined at an angle of 16.35 (4) ° with the phenyl ring (C13–C18). The C11═C12 bond has an E configuration. The molecule is stabilized by intramolecular O3—H1O···O4 and C11—H11A···O2 hydrogen bonds, which form S(6) ring motifs (Bernstein et al., 1995). Bond lengths (Allen et al., 1987) and angles are within normal ranges and comparable with the related structures (Arshad et al., 2010; Asad et al., 2010).

In the crystal packing (Fig. 2), the molecules are linked into two-dimensional sheets parallel to (100) via intermolecular C4—H4A···O4 and C17—H17A···O1 hydrogen bonds (Table 1). Short intermolecular distances [3.6615 (6) Å] between symmetry-related O1/C1/C2/C7–C9 (centroid Cg1) and C2–C7 (centroid Cg2) rings [symmetry code: -1+x, y, z] indicate the existence of π–π stacking interactions.

Experimental

To a stirred solution of 3-acetyl-4-hydroxycoumarin (0.98 mmol, 200 mg) in ethyl alcohol (10 ml), 2,4-dichlorobenzaldehyde (0.98 mmol, 171 mg) was added in the presence of one drop of piperidine. The mixture was refluxed on water bath for 14 h. After cooling at room temperature, a yellow solid was obtained, filtered, washed with ethanol–water, dried and recrystallized from chloroform as shining yellow needles of (I) in 70% yield.

Refinement

H1O was located in a difference Fourier map and allowed to refined freely. The remaining H atoms were positioned geometrically and refined using a riding model with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). The highest residual electron density peak is located at 0.64 Å from C12 and the deepest hole is located at 1.13 Å from Cl2.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound showing 50% probability displacement ellipsoids for non-H atoms. Intramolecular interactions are shown in dashed lines.

Fig. 2.

Fig. 2.

The crystal structure of the title compound, viewed along the a axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity.

Crystal data

C18H10Cl2O4 F(000) = 736
Mr = 361.16 Dx = 1.600 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 9100 reflections
a = 4.5233 (2) Å θ = 2.3–35.1°
b = 21.2099 (9) Å µ = 0.45 mm1
c = 15.6304 (7) Å T = 100 K
β = 91.607 (1)° Needle, yellow
V = 1498.97 (11) Å3 0.35 × 0.15 × 0.09 mm
Z = 4

Data collection

Bruker SMART APEXII DUO CCD diffractometer 6698 independent reflections
Radiation source: fine-focus sealed tube 5270 reflections with I > 2σ(I)
graphite Rint = 0.033
φ and ω scans θmax = 35.3°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −7→7
Tmin = 0.857, Tmax = 0.959 k = −27→34
25117 measured reflections l = −25→22

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101 H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0509P)2 + 0.2749P] where P = (Fo2 + 2Fc2)/3
6698 reflections (Δ/σ)max = 0.001
222 parameters Δρmax = 0.54 e Å3
0 restraints Δρmin = −0.34 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 −0.68600 (6) 0.640460 (12) 0.153533 (17) 0.02236 (7)
Cl2 −0.07973 (6) 0.434153 (13) 0.069793 (16) 0.02180 (7)
O1 0.69790 (16) 0.35450 (4) 0.57063 (5) 0.01808 (14)
O2 0.37593 (19) 0.41872 (4) 0.51001 (5) 0.02516 (17)
O3 0.96509 (16) 0.28446 (4) 0.34161 (5) 0.01797 (14)
O4 0.63677 (16) 0.35486 (4) 0.26596 (5) 0.01701 (14)
C1 0.5646 (2) 0.37989 (5) 0.49758 (6) 0.01664 (17)
C2 0.9014 (2) 0.30666 (5) 0.56843 (6) 0.01535 (17)
C3 1.0072 (2) 0.28411 (5) 0.64694 (7) 0.01883 (18)
H3A 0.9402 0.3009 0.6978 0.023*
C4 1.2149 (2) 0.23600 (5) 0.64775 (7) 0.02067 (19)
H4A 1.2889 0.2207 0.6998 0.025*
C5 1.3149 (2) 0.21011 (5) 0.57151 (7) 0.02046 (19)
H5A 1.4544 0.1779 0.5731 0.025*
C6 1.2059 (2) 0.23256 (5) 0.49397 (7) 0.01786 (18)
H6A 1.2708 0.2153 0.4431 0.021*
C7 0.9967 (2) 0.28162 (5) 0.49195 (6) 0.01467 (16)
C8 0.87645 (19) 0.30746 (4) 0.41294 (6) 0.01417 (16)
C9 0.6643 (2) 0.35648 (4) 0.41544 (6) 0.01407 (16)
C10 0.54393 (19) 0.37953 (5) 0.33533 (6) 0.01447 (16)
C11 0.3233 (2) 0.42963 (5) 0.32717 (6) 0.01642 (17)
H11A 0.2750 0.4541 0.3742 0.020*
C12 0.1915 (2) 0.43961 (5) 0.25011 (6) 0.01545 (17)
H12A 0.2476 0.4133 0.2058 0.019*
C13 −0.0299 (2) 0.48736 (5) 0.22909 (6) 0.01444 (16)
C14 −0.1625 (2) 0.49008 (5) 0.14673 (6) 0.01522 (16)
C15 −0.3651 (2) 0.53657 (5) 0.12291 (6) 0.01714 (17)
H15A −0.4475 0.5379 0.0677 0.021*
C16 −0.4410 (2) 0.58096 (5) 0.18364 (7) 0.01636 (17)
C17 −0.3254 (2) 0.57894 (5) 0.26670 (7) 0.01765 (17)
H17A −0.3843 0.6082 0.3072 0.021*
C18 −0.1210 (2) 0.53266 (5) 0.28840 (6) 0.01714 (17)
H18A −0.0415 0.5315 0.3439 0.021*
H1O 0.812 (5) 0.3171 (11) 0.2882 (15) 0.077 (7)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.02114 (11) 0.01919 (12) 0.02702 (13) 0.00611 (8) 0.00565 (9) 0.00516 (9)
Cl2 0.02795 (12) 0.02120 (13) 0.01605 (11) 0.00727 (9) −0.00287 (8) −0.00406 (9)
O1 0.0216 (3) 0.0197 (4) 0.0130 (3) 0.0062 (3) 0.0009 (2) 0.0002 (3)
O2 0.0307 (4) 0.0272 (4) 0.0177 (4) 0.0140 (3) 0.0026 (3) 0.0002 (3)
O3 0.0201 (3) 0.0190 (3) 0.0149 (3) 0.0025 (3) 0.0016 (2) −0.0027 (3)
O4 0.0179 (3) 0.0202 (4) 0.0130 (3) 0.0002 (2) −0.0004 (2) −0.0016 (3)
C1 0.0194 (4) 0.0166 (4) 0.0139 (4) 0.0014 (3) 0.0001 (3) 0.0004 (3)
C2 0.0154 (4) 0.0149 (4) 0.0157 (4) 0.0007 (3) 0.0009 (3) 0.0016 (3)
C3 0.0196 (4) 0.0212 (5) 0.0157 (4) 0.0006 (3) 0.0005 (3) 0.0030 (4)
C4 0.0194 (4) 0.0220 (5) 0.0204 (5) 0.0004 (4) −0.0016 (3) 0.0068 (4)
C5 0.0181 (4) 0.0179 (5) 0.0254 (5) 0.0025 (3) 0.0000 (3) 0.0038 (4)
C6 0.0169 (4) 0.0161 (4) 0.0206 (4) 0.0007 (3) 0.0016 (3) −0.0001 (4)
C7 0.0150 (4) 0.0137 (4) 0.0154 (4) −0.0010 (3) 0.0009 (3) 0.0007 (3)
C8 0.0140 (4) 0.0140 (4) 0.0146 (4) −0.0021 (3) 0.0009 (3) −0.0007 (3)
C9 0.0147 (4) 0.0150 (4) 0.0125 (4) −0.0001 (3) 0.0004 (3) 0.0002 (3)
C10 0.0135 (4) 0.0147 (4) 0.0152 (4) −0.0027 (3) −0.0004 (3) 0.0000 (3)
C11 0.0164 (4) 0.0167 (4) 0.0161 (4) 0.0000 (3) −0.0008 (3) 0.0006 (3)
C12 0.0148 (4) 0.0158 (4) 0.0156 (4) −0.0012 (3) −0.0005 (3) 0.0006 (3)
C13 0.0146 (4) 0.0150 (4) 0.0138 (4) −0.0014 (3) 0.0004 (3) 0.0010 (3)
C14 0.0165 (4) 0.0156 (4) 0.0135 (4) 0.0001 (3) 0.0008 (3) −0.0009 (3)
C15 0.0173 (4) 0.0181 (5) 0.0160 (4) 0.0013 (3) −0.0001 (3) 0.0008 (3)
C16 0.0148 (4) 0.0145 (4) 0.0200 (4) 0.0007 (3) 0.0037 (3) 0.0021 (3)
C17 0.0187 (4) 0.0164 (4) 0.0179 (4) −0.0005 (3) 0.0035 (3) −0.0017 (3)
C18 0.0179 (4) 0.0181 (4) 0.0154 (4) −0.0013 (3) 0.0004 (3) −0.0012 (3)

Geometric parameters (Å, °)

Cl1—C16 1.7358 (10) C6—H6A 0.9300
Cl2—C14 1.7376 (10) C7—C8 1.4436 (13)
O1—C2 1.3711 (12) C8—C9 1.4162 (13)
O1—C1 1.3851 (12) C9—C10 1.4371 (13)
O2—C1 1.2059 (12) C10—C11 1.4610 (13)
O3—C8 1.2910 (11) C11—C12 1.3457 (13)
O3—H1O 1.27 (2) C11—H11A 0.9300
O4—C10 1.2851 (12) C12—C13 1.4554 (13)
O4—H1O 1.17 (2) C12—H12A 0.9300
C1—C9 1.4595 (13) C13—C18 1.4050 (14)
C2—C7 1.3877 (14) C13—C14 1.4061 (13)
C2—C3 1.3895 (14) C14—C15 1.3896 (13)
C3—C4 1.3869 (15) C15—C16 1.3870 (14)
C3—H3A 0.9300 C15—H15A 0.9300
C4—C5 1.3988 (16) C16—C17 1.3867 (14)
C4—H4A 0.9300 C17—C18 1.3841 (14)
C5—C6 1.3804 (15) C17—H17A 0.9300
C5—H5A 0.9300 C18—H18A 0.9300
C6—C7 1.4062 (13)
C2—O1—C1 122.95 (8) C10—C9—C1 122.14 (8)
C8—O3—H1O 100.6 (11) O4—C10—C9 118.16 (9)
C10—O4—H1O 105.2 (12) O4—C10—C11 117.46 (8)
O2—C1—O1 115.24 (9) C9—C10—C11 124.38 (9)
O2—C1—C9 127.70 (9) C12—C11—C10 118.48 (9)
O1—C1—C9 117.06 (8) C12—C11—H11A 120.8
O1—C2—C7 122.00 (8) C10—C11—H11A 120.8
O1—C2—C3 116.57 (9) C11—C12—C13 126.60 (9)
C7—C2—C3 121.43 (9) C11—C12—H12A 116.7
C4—C3—C2 118.53 (10) C13—C12—H12A 116.7
C4—C3—H3A 120.7 C18—C13—C14 116.78 (9)
C2—C3—H3A 120.7 C18—C13—C12 122.66 (8)
C3—C4—C5 121.09 (9) C14—C13—C12 120.56 (9)
C3—C4—H4A 119.5 C15—C14—C13 122.39 (9)
C5—C4—H4A 119.5 C15—C14—Cl2 116.89 (7)
C6—C5—C4 119.76 (9) C13—C14—Cl2 120.72 (7)
C6—C5—H5A 120.1 C16—C15—C14 118.18 (9)
C4—C5—H5A 120.1 C16—C15—H15A 120.9
C5—C6—C7 119.91 (9) C14—C15—H15A 120.9
C5—C6—H6A 120.0 C17—C16—C15 121.71 (9)
C7—C6—H6A 120.0 C17—C16—Cl1 119.83 (8)
C2—C7—C6 119.27 (9) C15—C16—Cl1 118.46 (8)
C2—C7—C8 118.22 (8) C18—C17—C16 118.89 (9)
C6—C7—C8 122.51 (9) C18—C17—H17A 120.6
O3—C8—C9 121.89 (9) C16—C17—H17A 120.6
O3—C8—C7 118.46 (8) C17—C18—C13 121.97 (9)
C9—C8—C7 119.64 (8) C17—C18—H18A 119.0
C8—C9—C10 117.78 (8) C13—C18—H18A 119.0
C8—C9—C1 120.01 (8)
C2—O1—C1—O2 175.23 (9) O2—C1—C9—C10 1.19 (16)
C2—O1—C1—C9 −4.08 (14) O1—C1—C9—C10 −179.59 (8)
C1—O1—C2—C7 2.35 (14) C8—C9—C10—O4 −0.56 (13)
C1—O1—C2—C3 −177.35 (9) C1—C9—C10—O4 −177.65 (9)
O1—C2—C3—C4 −179.58 (9) C8—C9—C10—C11 179.82 (9)
C7—C2—C3—C4 0.72 (15) C1—C9—C10—C11 2.74 (14)
C2—C3—C4—C5 −0.55 (16) O4—C10—C11—C12 11.55 (13)
C3—C4—C5—C6 −0.03 (16) C9—C10—C11—C12 −168.83 (9)
C4—C5—C6—C7 0.47 (15) C10—C11—C12—C13 −179.31 (9)
O1—C2—C7—C6 −179.98 (9) C11—C12—C13—C18 4.13 (15)
C3—C2—C7—C6 −0.30 (15) C11—C12—C13—C14 −176.17 (9)
O1—C2—C7—C8 0.23 (14) C18—C13—C14—C15 2.61 (14)
C3—C2—C7—C8 179.92 (9) C12—C13—C14—C15 −177.10 (9)
C5—C6—C7—C2 −0.31 (14) C18—C13—C14—Cl2 −176.94 (7)
C5—C6—C7—C8 179.47 (9) C12—C13—C14—Cl2 3.35 (13)
C2—C7—C8—O3 179.79 (9) C13—C14—C15—C16 −1.12 (14)
C6—C7—C8—O3 0.01 (14) Cl2—C14—C15—C16 178.44 (7)
C2—C7—C8—C9 −0.80 (13) C14—C15—C16—C17 −1.44 (14)
C6—C7—C8—C9 179.43 (9) C14—C15—C16—Cl1 178.24 (7)
O3—C8—C9—C10 1.20 (13) C15—C16—C17—C18 2.35 (15)
C7—C8—C9—C10 −178.19 (8) Cl1—C16—C17—C18 −177.32 (8)
O3—C8—C9—C1 178.35 (9) C16—C17—C18—C13 −0.73 (15)
C7—C8—C9—C1 −1.04 (13) C14—C13—C18—C17 −1.66 (14)
O2—C1—C9—C8 −175.83 (10) C12—C13—C18—C17 178.05 (9)
O1—C1—C9—C8 3.39 (13)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O3—H1O···O4 1.27 (2) 1.17 (2) 2.3947 (11) 156 (2)
C11—H11A···O2 0.93 2.29 2.8704 (12) 120
C4—H4A···O4i 0.93 2.45 3.2514 (13) 144
C17—H17A···O1ii 0.93 2.54 3.3966 (13) 154

Symmetry codes: (i) x+1, −y+1/2, z+1/2; (ii) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5700).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Arshad, A., Osman, H., Lam, C. K., Quah, C. K. & Fun, H.-K. (2010). Acta Cryst. E66, o1446–o1447. [DOI] [PMC free article] [PubMed]
  3. Asad, M., Oo, C.-W., Osman, H., Quah, C. K. & Fun, H.-K. (2010). Acta Cryst. E66, o2491–o2492. [DOI] [PMC free article] [PubMed]
  4. Bandgar, B. P., Gawande, S. S., Bodade, R. G., Totre, J. V. & Khobragade, C. N. (2010). Bioorg. Med. Chem.18, 1364–1370. [DOI] [PubMed]
  5. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  6. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  7. Claisen, L., Claparede, A. & Schmidt, J. G. (1881). Berichte, 14, 2460, 1459.
  8. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  9. Harborne, J. B. & Mabry, T. J. (1982). The Flavonoids: Advances in Research, pp. 313–416. London: Chapman and Hall.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Siddiqui, Z. N., Asad, M. & Praveen, S. (2008). Med. Chem. Res.17, 318–325.
  12. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810043837/hb5700sup1.cif

e-66-o3022-sup1.cif (19.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810043837/hb5700Isup2.hkl

e-66-o3022-Isup2.hkl (327.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES