Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Oct 9;66(Pt 11):o2755. doi: 10.1107/S1600536810039462

Tris[2-(2-thienyl­methyl­amino)­eth­yl]ammonium triiodide

Muhammet Işıklan a, Frank R Fronczek b, Md Alamgir Hossain a,*
PMCID: PMC3009322  PMID: 21588959

Abstract

In the title compound, C21H33N4S3 3+·3I, three secondary amines are protonated, while the central amine remains unprotonated. One thio­phene is disordered with an occupancy ratio of 0.868 (6)/0.132 (6). Each protonated amine is involved in N—H⋯I hydrogen-bonding inter­actions with the iodide anions.

Related literature

For general background to anion hosts, see: Bianchi et al. (1997); Kang et al. (2005); Hossain (2008); For related structures, see: Bazzicalupi et al. (2009); Hossain et al. (2002, 2004); Burgess et al. (1991); Saeed et al. (2010).graphic file with name e-66-o2755-scheme1.jpg

Experimental

Crystal data

  • C21H33N4S3 3+·3I

  • M r = 818.42

  • Orthorhombic, Inline graphic

  • a = 10.5433 (5) Å

  • b = 11.4203 (6) Å

  • c = 24.5107 (15) Å

  • V = 2951.3 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.41 mm−1

  • T = 90 K

  • 0.20 × 0.17 × 0.15 mm

Data collection

  • Nonius KappaCCD diffractometer with Oxford Cryostream

  • Absorption correction: multi-scan (HKL SCALEPACK; Otwinowski & Minor, 1997) T min = 0.549, T max = 0.629

  • 90447 measured reflections

  • 10653 independent reflections

  • 9446 reflections with I > 2σ(I)

  • R int = 0.069

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038

  • wR(F 2) = 0.093

  • S = 1.04

  • 10653 reflections

  • 277 parameters

  • 30 restraints

  • H-atom parameters constrained

  • Δρmax = 2.96 e Å−3

  • Δρmin = −2.18 e Å−3

  • Absolute structure: Flack (1983), 4708 Friedel pairs

  • Flack parameter: 0.02 (2)

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP–3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810039462/rk2235sup1.cif

e-66-o2755-sup1.cif (25.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810039462/rk2235Isup2.hkl

e-66-o2755-Isup2.hkl (510.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H21N⋯I1i 0.92 2.79 3.557 (4) 142
N2—H22N⋯I2 0.92 2.67 3.543 (4) 160
N3—H31N⋯I1 0.92 2.78 3.547 (3) 142
N3—H32N⋯I3 0.92 2.59 3.460 (3) 158
N4—H41N⋯I1 0.92 2.73 3.553 (4) 150
N4—H42N⋯I2ii 0.92 2.57 3.479 (4) 172

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This work was supported by the National Institutes of Health, Division of National Center for Research Resources, under grant No. G12RR013459. This material is based upon work supported by the National Science Foundation under CHE–0821357. Purchase of the diffractometer was made possible by grant No. LEQSF (1999–2000)–ENH–TR–13, administered by the Louisiana Board of Regents.

supplementary crystallographic information

Comment

Anions play a key role in many chemical and biological processes. In particular, structural characterization of an anion complex is important in achieving selective hosts for anions (Hossain, 2008, Saeed et al., 2010). Among the numerous systems, trigonal receptors are of interest because of their synthetic simplicity and capability for anion binding though hydrogen bonding interactions. Tris(aminoethyl)–amine is an excellent building block for synthesizing fuctionalized tripodal hosts for anion binding (Burgess et al., 1991; Hossain et al., 2004; Bazzicalupi, et al., 2009). These molecules have been shown to bind a variety of anion including nitrate, phosphate and sulfate (Bianchi et al., 1997; Kang et al., 2005). Herein, we report the molecular structure of the title compound in which three iodides are held by hydrogen bonding with protonated secondary amines.

Single crystal analysis of the title compound reveals that the molecule crystallizes in its orthorhombic space group forming a cavity. The tren unit is triply charged, where all three secondary N atoms are protonated. The central amine is not protonated. The three arms form a cavity, and one thiophene unit is disordered. In the complex, the protonated amines are involved in hydrogen bonding interactions with iodide anions having N···I distances 3.460 (3) to 3.553 (4)Å (Fig. 1 and Table 1). One iodide (I1) accepts two hydrogen bonds from two protonated amines (N3 and N4), while each of the other two iodides accepts one hydrogen bond from N2 and N3. Therefore, one secondary nitrogen (N3) donates two hydrogen bonds to two iodides (I1 and I3). The N···I distances are comparable with those observed in an iodide complex of an azacryptand (3.476 (4)Å and 3.632 (4)Å) reported earlier (Hossain et al., 2002).

The disorder of the thiophene ring containing S3 involves two conformations, differing by rotation about two different bonds. One is a twofold rotation about C17—C18, which swaps S3 and C19. Refinement of this type of model resulted in elongated ellipsoids in the plane of the ring for all atoms of the thiophene, as well as unacceptable residual densities. This was interpreted as a second conformational difference involving a difference in rotation about the N4—C17 bond, amounting to a torsional difference of 11.7°.

Experimental

To a solution of 2–thiophene aldehyde (4.60 g, 41 mmol) in diethylether (50 ml) was added tris(2–aminoethyl)amine (2.00 g, 13.7 mmol) in ethanol (50 ml). The mixture was stirred overnight at room temperature, and the solvent was evaporated. After diluting with methanol (100 ml), NaBH4 (2.00 g) was added to convert the imine into the corresponding amine. The reaction mixture was stirred for 24 hrs at room temperature. After evaporation of the solvent, the residue was partitioned in water/CH2Cl2 (50/50 ml). The organic layers were collected and dried with MgSO4 to give an oily product. Yield 4.38 g (74%). 1H NMR (500 MHz, CDCl3, TMS): δ 2.58 (t, 6H, NCH2), 2.69 ((t, 6H, NCH2CH2), 3.95 (s, 6H, ArCH2)), 6.89 (b, 3H, ArH), 6.93 (b, ArH), 7.18 (b, ArH). MS (ESI): m/z (+) 435 (M + H)+. The iodide salt was prepared from the reaction of the free amine (0.20 g, 0.47 mmol) with HI in ethanol. The white precipitate was obtained after evaporation of the solvent. The salt was redissolved in water and ethanol (1:2 v/v, 1 ml) and crystals suitable for X–ray analysis were grown from slow evaporation of the solvent at room temperature.

Refinement

H atoms based on C were placed in idealized positions with C—H distances 0.95Å–0.99Å, N—H distances 0.92Å, and thereafter treated as riding. Uiso for H was assigned as 1.2 times Ueq of the attached atom. The largest residual density peak was 0.81Å from I2, and the deepest hole was 0.59Å from I2. The disorder in the thiophene ring containing S3 was modeled with two orientations having populations 0.868 (6) and 0.132 (6), their geometries being restrained to be the same as that of the thiophene containing S1. This required 30 restraints. Full anisotropic refinement was not successful for the disordered region, and it was necessary to treat nine atoms as isotropic, with a common displacement parameter for the five atoms of the minor contributor thiophene ring. The absolute structure was determined by refinement of the Flack (1983) parameter, based on 4708 Friedel pairs. Six low–angle reflections were given zero weight in the refinement.

Figures

Fig. 1.

Fig. 1.

The structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius. Only major fragment is drawn. The several H bonds are drawn by dashed lines.

Crystal data

C21H33N4S33+·3I F(000) = 1576
Mr = 818.42 Dx = 1.842 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 5918 reflections
a = 10.5433 (5) Å θ = 2.5–32.6°
b = 11.4203 (6) Å µ = 3.41 mm1
c = 24.5107 (15) Å T = 90 K
V = 2951.3 (3) Å3 Block, colourless
Z = 4 0.20 × 0.17 × 0.15 mm

Data collection

Nonius KappaCCD diffractometer with Oxford Cryostream 10653 independent reflections
Radiation source: fine–focus sealed tube 9446 reflections with I > 2σ(I)
graphite Rint = 0.069
ω– and φ–scans θmax = 32.6°, θmin = 2.6°
Absorption correction: multi-scan (HKL SCALEPACK; Otwinowski & Minor, 1997) h = −15→15
Tmin = 0.549, Tmax = 0.629 k = −17→17
90447 measured reflections l = −36→36

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038 H-atom parameters constrained
wR(F2) = 0.093 w = 1/[σ2(Fo2) + (0.0425P)2 + 8.7643P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max = 0.003
10653 reflections Δρmax = 2.96 e Å3
277 parameters Δρmin = −2.18 e Å3
30 restraints Absolute structure: Flack (1983), 4708 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.02 (2)

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
I1 0.66009 (2) 0.80566 (2) 0.512489 (10) 0.01937 (5)
I2 0.28784 (4) 0.15756 (3) 0.526628 (15) 0.03742 (9)
I3 0.69376 (3) 0.78787 (3) 0.708662 (14) 0.03409 (8)
S2 0.31359 (12) 1.01963 (11) 0.68942 (5) 0.0312 (2)
N1 0.4937 (3) 0.5219 (3) 0.59749 (14) 0.0169 (6)
N2 0.3384 (4) 0.4343 (3) 0.46508 (14) 0.0209 (6)
H21N 0.2630 0.4723 0.4718 0.025*
H22N 0.3266 0.3558 0.4717 0.025*
N3 0.4390 (3) 0.7677 (3) 0.62014 (14) 0.0179 (6)
H31N 0.4863 0.7388 0.5916 0.021*
H32N 0.4946 0.7922 0.6467 0.021*
N4 0.7721 (4) 0.5480 (4) 0.57790 (16) 0.0247 (7)
H41N 0.7136 0.6020 0.5660 0.030*
H42N 0.7851 0.4954 0.5500 0.030*
C1 0.3954 (4) 0.4734 (4) 0.56157 (18) 0.0210 (8)
H1A 0.3155 0.5180 0.5662 0.025*
H1B 0.3789 0.3907 0.5713 0.025*
C2 0.4394 (4) 0.4811 (4) 0.50268 (17) 0.0225 (8)
H2A 0.4580 0.5637 0.4933 0.027*
H2B 0.5183 0.4352 0.4980 0.027*
C3 0.3761 (5) 0.4522 (4) 0.40606 (18) 0.0273 (9)
H3A 0.3702 0.5367 0.3973 0.033*
H3B 0.4657 0.4283 0.4015 0.033*
S1 0.13415 (11) 0.40416 (11) 0.36040 (5) 0.0283 (2)
C4 0.2957 (4) 0.3848 (4) 0.36614 (18) 0.0251 (8)
C5 0.3416 (5) 0.3115 (4) 0.32588 (17) 0.0267 (8)
H5 0.4283 0.2907 0.3217 0.032*
C6 0.2417 (5) 0.2710 (4) 0.29130 (19) 0.0315 (10)
H6 0.2547 0.2187 0.2617 0.038*
C7 0.1270 (5) 0.3147 (4) 0.30498 (19) 0.0296 (9)
H7 0.0509 0.2974 0.2858 0.036*
C8 0.4383 (4) 0.5616 (4) 0.64961 (17) 0.0205 (7)
H8A 0.5074 0.5772 0.6760 0.025*
H8B 0.3845 0.4985 0.6648 0.025*
C9 0.3594 (4) 0.6709 (4) 0.64269 (16) 0.0196 (7)
H9A 0.2878 0.6549 0.6177 0.024*
H9B 0.3240 0.6948 0.6784 0.024*
C10 0.3644 (4) 0.8723 (4) 0.60019 (17) 0.0202 (8)
H10A 0.4240 0.9363 0.5908 0.024*
H10B 0.3179 0.8505 0.5666 0.024*
C11 0.2721 (4) 0.9156 (4) 0.64173 (17) 0.0209 (8)
C12 0.1429 (5) 0.8797 (5) 0.64632 (19) 0.0309 (11)
H12 0.1017 0.8239 0.6237 0.037*
C13 0.0854 (5) 0.9420 (5) 0.6908 (2) 0.0340 (11)
H13 −0.0005 0.9312 0.7013 0.041*
C14 0.1650 (5) 1.0182 (5) 0.7170 (2) 0.0336 (10)
H14 0.1403 1.0651 0.7472 0.040*
C15 0.5898 (4) 0.4310 (4) 0.6089 (2) 0.0243 (8)
H15A 0.6016 0.3819 0.5760 0.029*
H15B 0.5590 0.3798 0.6387 0.029*
C16 0.7168 (4) 0.4837 (4) 0.62527 (18) 0.0235 (8)
H16A 0.7049 0.5382 0.6563 0.028*
H16B 0.7755 0.4208 0.6370 0.028*
C17 0.8947 (4) 0.6105 (5) 0.5889 (2) 0.0337 (11)
H17A 0.8785 0.6789 0.6127 0.040* 0.868 (6)
H17B 0.9304 0.6396 0.5541 0.040* 0.868 (6)
H17C 0.8735 0.6876 0.6050 0.040* 0.132 (6)
H17D 0.9355 0.6258 0.5532 0.040* 0.132 (6)
S3A 1.04963 (14) 0.40627 (17) 0.58903 (9) 0.0441 (6) 0.868 (6)
C18A 0.9893 (7) 0.5305 (6) 0.6160 (3) 0.0322 (13)* 0.868 (6)
C19A 1.0385 (6) 0.5521 (6) 0.6685 (3) 0.0331 (12)* 0.868 (6)
H19A 1.0177 0.6178 0.6905 0.040* 0.868 (6)
C20A 1.1234 (8) 0.4622 (7) 0.6835 (3) 0.0493 (18)* 0.868 (6)
H20A 1.1680 0.4617 0.7172 0.059* 0.868 (6)
C21A 1.1351 (8) 0.3783 (7) 0.6464 (3) 0.0448 (17)* 0.868 (6)
H21A 1.1856 0.3103 0.6513 0.054* 0.868 (6)
S3B 1.0412 (10) 0.6016 (10) 0.6856 (4) 0.033 (3)* 0.132 (6)
C18B 0.993 (4) 0.554 (3) 0.6254 (12) 0.033 (3)* 0.132 (6)
C19B 1.054 (4) 0.447 (3) 0.6152 (12) 0.033 (3)* 0.132 (6)
H19B 1.0474 0.4043 0.5819 0.040* 0.132 (6)
C20B 1.128 (4) 0.408 (2) 0.6616 (14) 0.033 (3)* 0.132 (6)
H20B 1.1692 0.3344 0.6640 0.040* 0.132 (6)
C21B 1.132 (3) 0.489 (3) 0.7001 (13) 0.033 (3)* 0.132 (6)
H21B 1.1821 0.4833 0.7323 0.040* 0.132 (6)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
I1 0.01816 (10) 0.02106 (11) 0.01888 (10) 0.00339 (9) 0.00220 (9) 0.00444 (9)
I2 0.0504 (2) 0.02224 (13) 0.03961 (17) −0.01073 (13) −0.01876 (15) 0.00445 (12)
I3 0.03868 (16) 0.02779 (14) 0.03580 (15) −0.00952 (12) −0.01948 (13) 0.00415 (12)
S2 0.0324 (6) 0.0314 (6) 0.0298 (5) 0.0004 (5) 0.0018 (5) −0.0100 (4)
N1 0.0152 (14) 0.0155 (14) 0.0200 (15) 0.0018 (12) −0.0020 (12) −0.0027 (12)
N2 0.0193 (14) 0.0213 (15) 0.0221 (15) −0.0023 (13) −0.0029 (13) −0.0018 (12)
N3 0.0152 (14) 0.0196 (15) 0.0189 (15) −0.0007 (11) −0.0005 (12) −0.0024 (12)
N4 0.0216 (17) 0.0277 (18) 0.0248 (17) 0.0067 (14) 0.0015 (14) 0.0108 (14)
C1 0.0190 (18) 0.0216 (19) 0.0223 (18) −0.0027 (15) −0.0032 (15) 0.0002 (15)
C2 0.0193 (17) 0.0244 (19) 0.024 (2) −0.0032 (15) 0.0001 (14) −0.0034 (15)
C3 0.034 (2) 0.030 (2) 0.0179 (18) −0.0056 (18) 0.0019 (17) 0.0004 (16)
S1 0.0268 (6) 0.0249 (5) 0.0334 (6) 0.0016 (4) −0.0023 (4) −0.0020 (4)
C4 0.0248 (19) 0.0242 (19) 0.026 (2) −0.0003 (17) −0.0041 (17) 0.0008 (16)
C5 0.033 (2) 0.026 (2) 0.0215 (17) −0.0029 (19) −0.0073 (16) 0.0021 (16)
C6 0.047 (3) 0.028 (2) 0.0199 (19) 0.0038 (19) −0.0049 (19) 0.0035 (17)
C7 0.035 (2) 0.027 (2) 0.027 (2) −0.0053 (18) −0.0090 (17) 0.0038 (17)
C8 0.0180 (17) 0.0239 (19) 0.0196 (18) −0.0032 (14) −0.0006 (14) 0.0003 (15)
C9 0.0171 (17) 0.0211 (18) 0.0208 (17) −0.0004 (13) 0.0043 (13) −0.0005 (14)
C10 0.023 (2) 0.0185 (17) 0.0191 (17) 0.0024 (14) 0.0001 (14) −0.0026 (13)
C11 0.0221 (19) 0.0207 (18) 0.0200 (18) 0.0051 (15) −0.0031 (15) −0.0042 (14)
C12 0.030 (2) 0.040 (3) 0.0221 (19) 0.024 (2) 0.0050 (17) −0.0012 (18)
C13 0.025 (2) 0.044 (3) 0.034 (2) 0.010 (2) −0.0009 (19) −0.008 (2)
C14 0.032 (2) 0.042 (3) 0.027 (2) 0.012 (2) 0.0066 (19) −0.0079 (19)
C15 0.0193 (19) 0.023 (2) 0.030 (2) 0.0009 (15) 0.0007 (15) 0.0011 (17)
C16 0.0158 (18) 0.027 (2) 0.027 (2) 0.0045 (15) 0.0024 (15) 0.0129 (16)
C17 0.0174 (19) 0.043 (3) 0.041 (3) 0.0009 (18) −0.0022 (19) 0.024 (2)
S3A 0.0175 (6) 0.0484 (11) 0.0664 (13) 0.0046 (6) 0.0020 (7) 0.0329 (9)

Geometric parameters (Å, °)

S2—C14 1.706 (5) C9—H9B 0.9900
S2—C11 1.723 (4) C10—C11 1.493 (6)
N1—C1 1.468 (5) C10—H10A 0.9900
N1—C8 1.476 (5) C10—H10B 0.9900
N1—C15 1.477 (6) C11—C12 1.427 (7)
N2—C2 1.506 (5) C12—C13 1.436 (7)
N2—C3 1.514 (6) C12—H12 0.9500
N2—H21N 0.9200 C13—C14 1.368 (8)
N2—H22N 0.9200 C13—H13 0.9500
N3—C9 1.493 (5) C14—H14 0.9500
N3—C10 1.512 (5) C15—C16 1.522 (6)
N3—H31N 0.9200 C15—H15A 0.9900
N3—H32N 0.9200 C15—H15B 0.9900
N4—C16 1.492 (5) C16—H16A 0.9900
N4—C17 1.501 (6) C16—H16B 0.9900
N4—H41N 0.9200 C17—C18A 1.507 (8)
N4—H42N 0.9200 C17—C18B 1.51 (2)
C1—C2 1.519 (6) C17—H17A 0.9900
C1—H1A 0.9900 C17—H17B 0.9900
C1—H1B 0.9900 C17—H17C 0.9900
C2—H2A 0.9900 C17—H17D 0.9900
C2—H2B 0.9900 S3A—C18A 1.690 (6)
C3—C4 1.506 (6) S3A—C21A 1.700 (7)
C3—H3A 0.9900 C18A—C19A 1.409 (8)
C3—H3B 0.9900 C19A—C20A 1.411 (9)
S1—C7 1.702 (5) C19A—H19A 0.9500
S1—C4 1.724 (5) C20A—C21A 1.327 (10)
C4—C5 1.382 (6) C20A—H20A 0.9500
C5—C6 1.429 (6) C21A—H21A 0.9500
C5—H5 0.9500 S3B—C21B 1.641 (16)
C6—C7 1.350 (7) S3B—C18B 1.655 (16)
C6—H6 0.9500 C18B—C19B 1.406 (17)
C7—H7 0.9500 C19B—C20B 1.448 (17)
C8—C9 1.510 (6) C19B—H19B 0.9500
C8—H8A 0.9900 C20B—C21B 1.322 (17)
C8—H8B 0.9900 C20B—H20B 0.9500
C9—H9A 0.9900 C21B—H21B 0.9500
C14—S2—C11 91.7 (2) H10A—C10—H10B 107.9
C1—N1—C8 110.8 (3) C12—C11—C10 125.5 (4)
C1—N1—C15 109.5 (3) C12—C11—S2 112.8 (3)
C8—N1—C15 108.9 (3) C10—C11—S2 121.7 (3)
C2—N2—C3 110.6 (3) C11—C12—C13 108.7 (5)
C2—N2—H21N 109.5 C11—C12—H12 125.7
C3—N2—H21N 109.5 C13—C12—H12 125.7
C2—N2—H22N 109.5 C14—C13—C12 114.3 (5)
C3—N2—H22N 109.5 C14—C13—H13 122.8
H21N—N2—H22N 108.1 C12—C13—H13 122.8
C9—N3—C10 114.3 (3) C13—C14—S2 112.6 (4)
C9—N3—H31N 108.7 C13—C14—H14 123.7
C10—N3—H31N 108.7 S2—C14—H14 123.7
C9—N3—H32N 108.7 N1—C15—C16 112.1 (4)
C10—N3—H32N 108.7 N1—C15—H15A 109.2
H31N—N3—H32N 107.6 C16—C15—H15A 109.2
C16—N4—C17 115.5 (4) N1—C15—H15B 109.2
C16—N4—H41N 108.4 C16—C15—H15B 109.2
C17—N4—H41N 108.4 H15A—C15—H15B 107.9
C16—N4—H42N 108.4 N4—C16—C15 109.5 (4)
C17—N4—H42N 108.4 N4—C16—H16A 109.8
H41N—N4—H42N 107.5 C15—C16—H16A 109.8
N1—C1—C2 109.4 (3) N4—C16—H16B 109.8
N1—C1—H1A 109.8 C15—C16—H16B 109.8
C2—C1—H1A 109.8 H16A—C16—H16B 108.2
N1—C1—H1B 109.8 N4—C17—C18A 111.1 (5)
C2—C1—H1B 109.8 N4—C17—C18B 119.4 (19)
H1A—C1—H1B 108.2 N4—C17—H17A 109.4
N2—C2—C1 110.2 (3) C18A—C17—H17A 109.4
N2—C2—H2A 109.6 C18B—C17—H17A 96.2
C1—C2—H2A 109.6 N4—C17—H17B 109.4
N2—C2—H2B 109.6 C18A—C17—H17B 109.4
C1—C2—H2B 109.6 C18B—C17—H17B 113.2
H2A—C2—H2B 108.1 H17A—C17—H17B 108.0
C4—C3—N2 113.8 (4) N4—C17—H17C 107.5
C4—C3—H3A 108.8 C18A—C17—H17C 120.9
N2—C3—H3A 108.8 C18B—C17—H17C 107.5
C4—C3—H3B 108.8 H17B—C17—H17C 97.5
N2—C3—H3B 108.8 N4—C17—H17D 107.5
H3A—C3—H3B 107.7 C18A—C17—H17D 102.1
C7—S1—C4 91.8 (2) C18B—C17—H17D 107.5
C5—C4—C3 125.2 (4) H17A—C17—H17D 117.2
C5—C4—S1 111.5 (3) H17C—C17—H17D 107.0
C3—C4—S1 122.9 (4) C18A—S3A—C21A 91.9 (3)
C4—C5—C6 111.2 (4) C19A—C18A—C17 122.7 (6)
C4—C5—H5 124.4 C19A—C18A—S3A 111.4 (5)
C6—C5—H5 124.4 C17—C18A—S3A 125.8 (5)
C7—C6—C5 113.2 (4) C18A—C19A—C20A 110.2 (6)
C7—C6—H6 123.4 C18A—C19A—H19A 124.9
C5—C6—H6 123.4 C20A—C19A—H19A 124.9
C6—C7—S1 112.3 (4) C21A—C20A—C19A 113.9 (7)
C6—C7—H7 123.8 C21A—C20A—H20A 123.0
S1—C7—H7 123.8 C19A—C20A—H20A 123.0
N1—C8—C9 112.0 (3) C20A—C21A—S3A 112.5 (6)
N1—C8—H8A 109.2 C20A—C21A—H21A 123.8
C9—C8—H8A 109.2 S3A—C21A—H21A 123.8
N1—C8—H8B 109.2 C21B—S3B—C18B 96.6 (11)
C9—C8—H8B 109.2 C19B—C18B—C17 125.6 (18)
H8A—C8—H8B 107.9 C19B—C18B—S3B 107.7 (14)
N3—C9—C8 110.1 (3) C17—C18B—S3B 126.6 (17)
N3—C9—H9A 109.6 C18B—C19B—C20B 111.8 (16)
C8—C9—H9A 109.6 C18B—C19B—H19B 124.1
N3—C9—H9B 109.6 C20B—C19B—H19B 124.1
C8—C9—H9B 109.6 C21B—C20B—C19B 111.5 (17)
H9A—C9—H9B 108.1 C21B—C20B—H20B 124.2
C11—C10—N3 112.3 (3) C19B—C20B—H20B 124.2
C11—C10—H10A 109.1 C20B—C21B—S3B 111.9 (15)
N3—C10—H10A 109.1 C20B—C21B—H21B 124.0
C11—C10—H10B 109.1 S3B—C21B—H21B 124.0
N3—C10—H10B 109.1
C8—N1—C1—C2 156.4 (4) C1—N1—C15—C16 156.8 (4)
C15—N1—C1—C2 −83.5 (4) C8—N1—C15—C16 −82.0 (4)
C3—N2—C2—C1 174.6 (4) C17—N4—C16—C15 176.8 (4)
N1—C1—C2—N2 −178.7 (3) N1—C15—C16—N4 −66.4 (5)
C2—N2—C3—C4 167.0 (4) C16—N4—C17—C18A 50.2 (6)
N2—C3—C4—C5 −128.0 (5) C16—N4—C17—C18B 38.5 (15)
N2—C3—C4—S1 60.0 (5) N4—C17—C18A—C19A −118.1 (7)
C7—S1—C4—C5 0.3 (4) C18B—C17—C18A—C19A 12 (9)
C7—S1—C4—C3 173.3 (4) N4—C17—C18A—S3A 61.9 (7)
C3—C4—C5—C6 −173.7 (4) C18B—C17—C18A—S3A −168 (10)
S1—C4—C5—C6 −0.9 (5) C21A—S3A—C18A—C19A 2.0 (6)
C4—C5—C6—C7 1.1 (6) C21A—S3A—C18A—C17 −178.0 (7)
C5—C6—C7—S1 −0.9 (6) C17—C18A—C19A—C20A 179.3 (7)
C4—S1—C7—C6 0.3 (4) S3A—C18A—C19A—C20A −0.7 (8)
C1—N1—C8—C9 −71.3 (4) C18A—C19A—C20A—C21A −1.4 (10)
C15—N1—C8—C9 168.2 (3) C19A—C20A—C21A—S3A 3.0 (10)
C10—N3—C9—C8 167.4 (3) C18A—S3A—C21A—C20A −2.9 (7)
N1—C8—C9—N3 −59.3 (4) N4—C17—C18B—C19B 62 (5)
C9—N3—C10—C11 51.0 (4) C18A—C17—C18B—C19B 7(6)
N3—C10—C11—C12 −91.8 (5) N4—C17—C18B—S3B −114 (3)
N3—C10—C11—S2 89.5 (4) C18A—C17—C18B—S3B −169 (13)
C14—S2—C11—C12 0.6 (4) C21B—S3B—C18B—C19B −2(4)
C14—S2—C11—C10 179.4 (4) C21B—S3B—C18B—C17 175 (4)
C10—C11—C12—C13 −179.4 (4) C17—C18B—C19B—C20B −172 (4)
S2—C11—C12—C13 −0.6 (5) S3B—C18B—C19B—C20B 5(5)
C11—C12—C13—C14 0.3 (6) C18B—C19B—C20B—C21B −7(6)
C12—C13—C14—S2 0.1 (6) C19B—C20B—C21B—S3B 5(5)
C11—S2—C14—C13 −0.4 (4) C18B—S3B—C21B—C20B −2(4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H21N···I1i 0.92 2.79 3.557 (4) 142
N2—H22N···I2 0.92 2.67 3.543 (4) 160
N3—H31N···I1 0.92 2.78 3.547 (3) 142
N3—H32N···I3 0.92 2.59 3.460 (3) 158
N4—H41N···I1 0.92 2.73 3.553 (4) 150
N4—H42N···I2ii 0.92 2.57 3.479 (4) 172

Symmetry codes: (i) x−1/2, −y+3/2, −z+1; (ii) x+1/2, −y+1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2235).

References

  1. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  2. Bazzicalupi, C., Bencini, A., Bianchi, A., Danesi, A., Giorgi, C. & Valtancoli, B. (2009). Inorg. Chem.48, 2391–2398. [DOI] [PubMed]
  3. Bianchi, A., García-España, E. & Bowman-James, K. (1997). Supramolecular Chemistry of Anions. New York: Wiley–VCH.
  4. Burgess, J., Al-Alousy, A., Fawcett, J. & Russell, D. R. (1991). Acta Cryst. C47, 2506–2508.
  5. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  6. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  7. Hossain, M. A. (2008). Curr. Org. Chem.12, 1231–1256.
  8. Hossain, M. A., Lilinares, J. M., Powell, R. D. & Bowman-James, K. (2002). J. Supramol. Chem.2, 143–151.
  9. Hossain, M. A., Liljegren, J. A., Powell, R. D. & Bowman-James, K. (2004). Inorg. Chem.43, 3751–3755. [DOI] [PubMed]
  10. Kang, S. O., Hossain, M. A., Powell, D. & Bowman-James, K. (2005). Chem. Commun. pp. 328–330. [DOI] [PubMed]
  11. Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.
  12. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  13. Saeed, M. A., Fronczek, F. R. & Hossain, M. A. (2010). Acta Cryst. E66, o656–o657. [DOI] [PMC free article] [PubMed]
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810039462/rk2235sup1.cif

e-66-o2755-sup1.cif (25.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810039462/rk2235Isup2.hkl

e-66-o2755-Isup2.hkl (510.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES