Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Oct 30;66(Pt 11):o2960. doi: 10.1107/S1600536810042790

5-Bromo-2-(4-chloro­phen­yl)-3-ethyl­sulfinyl-7-methyl-1-benzofuran

Hong Dae Choi a, Pil Ja Seo a, Byeng Wha Son b, Uk Lee b,*
PMCID: PMC3009263  PMID: 21589128

Abstract

In the title compound, C17H14BrClO2S, the 4-chloro­phenyl ring makes a dihedral angle of 13.42 (4)° with the mean plane of the benzofuran ring. In the crystal, pairs of inter­molecular Br⋯O contacts [3.125 (1) Å] link the mol­ecules into centrosymmetric dimers, which are further linked via inter­molecular C—H⋯O hydrogen bonds.

Related literature

For the pharmacological activity of benzofuran compounds, see: Aslam et al. (2006); Galal et al. (2009); Khan et al. (2005). For natural products with benzofuran rings, see: Akgul & Anil (2003); Soekamto et al. (2003). For our previous structural studies of related 3-ethyl­sulfinyl-5-halo-2-(4-halophen­yl)-7-methyl-1-benzofuran derivatives, see: Choi et al. (2010a,b,c,d ). For a review of halogen bonding, see: Politzer et al. (2007).graphic file with name e-66-o2960-scheme1.jpg

Experimental

Crystal data

  • C17H14BrClO2S

  • M r = 397.70

  • Triclinic, Inline graphic

  • a = 7.3159 (1) Å

  • b = 10.3502 (2) Å

  • c = 11.8936 (2) Å

  • α = 68.690 (1)°

  • β = 89.223 (1)°

  • γ = 70.941 (1)°

  • V = 787.36 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.92 mm−1

  • T = 179 K

  • 0.29 × 0.28 × 0.25 mm

Data collection

  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.485, T max = 0.524

  • 14107 measured reflections

  • 3657 independent reflections

  • 3342 reflections with I > 2σ(I)

  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.025

  • wR(F 2) = 0.066

  • S = 1.08

  • 3657 reflections

  • 201 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.44 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810042790/rz2506sup1.cif

e-66-o2960-sup1.cif (19.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810042790/rz2506Isup2.hkl

e-66-o2960-Isup2.hkl (179.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17B⋯O2i 0.98 2.62 3.488 (2) 148

Symmetry code: (i) Inline graphic.

Acknowledgments

This work was supported by Blue-Bio Industry RIC at Dongeui University as an RIC programme under the Ministry of Knowledge Economy and Busan city.

supplementary crystallographic information

Comment

Many compounds involving a benzofuran ring have received particular attention in view of their potent pharmacological properties such as antifungal, antitumor and antiviral, antimicrobial activities (Aslam et al., 2006, Galal et al., 2009, Khan et al., 2005). These compounds widely occur in nature (Akgul & Anil, 2003; Soekamto et al., 2003). As a part of our continuing studies of the substituent effect on the solid state structures of 3-ethylsulfinyl-5-halo-2-(4-halophenyl)-7-methyl-1-benzofuran analogues (Choi et al., 2010a,b,c,d), we report herein on the crystal structure of the title compound.

In the title molecule (Fig. 1), the benzofuran unit is essentially planar, with a mean deviation of 0.019 (1) Å from the least-squares plane defined by the nine constituent atoms. The dihedral angle formed by the mean plane of the benzofuran ring and the 4-chlorophenyl ring is 13.42 (4)° . The molecular packing (Fig. 2) is stabilized by a Br···O halogen-bonding between the bromine and the oxygen of the S═O unit [Br···O2ii = 3.125 (1) Å, C4—Br···O2ii = 167.44 (6)° .] (Politzer et al., 2007). The crystal packing (Fig. 2) is further stabilized by a weak intermolecular C—H···O hydrogen bond between the methyl H atom of the ethyl group and the S═O unit (C17—H17B···O2i; Table 1).

Experimental

77% 3-chloroperoxybenzoic acid (179 mg, 0.8 mmol) was added in small portions to a stirred solution of 5-bromo-2-(4-chlorophenyl)-3-ethylsulfanyl-7-methyl-1-benzofuran (318 mg, 0.8 mmol) in dichloromethane (40 mL) at 273 K. After being stirred at room temperature for 3h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (hexane-ethyl acetate, 2:1 v/v) to afford the title compound as a colorless solid [yield 79%, m.p. 443–444 K, Rf = 0.63 (hexane–ethyl acetate, 2:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in tetrahydrofuran at room temperature.

Refinement

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å for aryl, 0.97 Å for methylene, and 0.96 Å for methyl H atoms. Uiso(H) = 1.2Ueq(C) for aryl and methylene H atoms, and 1.5Ueq(C) for methyl H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.

Fig. 2.

Fig. 2.

A view of the Br···O and C—H···O interactions (dashed lines) in the crystal structure of the title compound. [Symmetry codes: (i) x - 1, y, z; (ii) - x +2, - y + 1, - z + 2; (iii) x + 1, y, z.]

Crystal data

C17H14BrClO2S Z = 2
Mr = 397.70 F(000) = 400
Triclinic, P1 Dx = 1.677 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.3159 (1) Å Cell parameters from 8401 reflections
b = 10.3502 (2) Å θ = 2.3–27.6°
c = 11.8936 (2) Å µ = 2.92 mm1
α = 68.690 (1)° T = 179 K
β = 89.223 (1)° Block, colourless
γ = 70.941 (1)° 0.29 × 0.28 × 0.25 mm
V = 787.36 (2) Å3

Data collection

Bruker SMART APEXII CCD diffractometer 3657 independent reflections
Radiation source: rotating anode 3342 reflections with I > 2σ(I)
graphite multilayer Rint = 0.028
Detector resolution: 10.0 pixels mm-1 θmax = 27.6°, θmin = 1.9°
φ and ω scans h = −9→9
Absorption correction: multi-scan (SADABS; Bruker, 2009) k = −13→13
Tmin = 0.485, Tmax = 0.524 l = −15→15
14107 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025 Hydrogen site location: difference Fourier map
wR(F2) = 0.066 H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0362P)2 + 0.2277P] where P = (Fo2 + 2Fc2)/3
3657 reflections (Δ/σ)max = 0.001
201 parameters Δρmax = 0.44 e Å3
0 restraints Δρmin = −0.44 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br 0.99643 (3) 0.279456 (19) 1.076951 (15) 0.03226 (7)
Cl 0.44218 (8) 0.83326 (6) −0.02326 (4) 0.04120 (13)
S 0.64454 (6) 0.80596 (4) 0.58771 (4) 0.02307 (10)
O1 0.80545 (16) 0.41969 (12) 0.55116 (10) 0.0217 (2)
O2 0.8019 (2) 0.81168 (15) 0.66239 (13) 0.0357 (3)
C1 0.7086 (2) 0.62059 (16) 0.60048 (14) 0.0203 (3)
C2 0.7957 (2) 0.49198 (17) 0.71094 (15) 0.0207 (3)
C3 0.8333 (2) 0.46726 (18) 0.83324 (15) 0.0232 (3)
H3 0.7941 0.5455 0.8620 0.028*
C4 0.9307 (2) 0.32235 (19) 0.91027 (15) 0.0243 (3)
C5 0.9924 (2) 0.20505 (18) 0.87039 (16) 0.0249 (3)
H5 1.0605 0.1081 0.9273 0.030*
C6 0.9561 (2) 0.22752 (17) 0.74956 (15) 0.0225 (3)
C7 0.8541 (2) 0.37343 (17) 0.67424 (14) 0.0202 (3)
C8 0.7168 (2) 0.57118 (16) 0.50771 (15) 0.0206 (3)
C9 1.0223 (3) 0.10666 (18) 0.70187 (17) 0.0289 (4)
H9A 1.1085 0.0162 0.7657 0.043*
H9B 1.0930 0.1359 0.6318 0.043*
H9C 0.9089 0.0886 0.6769 0.043*
C10 0.6517 (2) 0.63921 (17) 0.37745 (15) 0.0211 (3)
C11 0.5182 (2) 0.78327 (18) 0.32282 (16) 0.0253 (3)
H11 0.4701 0.8401 0.3710 0.030*
C12 0.4555 (2) 0.84388 (19) 0.19966 (16) 0.0280 (4)
H12 0.3666 0.9422 0.1628 0.034*
C13 0.5241 (3) 0.7592 (2) 0.13105 (15) 0.0277 (4)
C14 0.6558 (3) 0.6165 (2) 0.18176 (16) 0.0282 (4)
H14 0.7013 0.5602 0.1329 0.034*
C15 0.7202 (2) 0.55713 (18) 0.30474 (15) 0.0251 (3)
H15 0.8118 0.4596 0.3403 0.030*
C16 0.4362 (3) 0.81428 (19) 0.67208 (17) 0.0283 (4)
H16A 0.4677 0.7232 0.7463 0.034*
H16B 0.4054 0.8995 0.6974 0.034*
C17 0.2605 (3) 0.8300 (2) 0.59514 (19) 0.0319 (4)
H17A 0.2222 0.9245 0.5255 0.048*
H17B 0.1522 0.8268 0.6442 0.048*
H17C 0.2936 0.7489 0.5660 0.048*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br 0.04398 (12) 0.02976 (11) 0.02033 (10) −0.01382 (8) −0.00429 (7) −0.00526 (7)
Cl 0.0456 (3) 0.0526 (3) 0.0191 (2) −0.0187 (2) −0.00070 (18) −0.0048 (2)
S 0.02667 (19) 0.01856 (18) 0.0238 (2) −0.00802 (15) 0.00110 (15) −0.00753 (15)
O1 0.0249 (5) 0.0178 (5) 0.0201 (6) −0.0043 (4) 0.0014 (4) −0.0073 (4)
O2 0.0393 (7) 0.0338 (7) 0.0379 (8) −0.0181 (6) −0.0048 (6) −0.0127 (6)
C1 0.0203 (7) 0.0179 (7) 0.0206 (8) −0.0052 (6) 0.0015 (6) −0.0061 (6)
C2 0.0185 (7) 0.0198 (7) 0.0224 (8) −0.0061 (6) 0.0017 (6) −0.0067 (6)
C3 0.0248 (7) 0.0228 (8) 0.0222 (8) −0.0082 (6) 0.0009 (6) −0.0087 (6)
C4 0.0248 (7) 0.0270 (8) 0.0201 (8) −0.0099 (6) −0.0007 (6) −0.0068 (6)
C5 0.0238 (7) 0.0198 (7) 0.0253 (8) −0.0054 (6) −0.0016 (6) −0.0037 (6)
C6 0.0200 (7) 0.0192 (7) 0.0256 (8) −0.0054 (6) 0.0012 (6) −0.0068 (6)
C7 0.0195 (7) 0.0208 (7) 0.0190 (7) −0.0061 (6) 0.0005 (6) −0.0068 (6)
C8 0.0191 (7) 0.0173 (7) 0.0233 (8) −0.0053 (6) 0.0022 (6) −0.0063 (6)
C9 0.0305 (8) 0.0222 (8) 0.0299 (9) −0.0039 (7) 0.0014 (7) −0.0099 (7)
C10 0.0210 (7) 0.0226 (7) 0.0205 (8) −0.0104 (6) 0.0028 (6) −0.0064 (6)
C11 0.0242 (8) 0.0261 (8) 0.0233 (8) −0.0074 (6) 0.0018 (6) −0.0080 (7)
C12 0.0250 (8) 0.0277 (8) 0.0252 (9) −0.0085 (7) 0.0008 (7) −0.0038 (7)
C13 0.0293 (8) 0.0364 (9) 0.0167 (8) −0.0171 (7) 0.0022 (6) −0.0040 (7)
C14 0.0347 (9) 0.0330 (9) 0.0223 (8) −0.0164 (7) 0.0080 (7) −0.0124 (7)
C15 0.0286 (8) 0.0233 (8) 0.0234 (8) −0.0102 (6) 0.0044 (6) −0.0080 (7)
C16 0.0308 (8) 0.0249 (8) 0.0272 (9) −0.0046 (7) 0.0060 (7) −0.0120 (7)
C17 0.0288 (8) 0.0286 (9) 0.0413 (11) −0.0105 (7) 0.0088 (8) −0.0163 (8)

Geometric parameters (Å, °)

Br—C4 1.8987 (17) C9—H9A 0.9800
Br—O2i 3.1254 (14) C9—H9B 0.9800
Cl—C13 1.7385 (17) C9—H9C 0.9800
S—O2 1.4925 (13) C10—C11 1.400 (2)
S—C1 1.7683 (16) C10—C15 1.402 (2)
S—C16 1.8092 (18) C11—C12 1.383 (2)
O1—C7 1.3756 (19) C11—H11 0.9500
O1—C8 1.3792 (18) C12—C13 1.381 (3)
C1—C8 1.368 (2) C12—H12 0.9500
C1—C2 1.450 (2) C13—C14 1.383 (3)
C2—C7 1.386 (2) C14—C15 1.384 (2)
C2—C3 1.397 (2) C14—H14 0.9500
C3—C4 1.385 (2) C15—H15 0.9500
C3—H3 0.9500 C16—C17 1.518 (3)
C4—C5 1.399 (2) C16—H16A 0.9900
C5—C6 1.385 (2) C16—H16B 0.9900
C5—H5 0.9500 C17—H17A 0.9800
C6—C7 1.392 (2) C17—H17B 0.9800
C6—C9 1.495 (2) C17—H17C 0.9800
C8—C10 1.460 (2)
C4—Br—O2i 167.44 (6) H9A—C9—H9C 109.5
O2—S—C1 106.73 (7) H9B—C9—H9C 109.5
O2—S—C16 107.42 (9) C11—C10—C15 118.61 (15)
C1—S—C16 98.10 (8) C11—C10—C8 122.03 (15)
C7—O1—C8 106.72 (12) C15—C10—C8 119.34 (14)
C8—C1—C2 107.07 (14) C12—C11—C10 120.86 (16)
C8—C1—S 127.14 (12) C12—C11—H11 119.6
C2—C1—S 124.97 (12) C10—C11—H11 119.6
C7—C2—C3 119.41 (14) C13—C12—C11 118.98 (16)
C7—C2—C1 105.01 (14) C13—C12—H12 120.5
C3—C2—C1 135.55 (15) C11—C12—H12 120.5
C4—C3—C2 116.31 (15) C12—C13—C14 121.83 (16)
C4—C3—H3 121.8 C12—C13—Cl 119.27 (14)
C2—C3—H3 121.8 C14—C13—Cl 118.90 (15)
C3—C4—C5 123.16 (16) C13—C14—C15 118.96 (17)
C3—C4—Br 119.20 (13) C13—C14—H14 120.5
C5—C4—Br 117.57 (12) C15—C14—H14 120.5
C6—C5—C4 121.28 (15) C14—C15—C10 120.75 (16)
C6—C5—H5 119.4 C14—C15—H15 119.6
C4—C5—H5 119.4 C10—C15—H15 119.6
C5—C6—C7 114.60 (15) C17—C16—S 110.69 (13)
C5—C6—C9 123.38 (14) C17—C16—H16A 109.5
C7—C6—C9 122.01 (15) S—C16—H16A 109.5
O1—C7—C2 110.87 (13) C17—C16—H16B 109.5
O1—C7—C6 123.88 (14) S—C16—H16B 109.5
C2—C7—C6 125.19 (15) H16A—C16—H16B 108.1
C1—C8—O1 110.31 (13) C16—C17—H17A 109.5
C1—C8—C10 135.56 (14) C16—C17—H17B 109.5
O1—C8—C10 114.12 (13) H17A—C17—H17B 109.5
C6—C9—H9A 109.5 C16—C17—H17C 109.5
C6—C9—H9B 109.5 H17A—C17—H17C 109.5
H9A—C9—H9B 109.5 H17B—C17—H17C 109.5
C6—C9—H9C 109.5
O2—S—C1—C8 −129.10 (15) C9—C6—C7—O1 0.0 (2)
C16—S—C1—C8 119.89 (15) C5—C6—C7—C2 2.2 (2)
O2—S—C1—C2 39.12 (15) C9—C6—C7—C2 −177.01 (15)
C16—S—C1—C2 −71.89 (15) C2—C1—C8—O1 −0.72 (17)
C8—C1—C2—C7 1.23 (17) S—C1—C8—O1 169.20 (11)
S—C1—C2—C7 −168.97 (12) C2—C1—C8—C10 177.77 (16)
C8—C1—C2—C3 179.21 (17) S—C1—C8—C10 −12.3 (3)
S—C1—C2—C3 9.0 (3) C7—O1—C8—C1 −0.09 (16)
C7—C2—C3—C4 0.8 (2) C7—O1—C8—C10 −178.93 (12)
C1—C2—C3—C4 −176.99 (17) C1—C8—C10—C11 −14.7 (3)
C2—C3—C4—C5 0.8 (2) O1—C8—C10—C11 163.78 (14)
C2—C3—C4—Br 177.69 (11) C1—C8—C10—C15 167.14 (18)
O2i—Br—C4—C3 −115.1 (3) O1—C8—C10—C15 −14.4 (2)
O2i—Br—C4—C5 62.0 (3) C15—C10—C11—C12 −0.3 (2)
C3—C4—C5—C6 −1.0 (3) C8—C10—C11—C12 −178.48 (15)
Br—C4—C5—C6 −177.90 (12) C10—C11—C12—C13 1.1 (3)
C4—C5—C6—C7 −0.5 (2) C11—C12—C13—C14 −1.0 (3)
C4—C5—C6—C9 178.70 (16) C11—C12—C13—Cl 178.70 (13)
C8—O1—C7—C2 0.92 (16) C12—C13—C14—C15 0.1 (3)
C8—O1—C7—C6 −176.43 (15) Cl—C13—C14—C15 −179.60 (13)
C3—C2—C7—O1 −179.71 (13) C13—C14—C15—C10 0.7 (3)
C1—C2—C7—O1 −1.33 (17) C11—C10—C15—C14 −0.7 (2)
C3—C2—C7—C6 −2.4 (2) C8—C10—C15—C14 177.61 (15)
C1—C2—C7—C6 175.98 (15) O2—S—C16—C17 172.31 (12)
C5—C6—C7—O1 179.15 (14) C1—S—C16—C17 −77.25 (13)

Symmetry codes: (i) −x+2, −y+1, −z+2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C17—H17B···O2ii 0.98 2.62 3.488 (2) 148

Symmetry codes: (ii) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2506).

References

  1. Akgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939–943. [DOI] [PubMed]
  2. Aslam, S. N., Stevenson, P. C., Phythian, S. J., Veitch, N. C. & Hall, D. R. (2006). Tetrahedron, 62, 4214–4226.
  3. Brandenburg, K. (1998). DIAMOND Crystal Impact GbR, Bonn, Germany.
  4. Bruker (2009). APEX2, SADABS and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010a). Acta Cryst. E66, o629. [DOI] [PMC free article] [PubMed]
  6. Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010b). Acta Cryst. E66, o886. [DOI] [PMC free article] [PubMed]
  7. Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010c). Acta Cryst. E66, o1042. [DOI] [PMC free article] [PubMed]
  8. Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010d). Acta Cryst. E66, o2277. [DOI] [PMC free article] [PubMed]
  9. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  10. Galal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett 19, 2420–2428. [DOI] [PubMed]
  11. Khan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem 13, 4796–4805. [DOI] [PubMed]
  12. Politzer, P., Lane, P., Concha, M. C., Ma, Y. & Murray, J. S. (2007). J. Mol. Model.13, 305–311. [DOI] [PubMed]
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Soekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831–834. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810042790/rz2506sup1.cif

e-66-o2960-sup1.cif (19.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810042790/rz2506Isup2.hkl

e-66-o2960-Isup2.hkl (179.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES