Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Oct 23;66(Pt 11):o2936–o2937. doi: 10.1107/S1600536810041292

(2E)-1-(3-Bromo­phen­yl)-3-(4,5-dimeth­oxy-2-nitro­phen­yl)prop-2-en-1-one

Jerry P Jasinski a,*, Ray J Butcher b, C S Chidan Kumar c, H S Yathirajan c, A N Mayekar d
PMCID: PMC3009291  PMID: 21589107

Abstract

In the title compound, C17H14BrNO5, the dihedral angle between the 3-bromo-substituted benzene ring and the 4,5-dimeth­oxy-2-nitro-phenyl ring is 15.2 (1)°. The dihedral angles between the mean plane of the propenone group and the mean planes of the 3-bromo-substituted benzene and 4,5-dimeth­oxy-2-nitro­phenyl rings are 6.9 (6) and 20.5 (5)°, respectively. Weak inter­molecular C—H⋯O inter­actions contribute to crystal stability and π–π inter­actions [centroid–centroid distances = 3.7072 (18) and 3.6326 (18) Å] are also observed.

Related literature

For the biological activity of chalcones, see: Liu et al. (2003); Nielson et al. (1998); Rajas et al. (2002); Dinkova-Kostova et al. (1998). For their non-linear optical properties, see: Goto et al. (1991); Uchida et al. (1998);Tam et al. (1989); Indira et al. (2002); Sarojini et al. (2006). For the effect of bulky substit­uents on the spontaneous polarization of non-centrosymmetric crystals, see: Fichou et al. (1988). For the influence of the steric effect of the substituent on the mol­ecular hyperpolarizability, see: Cho et al. (1996). For related structures, see: Butcher et al. (2007a ,b ,c ); Jasinski et al. (2010a ,b ,c ,d ,e ); Dutkiewicz et al. (2010); Kant et al. (2009); Yathirajan et al. (2007).graphic file with name e-66-o2936-scheme1.jpg

Experimental

Crystal data

  • C17H14BrNO5

  • M r = 392.20

  • Orthorhombic, Inline graphic

  • a = 6.8547 (2) Å

  • b = 8.3205 (2) Å

  • c = 27.1509 (6) Å

  • V = 1548.54 (7) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 3.88 mm−1

  • T = 123 K

  • 0.55 × 0.12 × 0.06 mm

Data collection

  • Oxford Diffraction Xcalibur Diffractometer with Ruby Gemini detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007) T min = 0.490, T max = 1.000

  • 9914 measured reflections

  • 3069 independent reflections

  • 3011 reflections with I > 2σ(I)

  • R int = 0.040

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032

  • wR(F 2) = 0.086

  • S = 1.07

  • 3069 reflections

  • 219 parameters

  • H-atom parameters constrained

  • Δρmax = 0.74 e Å−3

  • Δρmin = −0.42 e Å−3

  • Absolute structure: Flack (1983), 1228 Friedel pairs

  • Flack parameter: 0.08 (2)

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I. DOI: 10.1107/S1600536810041292/lx2178sup1.cif

e-66-o2936-sup1.cif (19.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810041292/lx2178Isup2.hkl

e-66-o2936-Isup2.hkl (150.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16A⋯O5i 0.98 2.46 3.383 (3) 157
C17—H17B⋯O3ii 0.98 2.48 3.116 (4) 123

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

CSC thanks the University of Mysore for the research facilities and HSY thanks the University of Mysore for sabbatical leave. RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.

supplementary crystallographic information

Comment

Chalcones have displayed an impressive array of biological activities, among which antimalarial (Liu et al., 2003), antiprotozoal (Nielson et al., 1998), nitric oxide inhibition (Rajas et al., 2002) and anticancer activities (Dinkova-Kostova et al., 1998) have been cited in the literature. Among several organic compounds reported for non-linear optical (NLO) properties, chalcone derivatives are notable materials for their excellent blue-light transmittance and good crystallizability. They provide the necessary configuration to show NLO properties, with two planar rings connected through a conjugated double bond (Goto et al., 1991; Uchida et al., 1998; Tam et al., 1989; Indira et al., 2002, Sarojini et al., 2006). Substitution on either of the benzene rings greatly influences the non-centrosymmetric crystal packing. It is speculated that, in order to improve the activity, more bulky substituents should be introduced to increase the spontaneous polarization of non-centrosymmetric crystals (Fichou et al., 1988). The molecular hyperpolarizability is strongly influenced, not only by the electronic effect, but also by the steric effect of the substituent (Cho et al., 1996). The crystal structure studies of 2,3-dibromo-1-(2,4-dichlorophenyl)-3-(4,5-dimethoxy-2-nitrophenyl) propan-1-one (Yathirajan et al., 2007); (2E)-1-(4-methylphenyl)-3-(4-nitrophenyl)prop-2-en-1-one (Butcher et al., 2007a); (E)-3-(4-fluorophenyl)-1-(4-methylphenyl)prop-2-en-1-one (Butcher et al., 2007b); (2E)-3-(2-bromo-5-methoxyphenyl)-1-(2,4-dichlorophenyl) prop-2-en-1-one (Butcher et al., 2007c); (E)-3-(4-bromophenyl)-1-(3,4-dichlorophenyl)prop-2-en-1-one (Kant et al., 2009); (2E)-3-(4-bromophenyl)-1-(3-chlorophenyl) prop-2-en-1-one (Jasinski et al., 2010a); (2E)-1-(4-bromophenyl)-3-(4-fluorophenyl)prop-2-en-1-one (Dutkiewicz et al., 2010); (2E)-1-(2-bromophenyl)-3-(4-chlorophenyl) prop-2-en-1-one (Jasinski et al., 2010b); (2E)-1-(2-bromophenyl)-3-(4-methoxyphenyl)prop-2-en-1-one (Jasinski et al., 2010c); (2E)-1-(2-bromophenyl)-3- (3,4,5-trimethoxyphenyl)prop-2-en-1-one (Jasinski et al., 2010d) and (2E)-1-(2-bromophenyl)-3-(4-bromophenyl)prop-2-en-1-one (Jasinski et al., 2010e) have been reported. In continuation of our work on chalcones, the present paper reports the synthesis and crystal structure of a new chalcone, C17H14BrNO5.

In the title compound the dihedral angle between the 3-bromo-substituted benzene ring and the 4,5-dimethoxy-2-nitro-phenyl ring is 15.2 (1)° (Fig. 2). The dihedral angles between the mean plane of the propenone group and the mean planes of the 3-bromo-substituted benzene and 4,5-dimethoxy-2-nitro-phenyl rings is 6.9 (6)° and 20.5 (5)°, respectively. While no classic hydrogen bonds are observed, weak intermolecular C—H···O (Table 1, Fig. 3) hydrogen bond interactions contribute to crystal stability.

Experimental

1-(3-Bromophenyl)ethanone (1.99 g, 0.01 mol) was mixed with 4,5-dimethoxy-2-nitrobenzaldehyde (2.11 g, 0.01 mol) and dissolved in methanol (30 ml). To this, 3 ml of KOH (40%) was added and the reaction mixture was stirred for 6 h (Fig. 1). The resulting crude solid was filtered, washed successively with distilled water and finally recrystallized from ethanol (95%) to give the pure chalcone. Pale yellow, small needle shaped crystals suitable for X-ray diffraction studies were grown by the slow evaporation of the dimethylformamide solution at room temperature (m.p.: 409–411 K).

Refinement

The parameters of all the H atoms have been constrained within the riding atom approximation. C—H bond lengths were constrained to 0.95 or 0.98 Å for aryl or methyl H atoms, Uiso(H) = 1.18–1.22Ueq(Caryl); Uiso(H) = 1.59–1.51Ueq(Cmethyl).

Figures

Fig. 1.

Fig. 1.

Reaction scheme for the title compound.

Fig. 2.

Fig. 2.

Molecular structure of the title compound showing the atom labeling scheme and 50% probability displacement ellipsoids.

Fig. 3.

Fig. 3.

Packing diagram of the title compound viewed down the a axis. Dashed lines indicate weak intermolecular C—H···O hydrogen bond interactions.

Crystal data

C17H14BrNO5 F(000) = 792
Mr = 392.20 Dx = 1.682 Mg m3
Orthorhombic, P212121 Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2ac 2ab Cell parameters from 8339 reflections
a = 6.8547 (2) Å θ = 4.9–74.0°
b = 8.3205 (2) Å µ = 3.88 mm1
c = 27.1509 (6) Å T = 123 K
V = 1548.54 (7) Å3 Needle, colorless
Z = 4 0.55 × 0.12 × 0.06 mm

Data collection

Oxford Diffraction Xcalibur Diffractometer with Ruby Gemini detector 3069 independent reflections
Radiation source: Enhance (Cu) X-ray Source 3011 reflections with I > 2σ(I)
graphite Rint = 0.040
Detector resolution: 10.5081 pixels mm-1 θmax = 74.1°, θmin = 5.6°
ω scans h = −8→5
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007) k = −9→10
Tmin = 0.490, Tmax = 1.000 l = −32→33
9914 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032 H-atom parameters constrained
wR(F2) = 0.086 w = 1/[σ2(Fo2) + (0.0497P)2 + 1.5041P] where P = (Fo2 + 2Fc2)/3
S = 1.07 (Δ/σ)max = 0.003
3069 reflections Δρmax = 0.74 e Å3
219 parameters Δρmin = −0.42 e Å3
0 restraints Absolute structure: Flack (1983), 1228 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.08 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br 0.59396 (5) 0.54840 (4) 0.757218 (10) 0.02935 (11)
O1 0.5372 (4) 0.1224 (3) 0.60992 (8) 0.0329 (6)
O2 0.7701 (4) −0.1958 (3) 0.50347 (8) 0.0314 (5)
O3 0.6537 (4) −0.3581 (3) 0.44871 (9) 0.0332 (6)
O4 0.5820 (4) 0.0031 (2) 0.30190 (7) 0.0240 (4)
O5 0.5346 (4) 0.2869 (3) 0.33757 (7) 0.0258 (5)
N1 0.6855 (4) −0.2223 (3) 0.46423 (10) 0.0227 (5)
C1 0.5862 (5) 0.4042 (3) 0.61065 (10) 0.0200 (5)
C2 0.5815 (5) 0.4043 (3) 0.66260 (10) 0.0227 (6)
H2A 0.5685 0.3064 0.6803 0.027*
C3 0.5960 (4) 0.5491 (4) 0.68724 (9) 0.0229 (5)
C4 0.6120 (5) 0.6943 (4) 0.66260 (11) 0.0247 (6)
H4A 0.6189 0.7925 0.6804 0.030*
C5 0.6179 (5) 0.6939 (4) 0.61128 (11) 0.0246 (6)
H5A 0.6296 0.7925 0.5938 0.030*
C6 0.6065 (4) 0.5491 (4) 0.58544 (10) 0.0230 (5)
H6A 0.6126 0.5494 0.5505 0.028*
C7 0.5701 (5) 0.2433 (4) 0.58575 (11) 0.0233 (6)
C8 0.5993 (5) 0.2348 (4) 0.53138 (10) 0.0224 (6)
H8A 0.6323 0.3286 0.5132 0.027*
C9 0.5783 (5) 0.0934 (3) 0.50851 (10) 0.0213 (5)
H9A 0.5488 0.0027 0.5284 0.026*
C10 0.5971 (4) 0.0665 (3) 0.45512 (9) 0.0191 (5)
C11 0.6283 (4) −0.0843 (3) 0.43402 (10) 0.0199 (6)
C12 0.6209 (4) −0.1121 (3) 0.38335 (10) 0.0206 (6)
H12A 0.6378 −0.2178 0.3708 0.025*
C13 0.5890 (5) 0.0144 (3) 0.35161 (9) 0.0198 (5)
C14 0.5639 (5) 0.1705 (3) 0.37128 (10) 0.0208 (6)
C15 0.5659 (4) 0.1943 (3) 0.42198 (10) 0.0203 (6)
H15A 0.5457 0.2995 0.4346 0.024*
C16 0.5963 (5) −0.1555 (4) 0.28128 (10) 0.0255 (6)
H16A 0.5866 −0.1490 0.2453 0.038*
H16B 0.4900 −0.2223 0.2941 0.038*
H16C 0.7219 −0.2032 0.2904 0.038*
C17 0.5316 (6) 0.4499 (4) 0.35512 (11) 0.0317 (7)
H17A 0.5242 0.5236 0.3270 0.048*
H17B 0.6509 0.4714 0.3739 0.048*
H17C 0.4177 0.4657 0.3764 0.048*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br 0.04312 (19) 0.03241 (16) 0.01252 (15) 0.00224 (15) −0.00131 (12) −0.00345 (11)
O1 0.0530 (16) 0.0300 (11) 0.0157 (10) −0.0028 (11) 0.0034 (10) −0.0018 (9)
O2 0.0428 (14) 0.0333 (12) 0.0180 (11) 0.0038 (11) −0.0085 (10) 0.0032 (9)
O3 0.0540 (16) 0.0227 (11) 0.0228 (11) 0.0026 (10) 0.0012 (10) 0.0005 (9)
O4 0.0377 (12) 0.0219 (9) 0.0123 (8) −0.0006 (9) −0.0012 (9) −0.0026 (7)
O5 0.0456 (14) 0.0191 (10) 0.0125 (9) −0.0002 (9) −0.0034 (9) 0.0008 (8)
N1 0.0303 (13) 0.0223 (12) 0.0154 (11) 0.0032 (10) 0.0026 (10) 0.0010 (10)
C1 0.0200 (13) 0.0264 (13) 0.0135 (12) 0.0000 (12) −0.0016 (12) −0.0037 (10)
C2 0.0286 (15) 0.0251 (13) 0.0145 (13) 0.0015 (13) 0.0007 (13) −0.0009 (10)
C3 0.0288 (14) 0.0309 (14) 0.0089 (11) 0.0029 (16) −0.0014 (11) −0.0035 (11)
C4 0.0282 (16) 0.0251 (13) 0.0207 (14) 0.0019 (13) 0.0019 (14) −0.0027 (11)
C5 0.0298 (16) 0.0241 (14) 0.0200 (14) 0.0004 (13) −0.0003 (13) 0.0022 (11)
C6 0.0255 (14) 0.0285 (14) 0.0150 (12) 0.0026 (15) −0.0007 (11) −0.0004 (11)
C7 0.0263 (15) 0.0280 (14) 0.0158 (13) 0.0005 (13) −0.0018 (12) −0.0008 (11)
C8 0.0258 (14) 0.0269 (13) 0.0146 (13) −0.0019 (14) 0.0013 (12) 0.0002 (11)
C9 0.0252 (14) 0.0243 (13) 0.0144 (12) 0.0000 (12) 0.0004 (12) 0.0002 (10)
C10 0.0207 (12) 0.0234 (13) 0.0133 (12) −0.0023 (13) 0.0001 (11) −0.0006 (10)
C11 0.0227 (15) 0.0214 (13) 0.0155 (13) −0.0002 (11) 0.0002 (11) 0.0025 (10)
C12 0.0267 (16) 0.0199 (12) 0.0150 (13) −0.0012 (12) 0.0015 (12) −0.0037 (10)
C13 0.0250 (14) 0.0229 (13) 0.0115 (11) −0.0017 (12) 0.0004 (11) −0.0024 (10)
C14 0.0253 (15) 0.0213 (13) 0.0159 (13) −0.0019 (12) 0.0010 (11) 0.0023 (11)
C15 0.0232 (15) 0.0213 (13) 0.0163 (13) −0.0007 (11) −0.0001 (11) −0.0022 (10)
C16 0.0371 (16) 0.0259 (14) 0.0135 (12) 0.0011 (14) −0.0005 (14) −0.0053 (10)
C17 0.056 (2) 0.0186 (14) 0.0210 (14) −0.0006 (15) 0.0011 (13) 0.0006 (13)

Geometric parameters (Å, °)

Br—C3 1.900 (3) C7—C8 1.491 (4)
O1—C7 1.222 (4) C8—C9 1.338 (4)
O2—N1 1.233 (4) C8—H8A 0.9500
O3—N1 1.225 (4) C9—C10 1.472 (4)
O4—C13 1.354 (3) C9—H9A 0.9500
O4—C16 1.436 (3) C10—C11 1.395 (4)
O5—C14 1.348 (4) C10—C15 1.410 (4)
O5—C17 1.437 (4) C11—C12 1.396 (4)
N1—C11 1.465 (4) C12—C13 1.378 (4)
C1—C6 1.393 (4) C12—H12A 0.9500
C1—C2 1.411 (4) C13—C14 1.415 (4)
C1—C7 1.504 (4) C14—C15 1.391 (4)
C2—C3 1.382 (4) C15—H15A 0.9500
C2—H2A 0.9500 C16—H16A 0.9800
C3—C4 1.386 (4) C16—H16B 0.9800
C4—C5 1.394 (4) C16—H16C 0.9800
C4—H4A 0.9500 C17—H17A 0.9800
C5—C6 1.397 (4) C17—H17B 0.9800
C5—H5A 0.9500 C17—H17C 0.9800
C6—H6A 0.9500
C13—O4—C16 116.8 (2) C10—C9—H9A 117.2
C14—O5—C17 117.1 (2) C11—C10—C15 116.1 (2)
O3—N1—O2 123.1 (3) C11—C10—C9 123.7 (3)
O3—N1—C11 118.9 (3) C15—C10—C9 120.0 (2)
O2—N1—C11 118.0 (2) C10—C11—C12 123.3 (3)
C6—C1—C2 119.5 (2) C10—C11—N1 121.1 (2)
C6—C1—C7 123.8 (2) C12—C11—N1 115.5 (2)
C2—C1—C7 116.6 (2) C13—C12—C11 119.7 (3)
C3—C2—C1 118.9 (3) C13—C12—H12A 120.2
C3—C2—H2A 120.6 C11—C12—H12A 120.2
C1—C2—H2A 120.6 O4—C13—C12 125.1 (2)
C2—C3—C4 122.2 (2) O4—C13—C14 115.9 (2)
C2—C3—Br 118.8 (2) C12—C13—C14 119.0 (2)
C4—C3—Br 119.1 (2) O5—C14—C15 124.8 (3)
C3—C4—C5 118.9 (3) O5—C14—C13 114.9 (2)
C3—C4—H4A 120.6 C15—C14—C13 120.2 (3)
C5—C4—H4A 120.6 C14—C15—C10 121.7 (3)
C4—C5—C6 120.2 (3) C14—C15—H15A 119.1
C4—C5—H5A 119.9 C10—C15—H15A 119.1
C6—C5—H5A 119.9 O4—C16—H16A 109.5
C1—C6—C5 120.4 (2) O4—C16—H16B 109.5
C1—C6—H6A 119.8 H16A—C16—H16B 109.5
C5—C6—H6A 119.8 O4—C16—H16C 109.5
O1—C7—C8 121.2 (3) H16A—C16—H16C 109.5
O1—C7—C1 120.3 (3) H16B—C16—H16C 109.5
C8—C7—C1 118.5 (3) O5—C17—H17A 109.5
C9—C8—C7 119.1 (3) O5—C17—H17B 109.5
C9—C8—H8A 120.5 H17A—C17—H17B 109.5
C7—C8—H8A 120.5 O5—C17—H17C 109.5
C8—C9—C10 125.5 (3) H17A—C17—H17C 109.5
C8—C9—H9A 117.2 H17B—C17—H17C 109.5
C6—C1—C2—C3 0.4 (5) C9—C10—C11—N1 −13.0 (5)
C7—C1—C2—C3 179.9 (3) O3—N1—C11—C10 157.6 (3)
C1—C2—C3—C4 1.0 (5) O2—N1—C11—C10 −25.0 (4)
C1—C2—C3—Br −178.9 (3) O3—N1—C11—C12 −26.6 (4)
C2—C3—C4—C5 −1.4 (5) O2—N1—C11—C12 150.9 (3)
Br—C3—C4—C5 178.6 (3) C10—C11—C12—C13 2.7 (5)
C3—C4—C5—C6 0.4 (5) N1—C11—C12—C13 −173.1 (3)
C2—C1—C6—C5 −1.4 (5) C16—O4—C13—C12 4.4 (5)
C7—C1—C6—C5 179.1 (3) C16—O4—C13—C14 −176.6 (3)
C4—C5—C6—C1 1.0 (5) C11—C12—C13—O4 178.8 (3)
C6—C1—C7—O1 −174.2 (3) C11—C12—C13—C14 −0.2 (5)
C2—C1—C7—O1 6.3 (5) C17—O5—C14—C15 8.8 (5)
C6—C1—C7—C8 7.0 (5) C17—O5—C14—C13 −172.7 (3)
C2—C1—C7—C8 −172.5 (3) O4—C13—C14—O5 0.6 (4)
O1—C7—C8—C9 3.7 (5) C12—C13—C14—O5 179.7 (3)
C1—C7—C8—C9 −177.6 (3) O4—C13—C14—C15 179.1 (3)
C7—C8—C9—C10 178.3 (3) C12—C13—C14—C15 −1.8 (5)
C8—C9—C10—C11 161.5 (3) O5—C14—C15—C10 179.9 (3)
C8—C9—C10—C15 −24.4 (5) C13—C14—C15—C10 1.5 (5)
C15—C10—C11—C12 −2.9 (4) C11—C10—C15—C14 0.8 (4)
C9—C10—C11—C12 171.4 (3) C9—C10—C15—C14 −173.8 (3)
C15—C10—C11—N1 172.6 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C16—H16A···O5i 0.98 2.46 3.383 (3) 157
C17—H17B···O3ii 0.98 2.48 3.116 (4) 123

Symmetry codes: (i) −x+1, y−1/2, −z+1/2; (ii) x, y+1, z.

Table 2 π-π hydrogen-bond geometry (Å)

Cg1 and Cg2 are the centroids of the C1–C6 and C10–C15 rings, respectively.

Cg···Cg D···A
Cg1···Cg2i 3.7072 (18)
Cg1···Cg2ii 3.6326 (18)

Symmetry codes: (i) -1/2+x, 1/2-y, 1-z; (ii) 1/2+x, 1/2-y, 1-z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LX2178).

References

  1. Butcher, R. J., Jasinski, J. P., Yathirajan, H. S., Narayana, B. & Mayekar, A. N. (2007c). Acta Cryst. E63, o4253–o4254.
  2. Butcher, R. J., Jasinski, J. P., Yathirajan, H. S., Narayana, B. & Veena, K. (2007b). Acta Cryst. E63, o3833.
  3. Butcher, R. J., Jasinski, J. P., Yathirajan, H. S., Veena, K. & Narayana, B. (2007a). Acta Cryst. E63, o3680.
  4. Cho, B. R., Je, J. T., Kim, H. S., Jean, S. J., Song, O. K. & Wang, C. H. (1996). Bull. Korean Chem. Soc.17, 693–695.
  5. Dinkova-Kostova, A. T., Abey-Gunawardana, C. & Talalay, P. (1998). J. Med. Chem.41, 5287–5296. [DOI] [PubMed]
  6. Dutkiewicz, G., Veena, K., Narayana, B., Yathirajan, H. S. & Kubicki, M. (2010). Acta Cryst. E66, o1243–o1244. [DOI] [PMC free article] [PubMed]
  7. Fichou, D., Watanabe, T., Takeda, T., Miyata, S., Goto, Y. & Nakayama, M. (1988). Jpn J. Appl. Phys.27, 429–430.
  8. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  9. Goto, Y., Hayashi, A., Kimura, Y. & Nakayama, M. (1991). J. Cryst. Growth, 108, 688–698.
  10. Indira, J., Karat, P. P. & Sarojini, B. K. (2002). J. Cryst. Growth, 242, 209–214.
  11. Jasinski, J. P., Butcher, R. J., Narayana, B., Veena, K. & Yathirajan, H. S. (2010a). Acta Cryst. E66, o158. [DOI] [PMC free article] [PubMed]
  12. Jasinski, J. P., Butcher, R. J., Veena, K., Narayana, B. & Yathirajan, H. S. (2010b). Acta Cryst. E66, o1638. [DOI] [PMC free article] [PubMed]
  13. Jasinski, J. P., Butcher, R. J., Veena, K., Narayana, B. & Yathirajan, H. S. (2010c). Acta Cryst. E66, o1661. [DOI] [PMC free article] [PubMed]
  14. Jasinski, J. P., Butcher, R. J., Veena, K., Narayana, B. & Yathirajan, H. S. (2010d). Acta Cryst. E66, o1676. [DOI] [PMC free article] [PubMed]
  15. Jasinski, J. P., Butcher, R. J., Veena, K., Narayana, B. & Yathirajan, H. S. (2010e). Acta Cryst. E<66, o1701. [DOI] [PMC free article] [PubMed]
  16. Kant, R., Kamni,, Narayana, B., Veena, K. & Yathirajan, H. S. (2009). Acta Cryst. E65, o836. [DOI] [PMC free article] [PubMed]
  17. Liu, M., Wilairat, P., Croft, S. L., Tan, A. L. C. & Go, M. I. (2003). Bioorg. Med. Chem.11, 2729–2738. [DOI] [PubMed]
  18. Nielson, S. F., Christensen, S. B., Cruciani, G., Kharazmi, A. & Liljefors, T. (1998). J. Med. Chem.41, 4819–4832. [DOI] [PubMed]
  19. Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED Oxford Diffraction Ltd, Abingdon, England.
  20. Rajas, J., Paya, M., Domingues, J. N. & Ferrandiz, M. L. (2002). Bioorg. Med. Chem. Lett.12, 1951–1954. [DOI] [PubMed]
  21. Sarojini, B. K., Narayana, B., Ashalatha, B. V., Indira, J. & Lobo, K. J. (2006). J. Cryst. Growth, 295, 54–59.
  22. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  23. Tam, W., Guerin, B., Calabrese, J. C. & Stevenson, S. H. (1989). Chem. Phys. Lett.154, 93–96.
  24. Uchida, T., Kozawa, K., Sakai, T., Aoki, M., Yoguchi, H., Abduryim, A. & Watanabe, Y. (1998). Mol. Cryst. Liq. Cryst.315, 135–140.
  25. Yathirajan, H. S., Mayekar, A. N., Narayana, B., Sarojini, B. K. & Bolte, M. (2007). Acta Cryst. E63, o2196–o2197.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I. DOI: 10.1107/S1600536810041292/lx2178sup1.cif

e-66-o2936-sup1.cif (19.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810041292/lx2178Isup2.hkl

e-66-o2936-Isup2.hkl (150.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES