Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Oct 23;66(Pt 11):m1424–m1425. doi: 10.1107/S1600536810041279

[μ-2,3,5,6-Tetra­kis(2-pyrid­yl)pyrazine-κ6 N 6,N 1,N 2:N 3,N 4,N 5]bis­[diaqua(dihydrogen m-phenylene­diphospho­nato-κO)nickel(II)] dihydrate

Paul DeBurgomaster a, Jon Zubieta a,*
PMCID: PMC3009311  PMID: 21588851

Abstract

The title compound [Ni2(C6H6O6P2)2(C24H16N6)(H2O)4]·2H2O or [Ni2(tpyprz)(1,3-HO3PC6H4PO3H)2(H2O)4]·2H2O [tpyprz = tetra­kis­(2-pyrid­yl)pyrazine, C24H16N6] is a binuclear complex with a crystallographic inversion center located at the center of the pyrazine ring. The equivalent nickel(II) sites exhibit a distorted {NiO3N3} octa­hedral coordination, with the three nitro­gen donors of each terminus of the tpyprz ligand in a meridional orientation. An aqua ligand occupies the position trans to the pyrazine nitro­gen donor, while the second aqua ligand is trans to the oxygen donor of the dihydrogen-1,3-phenyl­diphospho­nate ligand. The Ni—O and Ni—N bond lengths fall in the range 2.011 (3) to 2.089 (3) Å. The protonation sites on the organo­phospho­nate ligand are evident in the significantly longer P—O bonds compared to the unprotonated sites. In the crystal structure, the complex mol­ecules and the solvent water mol­ecules are linked into a three-dimensional hydrogen-bonded framework through O—H⋯O inter­actions between the aqua ligands, the protonated organo­phospho­nate oxygen atoms and the water mol­ecules of crystallization. Intra­molecular π-stacking between the phenyl group of the phospho­nate ligand and a pyridyl group of the tpyprz ligand, at a distance of 3.244 (5) Å between ring centroids, is also observed.

Related literature

For general background to metal-organo­phospho­nates, see: Alberti et al. (1978); Clearfield (1998); Finn et al. (2003); Vermeulen (1997). For nickel–organo­phospho­nates, see: Bauer et al. (2008). For nickel–tetra­kis­(2-pyrid­yl)pyrazine complexes, see: Burkholder et al. (2003); Burkholder & Zubieta (2004, 2005). For the use of tetra­kis­(2-pyrid­yl)pyrazine as a component in the construction of metal–organo­phospho­nate materials, see: Armatas et al. (2008). graphic file with name e-66-m1424-scheme1.jpg

Experimental

Crystal data

  • [Ni2(C6H6O6P2)2(C24H16N6)(H2O)4]·2H2O

  • M r = 1086.04

  • Triclinic, Inline graphic

  • a = 7.9702 (6) Å

  • b = 10.0785 (8) Å

  • c = 14.0960 (12) Å

  • α = 85.386 (2)°

  • β = 81.707 (1)°

  • γ = 69.364 (1)°

  • V = 1048.03 (15) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.14 mm−1

  • T = 298 K

  • 0.20 × 0.14 × 0.11 mm

Data collection

  • Bruker APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998) T min = 0.804, T max = 0.885

  • 10484 measured reflections

  • 5044 independent reflections

  • 4821 reflections with I > 2σ(I)

  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.066

  • wR(F 2) = 0.133

  • S = 1.32

  • 5044 reflections

  • 304 parameters

  • H-atom parameters constrained

  • Δρmax = 0.91 e Å−3

  • Δρmin = −0.80 e Å−3

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablocks I, New_Global_Publ_Block. DOI: 10.1107/S1600536810041279/pk2273sup1.cif

e-66-m1424-sup1.cif (24.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810041279/pk2273Isup2.hkl

e-66-m1424-Isup2.hkl (247KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2′⋯O3i 0.82 1.91 2.536 (4) 132
O5—H5′⋯O6ii 0.82 1.82 2.606 (4) 162
O40—H40A⋯O3iii 0.84 1.95 2.784 (4) 170
O40—H40B⋯O4iv 0.88 1.83 2.711 (4) 175
O41—H41B⋯O6iv 0.83 1.82 2.625 (4) 163
O90—H90B⋯O4v 0.92 1.84 2.747 (4) 166
O41—H41A⋯O90 0.88 1.83 2.643 (4) 151
O90—H90A⋯O1 0.92 1.92 2.780 (4) 154

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

This work was supported by a grant from the National Science Foundation, CHE-0907787.

supplementary crystallographic information

Comment

The chemistry of metal-organophosphonates has witnessed dramatic growth (Clearfield, 1998; Finn et al., 2003; Vermeulen, 1997) since the first reports in the 1970s of the layered metal-organophosphonates (Alberti et al., 1978). In our investigations of metal oxide materials, we have used organodiphosphonates as tethers between metal or metal oxide nodes (Armatas et al., 2008). Structural expansion and diversity could be accomplished by introducing additional components, most commonly a M(II)-organonitrogen ligand complex. A particularly useful nitrogen donor ligand for structural manipulation is the dipodal tetrakis(2-pyridyl)pyrazine (tpyprz) (Armatas et al., 2008; Bauer et al., 2008). While Cu(II) has generally served as the secondary metal in the M(II)-organonitrogen ligand complex, Ni(II)-containing subunits have also been exploited as subunits (Burkholder et al., 2003; Burkholder and Zubieta, 2004; Burkholder and Zubieta, 2005). While the secondary metal M(II) bonds to the tpyprz ligand and aqua ligands and/or cluster oxide groups in such materials, the title complex was prepared in the absence of metal oxide, affording the binuclear [Ni2(tpyprz)(1,3-HO3PC6H4PO3H) (H2O)4]dihydrate.

As shown in Fig. 1, the structure of the title compound is binuclear, with a crystallographic inversion center at the mid-point of the pyrazine group. The distorted {NiO3N3} octahedral geometry at the Ni(II) site is defined by the nitrogen donors of the tpyprz ligand in a meridional orientation, two aqua ligands and an oxygen donor from the pendant monodentate 1,3-phenyldiphosphonate ligand. One aqua ligand is trans to the pyrazine nitrogen donor of the tpyprz ligand, while the second occupies a position trans to the phosphonate oxygen donor. The shortest Ni—N distance is to the pyrazine nitrogen, Ni—N2 of 2.011 (3) Å, while the Ni-pyridyl bond distances are 2.076 (3) Å and 2.089 (3) Å. The Ni—O(aqua) distances are 2.015 (3) Å and 2.081 (3) Å, while the Ni—O(phosphonate) distance is 2.082 (3) Å.

Charge compensation considerations require that the phenyldiphosphonate ligand be in the doubly deprotonated state [H2(O3PC6H4PO3)]2-. The protonation sites were revealed in the difference Fourier map by peaks adjacent to O2 and O5 at distances consistent with bound hydrogen. The P—O bond lengths support these protonation sites with P—O2 and P—O5 of 1.567 (3) Å and 1.574 (3) Å, respectively, compared to an average P—O distance of 1.515 (4)Å for the remaining P—O distances.

The structure is stabilized by intermolecular hydrogen bonding between the aqua ligands, the P—OH groups and the waters of crystallization. The binuclear complexes and the water of crystallization are linked into a three-dimensional framework through this hydrogen bonding (Fig. 2). There is also intramolecular π-stacking between the phosphonate phenyl ring and a pyridyl group of the tpyprz ligand with a distance of 3.244 (5)Å between centroids. Intermolecular π-stacking between the phosphonate phenyl group and a pyridyl ring of a tpyprz ligand of an adjacent molecule exhibits a distance of 3.584 (5)Å between centroids.

Experimental

A solution of Ni(CH3CO2)2•4H2O (0.074 g, 0.297 mmol), tpyprz (0.085 g, 0.219 mmol) and 1,3-phenyldiphosphonic acid (0.071 g, 0.301 mmol) in water (10 ml) was placed in a Parr acid digestion bomb and heated to 170°C for 48 h. Yellow blocks of the compound suitable for x-ray diffraction studies were isolated in 65% yield. Anal Calcd. for C36H40N6Ni2O18P4: C, 39.8; H, 3.68; N. 7.73. Found: C, 39.6; H, 3.75; N, 7.65.

Refinement

Pyridyl hydrogen atoms were discernable in the difference Fourier map. These hydrogen atoms were placed in calculated positions with C—H = 0.95 Å and included in the riding model approximation with Uiso(H) = 1.2Ueq(C). The hydrogen atoms associated with the oxygen of the phosphonate ligand, the aqua ligands and the water of crystallization were also found on the difference Fourier map. The P—OH hydrogen atoms were included in calculated positions with O—H = 0.82 Å and included in the riding model approximation with Uiso(H) = 1.5Ueq(O). The H atoms of the water molecules were included using the coordinate riding approximation with Uiso(H) free to vary.

Figures

Fig. 1.

Fig. 1.

An ellipsoid plot of the structure of the binuclear complex [Ni2(tpyprz)(HO3PC6H4PO3H)2(H2O)4], showing the atom labeling scheme for the asymmetric unit and displacement ellipsoids at the 50% probability level for all non-H atoms. Hydrogen atms are shown as small arbitrary spheres. Color scheme: Ni, green; P, yellow; oxygen, red; nitrogen, blue; carbon, black.

Fig. 2.

Fig. 2.

Packing diagram in the bc plane. The hydrogen bonds are shown as rendered multi-band cylinders in red and gray.

Crystal data

[Ni2(C6H6O6P2)2(C24H16N6)(H2O)4]·2H2O Z = 1
Mr = 1086.04 F(000) = 558
Triclinic, P1 Dx = 1.721 Mg m3Dm = 1.724 (2) Mg m3Dm measured by flotation
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.9702 (6) Å Cell parameters from 3874 reflections
b = 10.0785 (8) Å θ = 2.8–28.2°
c = 14.0960 (12) Å µ = 1.14 mm1
α = 85.386 (2)° T = 298 K
β = 81.707 (1)° Block, yellow
γ = 69.364 (1)° 0.20 × 0.14 × 0.11 mm
V = 1048.03 (15) Å3

Data collection

Bruker APEX CCD area-detector diffractometer 5044 independent reflections
Radiation source: fine-focus sealed tube 4821 reflections with I > 2σ(I)
graphite Rint = 0.023
φ and ω scans θmax = 28.1°, θmin = 2.8°
Absorption correction: multi-scan (SADABS; Bruker, 1998) h = −10→10
Tmin = 0.804, Tmax = 0.885 k = −13→13
10484 measured reflections l = −18→18

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133 H-atom parameters constrained
S = 1.32 w = 1/[σ2(Fo2) + (0.0262P)2 + 4.5072P] where P = (Fo2 + 2Fc2)/3
5044 reflections (Δ/σ)max < 0.001
304 parameters Δρmax = 0.91 e Å3
0 restraints Δρmin = −0.80 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ni1 −0.07580 (6) 0.67510 (5) 0.69829 (3) 0.00726 (13)
P1 0.36680 (13) 0.53302 (10) 0.64046 (7) 0.00822 (19)
P2 0.44896 (13) 0.03282 (10) 0.85848 (7) 0.0097 (2)
O1 0.1916 (4) 0.6581 (3) 0.6542 (2) 0.0117 (5)
O2 0.3592 (4) 0.4229 (3) 0.5703 (2) 0.0121 (5)
H2' 0.3391 0.4617 0.5177 0.018*
O3 0.5296 (4) 0.5787 (3) 0.60760 (19) 0.0118 (5)
O4 0.4279 (4) −0.0163 (3) 0.76433 (19) 0.0125 (5)
O5 0.2948 (4) 0.0145 (3) 0.9359 (2) 0.0151 (6)
H5' 0.3043 0.0409 0.9878 0.023*
O6 0.6315 (4) −0.0397 (3) 0.8936 (2) 0.0131 (6)
O40 −0.3505 (4) 0.7120 (3) 0.7354 (2) 0.0135 (6)
H40A −0.3999 0.6770 0.6998 0.020 (13)*
H40B −0.4191 0.8019 0.7417 0.019 (13)*
O41 −0.0740 (4) 0.7601 (3) 0.82264 (19) 0.0125 (6)
H41A 0.0129 0.7965 0.8162 0.041 (17)*
H41B −0.1766 0.8105 0.8461 0.036 (17)*
O90 0.1372 (4) 0.9039 (3) 0.7492 (2) 0.0190 (6)
H90A 0.1811 0.8321 0.7059 0.038 (17)*
H90B 0.2363 0.9222 0.7635 0.049 (19)*
N1 −0.0352 (4) 0.4705 (3) 0.7536 (2) 0.0101 (6)
N2 −0.0652 (4) 0.5726 (3) 0.5797 (2) 0.0089 (6)
N3 −0.1409 (4) 0.8436 (3) 0.5978 (2) 0.0107 (6)
C1 0.3907 (5) 0.4355 (4) 0.7530 (3) 0.0102 (7)
C2 0.4116 (5) 0.2912 (4) 0.7604 (3) 0.0114 (7)
H2 0.4237 0.2423 0.7052 0.014*
C3 0.4145 (5) 0.2200 (4) 0.8494 (3) 0.0102 (7)
C4 0.3956 (6) 0.2949 (4) 0.9323 (3) 0.0145 (8)
H4 0.3961 0.2488 0.9922 0.017*
C5 0.3764 (6) 0.4373 (4) 0.9252 (3) 0.0149 (8)
H5 0.3654 0.4861 0.9803 0.018*
C6 0.3734 (5) 0.5074 (4) 0.8364 (3) 0.0132 (8)
H6 0.3598 0.6031 0.8324 0.016*
C7 −0.0568 (5) 0.4352 (4) 0.8473 (3) 0.0138 (8)
H7A −0.0539 0.4973 0.8919 0.017*
C8 −0.0831 (6) 0.3106 (4) 0.8799 (3) 0.0175 (8)
H8A −0.0939 0.2877 0.9452 0.021*
C9 −0.0931 (6) 0.2202 (4) 0.8141 (3) 0.0177 (8)
H9 −0.1152 0.1371 0.8347 0.021*
C10 −0.0699 (5) 0.2546 (4) 0.7170 (3) 0.0137 (8)
H10 −0.0761 0.1950 0.6716 0.016*
C11 −0.0373 (5) 0.3793 (4) 0.6889 (3) 0.0113 (7)
C12 −0.0117 (5) 0.4313 (4) 0.5878 (3) 0.0080 (7)
C13 −0.0605 (5) 0.6454 (4) 0.4965 (3) 0.0087 (7)
C14 −0.1448 (5) 0.8029 (4) 0.5091 (3) 0.0100 (7)
C15 −0.2340 (5) 0.8978 (4) 0.4408 (3) 0.0124 (7)
H15 −0.2421 0.8667 0.3818 0.015*
C16 −0.3113 (5) 1.0407 (4) 0.4623 (3) 0.0134 (8)
H16 −0.3729 1.1066 0.4180 0.016*
C17 −0.2956 (5) 1.0839 (4) 0.5507 (3) 0.0146 (8)
H17 −0.3395 1.1796 0.5649 0.017*
C18 −0.2134 (5) 0.9818 (4) 0.6170 (3) 0.0132 (8)
H18 −0.2083 1.0101 0.6774 0.016*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ni1 0.0073 (2) 0.0063 (2) 0.0088 (2) −0.00260 (17) −0.00161 (17) −0.00129 (17)
P1 0.0087 (4) 0.0077 (4) 0.0083 (4) −0.0029 (3) −0.0011 (3) −0.0003 (3)
P2 0.0117 (5) 0.0082 (4) 0.0089 (4) −0.0027 (4) −0.0022 (4) 0.0002 (3)
O1 0.0107 (13) 0.0096 (13) 0.0151 (13) −0.0043 (10) −0.0013 (10) 0.0003 (10)
O2 0.0142 (13) 0.0122 (13) 0.0115 (13) −0.0064 (11) −0.0020 (10) −0.0004 (10)
O3 0.0134 (13) 0.0162 (14) 0.0085 (12) −0.0082 (11) −0.0019 (10) −0.0014 (10)
O4 0.0164 (14) 0.0101 (13) 0.0112 (13) −0.0041 (11) −0.0022 (11) −0.0032 (10)
O5 0.0158 (14) 0.0177 (14) 0.0125 (14) −0.0071 (12) −0.0009 (11) −0.0006 (11)
O6 0.0126 (13) 0.0123 (13) 0.0119 (13) −0.0009 (11) −0.0022 (10) −0.0003 (10)
O40 0.0120 (13) 0.0124 (14) 0.0174 (14) −0.0050 (11) −0.0018 (11) −0.0050 (11)
O41 0.0116 (13) 0.0121 (13) 0.0140 (13) −0.0041 (11) −0.0005 (11) −0.0042 (11)
O90 0.0168 (15) 0.0183 (15) 0.0248 (16) −0.0097 (12) 0.0010 (12) −0.0063 (13)
N1 0.0075 (14) 0.0113 (15) 0.0109 (15) −0.0017 (12) −0.0027 (12) −0.0003 (12)
N2 0.0062 (14) 0.0081 (15) 0.0136 (15) −0.0026 (12) −0.0040 (12) −0.0017 (12)
N3 0.0091 (15) 0.0101 (15) 0.0142 (16) −0.0046 (12) −0.0015 (12) −0.0023 (12)
C1 0.0090 (17) 0.0116 (18) 0.0100 (17) −0.0039 (14) −0.0001 (14) −0.0004 (14)
C2 0.0106 (17) 0.0122 (18) 0.0126 (18) −0.0041 (14) −0.0040 (14) −0.0022 (14)
C3 0.0095 (17) 0.0091 (17) 0.0128 (18) −0.0035 (14) −0.0036 (14) 0.0008 (14)
C4 0.019 (2) 0.0152 (19) 0.0095 (17) −0.0062 (16) −0.0027 (15) 0.0001 (15)
C5 0.020 (2) 0.0149 (19) 0.0112 (18) −0.0061 (16) −0.0019 (15) −0.0052 (15)
C6 0.0157 (19) 0.0077 (17) 0.0169 (19) −0.0046 (15) −0.0031 (15) −0.0006 (14)
C7 0.0126 (18) 0.0165 (19) 0.0117 (18) −0.0037 (15) −0.0004 (14) −0.0041 (15)
C8 0.022 (2) 0.015 (2) 0.0118 (18) −0.0031 (16) −0.0012 (16) 0.0041 (15)
C9 0.021 (2) 0.0093 (18) 0.020 (2) −0.0053 (16) 0.0039 (17) 0.0028 (15)
C10 0.0171 (19) 0.0086 (17) 0.0157 (19) −0.0052 (15) 0.0001 (15) −0.0021 (14)
C11 0.0096 (17) 0.0092 (17) 0.0145 (18) −0.0015 (14) −0.0024 (14) −0.0031 (14)
C12 0.0095 (16) 0.0093 (17) 0.0076 (16) −0.0052 (13) −0.0054 (13) 0.0025 (13)
C13 0.0083 (16) 0.0064 (16) 0.0128 (17) −0.0030 (13) −0.0040 (14) −0.0010 (13)
C14 0.0091 (17) 0.0085 (17) 0.0132 (18) −0.0043 (14) −0.0004 (14) −0.0008 (14)
C15 0.0141 (18) 0.0119 (18) 0.0112 (18) −0.0044 (15) −0.0009 (14) −0.0017 (14)
C16 0.0108 (17) 0.0112 (18) 0.0151 (19) −0.0006 (14) −0.0013 (15) 0.0028 (15)
C17 0.0165 (19) 0.0083 (18) 0.018 (2) −0.0044 (15) 0.0008 (16) −0.0030 (15)
C18 0.0115 (18) 0.0140 (19) 0.0154 (19) −0.0063 (15) 0.0012 (15) −0.0040 (15)

Geometric parameters (Å, °)

Ni1—N2 2.011 (3) C1—C2 1.402 (5)
Ni1—O41 2.016 (3) C2—C3 1.393 (5)
Ni1—N1 2.076 (3) C2—H2 0.9300
Ni1—O40 2.082 (3) C3—C4 1.403 (5)
Ni1—O1 2.082 (3) C4—C5 1.385 (6)
Ni1—N3 2.089 (3) C4—H4 0.9300
P1—O1 1.516 (3) C5—C6 1.385 (6)
P1—O3 1.525 (3) C5—H5 0.9300
P1—O2 1.566 (3) C6—H6 0.9300
P1—C1 1.795 (4) C7—C8 1.377 (6)
P2—O4 1.504 (3) C7—H7A 0.9300
P2—O6 1.515 (3) C8—C9 1.380 (6)
P2—O5 1.574 (3) C8—H8A 0.9300
P2—C3 1.805 (4) C9—C10 1.387 (6)
O2—H2' 0.8200 C9—H9 0.9300
O5—H5' 0.8200 C10—C11 1.388 (5)
O40—H40A 0.8445 C10—H10 0.9300
O40—H40B 0.8824 C11—C12 1.489 (5)
O41—H41A 0.8831 C12—C13i 1.406 (5)
O41—H41B 0.8318 C13—C12i 1.406 (5)
O90—H90A 0.9213 C13—C14 1.504 (5)
O90—H90B 0.9235 C14—C15 1.386 (5)
N1—C7 1.342 (5) C15—C16 1.392 (5)
N1—C11 1.353 (5) C15—H15 0.9300
N2—C13 1.336 (5) C16—C17 1.388 (6)
N2—C12 1.336 (5) C16—H16 0.9300
N3—C18 1.339 (5) C17—C18 1.382 (6)
N3—C14 1.355 (5) C17—H17 0.9300
C1—C6 1.394 (5) C18—H18 0.9300
N2—Ni1—O41 174.66 (12) C3—C2—H2 119.6
N2—Ni1—N1 78.70 (13) C1—C2—H2 119.6
O41—Ni1—N1 96.31 (12) C2—C3—C4 119.1 (4)
N2—Ni1—O40 92.64 (12) C2—C3—P2 120.8 (3)
O41—Ni1—O40 88.91 (11) C4—C3—P2 120.1 (3)
N1—Ni1—O40 86.27 (12) C5—C4—C3 120.2 (4)
N2—Ni1—O1 87.69 (12) C5—C4—H4 119.9
O41—Ni1—O1 91.29 (11) C3—C4—H4 119.9
N1—Ni1—O1 99.42 (11) C4—C5—C6 120.4 (4)
O40—Ni1—O1 174.25 (11) C4—C5—H5 119.8
N2—Ni1—N3 78.95 (13) C6—C5—H5 119.8
O41—Ni1—N3 106.20 (12) C5—C6—C1 120.5 (4)
N1—Ni1—N3 156.87 (13) C5—C6—H6 119.7
O40—Ni1—N3 88.87 (12) C1—C6—H6 119.7
O1—Ni1—N3 85.55 (12) N1—C7—C8 122.5 (4)
O1—P1—O3 112.44 (16) N1—C7—H7A 118.7
O1—P1—O2 112.43 (16) C8—C7—H7A 118.7
O3—P1—O2 110.23 (15) C7—C8—C9 119.0 (4)
O1—P1—C1 107.08 (17) C7—C8—H8A 120.5
O3—P1—C1 110.95 (16) C9—C8—H8A 120.5
O2—P1—C1 103.31 (17) C8—C9—C10 119.2 (4)
O4—P2—O6 115.53 (16) C8—C9—H9 120.4
O4—P2—O5 108.24 (16) C10—C9—H9 120.4
O6—P2—O5 110.12 (16) C9—C10—C11 118.9 (4)
O4—P2—C3 109.86 (17) C9—C10—H10 120.6
O6—P2—C3 106.30 (17) C11—C10—H10 120.6
O5—P2—C3 106.41 (17) N1—C11—C10 121.7 (4)
P1—O1—Ni1 133.25 (16) N1—C11—C12 113.1 (3)
P1—O2—H2' 109.5 C10—C11—C12 125.1 (3)
P2—O5—H5' 109.5 N2—C12—C13i 117.7 (3)
Ni1—O40—H40A 116.6 N2—C12—C11 112.5 (3)
Ni1—O40—H40B 115.1 C13i—C12—C11 129.9 (3)
H40A—O40—H40B 106.5 N2—C13—C12i 118.1 (3)
Ni1—O41—H41A 109.6 N2—C13—C14 112.0 (3)
Ni1—O41—H41B 112.7 C12i—C13—C14 129.8 (3)
H41A—O41—H41B 117.7 N3—C14—C15 122.0 (3)
H90A—O90—H90B 106.4 N3—C14—C13 113.7 (3)
C7—N1—C11 118.6 (3) C15—C14—C13 124.0 (3)
C7—N1—Ni1 124.9 (3) C14—C15—C16 118.5 (4)
C11—N1—Ni1 113.8 (3) C14—C15—H15 120.7
C13—N2—C12 124.1 (3) C16—C15—H15 120.7
C13—N2—Ni1 116.3 (2) C17—C16—C15 119.4 (4)
C12—N2—Ni1 116.6 (2) C17—C16—H16 120.3
C18—N3—C14 118.6 (3) C15—C16—H16 120.3
C18—N3—Ni1 126.3 (3) C18—C17—C16 118.6 (4)
C14—N3—Ni1 113.3 (2) C18—C17—H17 120.7
C6—C1—C2 118.9 (3) C16—C17—H17 120.7
C6—C1—P1 119.3 (3) N3—C18—C17 122.6 (4)
C2—C1—P1 121.6 (3) N3—C18—H18 118.7
C3—C2—C1 120.9 (3) C17—C18—H18 118.7
O3—P1—O1—Ni1 −179.15 (19) O4—P2—C3—C4 168.7 (3)
O2—P1—O1—Ni1 55.7 (3) O6—P2—C3—C4 −65.6 (3)
C1—P1—O1—Ni1 −57.0 (3) O5—P2—C3—C4 51.8 (4)
N2—Ni1—O1—P1 −64.4 (2) C2—C3—C4—C5 −0.7 (6)
O41—Ni1—O1—P1 110.4 (2) P2—C3—C4—C5 177.4 (3)
N1—Ni1—O1—P1 13.8 (2) C3—C4—C5—C6 0.8 (6)
N3—Ni1—O1—P1 −143.5 (2) C4—C5—C6—C1 −0.4 (6)
N2—Ni1—N1—C7 −166.2 (3) C2—C1—C6—C5 −0.1 (6)
O41—Ni1—N1—C7 15.7 (3) P1—C1—C6—C5 174.7 (3)
O40—Ni1—N1—C7 −72.8 (3) C11—N1—C7—C8 −0.8 (6)
O1—Ni1—N1—C7 108.1 (3) Ni1—N1—C7—C8 159.6 (3)
N3—Ni1—N1—C7 −151.1 (3) N1—C7—C8—C9 −2.0 (6)
N2—Ni1—N1—C11 −5.1 (3) C7—C8—C9—C10 2.3 (6)
O41—Ni1—N1—C11 176.9 (3) C8—C9—C10—C11 0.0 (6)
O40—Ni1—N1—C11 88.4 (3) C7—N1—C11—C10 3.2 (6)
O1—Ni1—N1—C11 −90.8 (3) Ni1—N1—C11—C10 −159.2 (3)
N3—Ni1—N1—C11 10.1 (5) C7—N1—C11—C12 −179.9 (3)
N1—Ni1—N2—C13 −171.4 (3) Ni1—N1—C11—C12 17.7 (4)
O40—Ni1—N2—C13 103.0 (3) C9—C10—C11—N1 −2.8 (6)
O1—Ni1—N2—C13 −71.3 (3) C9—C10—C11—C12 −179.3 (4)
N3—Ni1—N2—C13 14.6 (3) C13—N2—C12—C13i 2.5 (6)
N1—Ni1—N2—C12 −10.2 (3) Ni1—N2—C12—C13i −157.1 (3)
O40—Ni1—N2—C12 −95.8 (3) C13—N2—C12—C11 −178.3 (3)
O1—Ni1—N2—C12 89.9 (3) Ni1—N2—C12—C11 22.1 (4)
N3—Ni1—N2—C12 175.8 (3) N1—C11—C12—N2 −26.0 (4)
N2—Ni1—N3—C18 165.3 (3) C10—C11—C12—N2 150.7 (4)
O41—Ni1—N3—C18 −16.1 (3) N1—C11—C12—C13i 153.1 (4)
N1—Ni1—N3—C18 150.2 (3) C10—C11—C12—C13i −30.2 (6)
O40—Ni1—N3—C18 72.4 (3) C12—N2—C13—C12i −2.5 (6)
O1—Ni1—N3—C18 −106.2 (3) Ni1—N2—C13—C12i 157.1 (3)
N2—Ni1—N3—C14 0.5 (3) C12—N2—C13—C14 174.8 (3)
O41—Ni1—N3—C14 179.0 (2) Ni1—N2—C13—C14 −25.5 (4)
N1—Ni1—N3—C14 −14.6 (5) C18—N3—C14—C15 −5.4 (5)
O40—Ni1—N3—C14 −92.4 (3) Ni1—N3—C14—C15 160.7 (3)
O1—Ni1—N3—C14 89.0 (3) C18—N3—C14—C13 −179.6 (3)
O1—P1—C1—C6 −51.1 (3) Ni1—N3—C14—C13 −13.5 (4)
O3—P1—C1—C6 72.0 (3) N2—C13—C14—N3 25.5 (4)
O2—P1—C1—C6 −169.9 (3) C12i—C13—C14—N3 −157.6 (4)
O1—P1—C1—C2 123.6 (3) N2—C13—C14—C15 −148.6 (4)
O3—P1—C1—C2 −113.4 (3) C12i—C13—C14—C15 28.3 (6)
O2—P1—C1—C2 4.7 (4) N3—C14—C15—C16 4.3 (6)
C6—C1—C2—C3 0.2 (6) C13—C14—C15—C16 178.0 (4)
P1—C1—C2—C3 −174.5 (3) C14—C15—C16—C17 0.5 (6)
C1—C2—C3—C4 0.2 (6) C15—C16—C17—C18 −4.2 (6)
C1—C2—C3—P2 −177.9 (3) C14—N3—C18—C17 1.5 (6)
O4—P2—C3—C2 −13.2 (4) Ni1—N3—C18—C17 −162.6 (3)
O6—P2—C3—C2 112.5 (3) C16—C17—C18—N3 3.2 (6)
O5—P2—C3—C2 −130.2 (3)

Symmetry codes: (i) −x, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O2—H2'···O3ii 0.82 1.91 2.536 (4) 132
O5—H5'···O6iii 0.82 1.82 2.606 (4) 162
O40—H40A···O3iv 0.84 1.95 2.784 (4) 170
O40—H40B···O4v 0.88 1.83 2.711 (4) 175
O41—H41B···O6v 0.83 1.82 2.625 (4) 163
O90—H90B···O4vi 0.92 1.84 2.747 (4) 166
O41—H41A···O90 0.88 1.83 2.643 (4) 151
O90—H90A···O1 0.92 1.92 2.780 (4) 154

Symmetry codes: (ii) −x+1, −y+1, −z+1; (iii) −x+1, −y, −z+2; (iv) x−1, y, z; (v) x−1, y+1, z; (vi) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2273).

References

  1. Alberti, G., Costantino, U., Alluli, S. & Tomassini, N. (1978). J. Inorg. Nucl. Chem.40, 1113–1117.
  2. Armatas, G. N., Allis, D. A., Prosvirin, A., Carnutu, G., O’Connor, C. J., Dunbar, K. & Zubieta, J. (2008). Inorg. Chem.47, 832–854. [DOI] [PubMed]
  3. Bauer, E. M., Bellito, C., Righini, G., Colapietro, M., Portalone, G., Drillon, M. & Rabu, P. (2008). Inorg. Chem.47, 10945–10952. [DOI] [PubMed]
  4. Brandenburg, K. & Putz, H. (1999). DIAMOND Crystal Impact GbR, Bonn, Germany.
  5. Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.
  6. Burkholder, E., Golub, V., O’Connor, C. J. & Zubieta, J. (2003). Chem. Commun. pp. 2128–2129. [DOI] [PubMed]
  7. Burkholder, E. & Zubieta, J. (2004). Inorg. Chim. Acta, 357, 279–284.
  8. Burkholder, E. & Zubieta, J. (2005). Inorg. Chim. Acta, 358, 116–122.
  9. Clearfield, A. (1998). Prog. Inorg. Chem.47, 371–510.
  10. Finn, R. C., Zubieta, J. & Haushalter, R. C. (2003). Prog. Inorg. Chem.51, 421–601.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Vermeulen, L. A. (1997). Prog. Inorg. Chem.44, 143–166.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, New_Global_Publ_Block. DOI: 10.1107/S1600536810041279/pk2273sup1.cif

e-66-m1424-sup1.cif (24.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810041279/pk2273Isup2.hkl

e-66-m1424-Isup2.hkl (247KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES