Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Oct 23;66(Pt 11):o2910. doi: 10.1107/S1600536810040274

N-[2-(2-Chloro­phen­yl)-2-hy­droxy­eth­yl]propan-2-aminium benzoate

Hai Feng a,*, Ya Jian Zhou a, Bin Tao Xing a, Yang Guang Qi a, Zheng Wu b
PMCID: PMC3009367  PMID: 21589084

Abstract

In the title compound, C11H17ClNO+·C7H5O2 , obtained by the reaction of chlorprenaline {or 1-(2-chlorophenyl)-2-[(1-methylethyl)amino]ethanol} and benzoic acid, the chlorprenaline is twisted moderately [C—C—C—C torsion angle = −76.00 (17)°] compared with related compounds. The mol­ecules as usual form dimers. In the crystal structure, the two components are connected by classical O—H⋯O and N—H⋯O hydrogen bonds.

Related literature

For related structures, see: Feld et al. (1981); Feng et al. (2010); Tang et al. (2009a ,b ).graphic file with name e-66-o2910-scheme1.jpg

Experimental

Crystal data

  • C11H17ClNO+·C7H5O2

  • M r = 335.82

  • Monoclinic, Inline graphic

  • a = 7.8343 (3) Å

  • b = 13.1260 (5) Å

  • c = 17.7308 (7) Å

  • β = 94.330 (1)°

  • V = 1818.11 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 296 K

  • 0.53 × 0.48 × 0.46 mm

Data collection

  • Rigaku R-AXIS RAPID/ZJUG diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995) T min = 0.871, T max = 0.904

  • 17400 measured reflections

  • 4123 independent reflections

  • 3186 reflections with I > 2σ(I)

  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042

  • wR(F 2) = 0.110

  • S = 1.00

  • 4123 reflections

  • 210 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.32 e Å−3

Data collection: PROCESS-AUTO (Rigaku/MSC, 2006); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810040274/rk2237sup1.cif

e-66-o2910-sup1.cif (20KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810040274/rk2237Isup2.hkl

e-66-o2910-Isup2.hkl (198KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2 0.90 1.85 2.7231 (15) 162
O1—H1⋯O3 0.82 1.93 2.7219 (15) 162
N1—H1B⋯O3i 0.90 1.88 2.7710 (15) 169

Symmetry code: (i) Inline graphic.

Acknowledgments

This work was supported by the Key Scientific and Technological Research Project of the Science and Technology Department of Zhejiang Province of China (grant No. 2009 C32078).

supplementary crystallographic information

Comment

A recent study reports the structure of bis{N-[2-(2-chlorophenyl)-2-hydroxyethyl]propan-2-aminium} oxalate (Tang et al., 2009b), which was synthesized by oxalic acid and chlorprenaline (Tang et al., 2009a). Here using benzoic acid instead of oxalic acid and following a similar synthetic procedure yields the title compound, I.

In I (Fig. 1), the chlorprenaline molecule and the benzoic acid molecule are linked to each other by the N1—H1A···O2 hydogen bond (2.7231 (15)Å) and the O1—H1···O3 hydogen bond (2.7219 (15)Å) (Fig. 2 & Table 1). The chlorprenaline in I are twisted moderately as compared with those of other compounds. The C12—O2 distance of 1.2456 (18)Å is much shorter than the similar distance of 1.2675 (15)Å (Feld et al., 1981). The C1—C6—C7—C8 torsion angle of -76.00 (17)° (104.0 (17)°) is larger than the value of the similar torsion angle of 91.9 (2)° (Tang et al., 2009a). The C9—N1 distance of 1.5096 (17)Å is longer than the value of the similar bond distance of 1.473 (4)Å (Tang et al., 2009b), as similar as the value of the similar bond distance of 1.503 (2)Å (Feng et al., 2010).

Classical hydrogen bonds (O—H···O and N—H···O) are found in the cystal structure (Fig. 2 & Table 1) are essential forces in crystal formation.

Experimental

Racemic chlorprenaline was prepared by chlorprenaline hydrochloride purchased from ShangHai Shengxin Medicine & Chemical Co., Ltd. ShangHai, China. chlorprenaline hydrochloride and NaOH in a molar ratio of 1:1 were mixed and dissolved in a methanol–water solution (1:1 v/v). The precipitate formed was filtered off, washed with water and dried. It was used without further purification. Racemic chlorprenaline (0.5 g, 0.0023 mol) was dissolved in methanol (5 ml) and then Benzoic acid (0.3 g, 0.0023 mol) was added. The mixture was dissovled by heating to 323 K where a clear solution resulted. The resulting solution was concentrated at ambient temperature. Colourless crystals of I separated from the solution in about 68% yield after one day.

Refinement

All of the H atoms were placed in calculated positions and allowed to ride on their parent atoms at distances of 0.93Å (aromatic), 0.98Å (methine), 0.97Å (methylene), 0.96Å (methyl) 0.82Å (hydroxyl) and N—H = 0.90Å, with Uiso(H) = 1.2–1.5 Ueq(C,O,N).

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of I with atom numbering scheme. Displacement ellipsoids are drawn at 50% probability level. H atoms are presented as a small spheres of arbitrary radius.

Fig. 2.

Fig. 2.

The hydrogen bonds (dashed lines) system in I.

Crystal data

C11H17ClNO+·C7H5O2 F(000) = 712
Mr = 335.82 Dx = 1.227 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 12983 reflections
a = 7.8343 (3) Å θ = 3.0–27.4°
b = 13.1260 (5) Å µ = 0.22 mm1
c = 17.7308 (7) Å T = 296 K
β = 94.330 (1)° Chunk, colourless
V = 1818.11 (12) Å3 0.53 × 0.48 × 0.46 mm
Z = 4

Data collection

Rigaku R-AXIS RAPID/ZJUG diffractometer 4123 independent reflections
Radiation source: rolling anode 3186 reflections with I > 2σ(I)
graphite Rint = 0.023
Detector resolution: 10.00 pixels mm-1 θmax = 27.4°, θmin = 3.0°
ω scans h = −9→10
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) k = −15→17
Tmin = 0.871, Tmax = 0.904 l = −22→22
17400 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042 H-atom parameters constrained
wR(F2) = 0.110 w = 1/[σ2(Fo2) + (0.0437P)2 + 0.6461P] where P = (Fo2 + 2Fc2)/3
S = 1.00 (Δ/σ)max < 0.001
4123 reflections Δρmax = 0.31 e Å3
210 parameters Δρmin = −0.32 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0125 (12)

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.45832 (8) 0.73075 (5) 0.69565 (4) 0.0898 (2)
N1 0.27625 (14) 0.59370 (8) 0.48693 (6) 0.0326 (2)
H1A 0.2765 0.5272 0.4744 0.039*
H1B 0.3858 0.6149 0.4912 0.039*
O3 0.40196 (12) 0.31773 (8) 0.50725 (6) 0.0456 (3)
O2 0.23389 (16) 0.40526 (8) 0.42406 (7) 0.0543 (3)
O1 0.25272 (15) 0.43338 (8) 0.61142 (6) 0.0497 (3)
H1 0.3143 0.4081 0.5810 0.075*
C13 0.21403 (17) 0.22582 (10) 0.42001 (8) 0.0369 (3)
C8 0.20481 (18) 0.60417 (11) 0.56199 (8) 0.0392 (3)
H8A 0.0844 0.5862 0.5571 0.047*
H8B 0.2135 0.6748 0.5779 0.047*
C9 0.18157 (18) 0.65197 (11) 0.42338 (9) 0.0418 (3)
H9 0.0642 0.6258 0.4164 0.050*
C1 0.3003 (2) 0.65860 (13) 0.73480 (9) 0.0522 (4)
C14 0.1011 (2) 0.22632 (12) 0.35609 (9) 0.0463 (4)
H14 0.0760 0.2873 0.3309 0.056*
C12 0.28937 (17) 0.32356 (10) 0.45198 (8) 0.0373 (3)
C6 0.23953 (18) 0.57020 (11) 0.69877 (8) 0.0410 (3)
C7 0.29652 (18) 0.53722 (10) 0.62261 (8) 0.0369 (3)
H7 0.4206 0.5458 0.6218 0.044*
C10 0.2707 (2) 0.63197 (14) 0.35160 (9) 0.0545 (4)
H10A 0.2723 0.5600 0.3419 0.082*
H10B 0.3860 0.6571 0.3577 0.082*
H10C 0.2100 0.6661 0.3098 0.082*
C11 0.1747 (3) 0.76461 (13) 0.44186 (11) 0.0617 (5)
H11A 0.1177 0.7740 0.4874 0.093*
H11B 0.1130 0.8000 0.4010 0.093*
H11C 0.2890 0.7911 0.4488 0.093*
C16 0.0598 (3) 0.04706 (15) 0.36633 (13) 0.0800 (7)
H16 0.0070 −0.0128 0.3489 0.096*
C18 0.2509 (3) 0.13432 (13) 0.45566 (11) 0.0644 (5)
H18 0.3292 0.1323 0.4978 0.077*
C15 0.0252 (2) 0.13674 (14) 0.32929 (11) 0.0625 (5)
H15 −0.0495 0.1377 0.2860 0.075*
C5 0.1165 (2) 0.51537 (15) 0.73318 (9) 0.0572 (4)
H5 0.0756 0.4549 0.7113 0.069*
C3 0.1146 (3) 0.63805 (19) 0.83306 (11) 0.0776 (7)
H3 0.0712 0.6611 0.8774 0.093*
C17 0.1724 (4) 0.04543 (14) 0.42930 (14) 0.0901 (8)
H17 0.1961 −0.0157 0.4545 0.108*
C2 0.2388 (3) 0.69251 (17) 0.80124 (10) 0.0688 (6)
H2 0.2816 0.7519 0.8241 0.083*
C4 0.0528 (3) 0.5488 (2) 0.79991 (11) 0.0783 (6)
H4 −0.0309 0.5113 0.8221 0.094*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0863 (4) 0.0823 (4) 0.1027 (4) −0.0357 (3) 0.0192 (3) −0.0458 (3)
N1 0.0330 (5) 0.0275 (5) 0.0370 (6) −0.0016 (4) 0.0007 (4) −0.0014 (4)
O3 0.0384 (5) 0.0479 (6) 0.0497 (6) −0.0055 (5) −0.0019 (4) −0.0129 (5)
O2 0.0723 (8) 0.0301 (5) 0.0588 (7) −0.0024 (5) −0.0053 (6) −0.0076 (5)
O1 0.0659 (7) 0.0344 (5) 0.0512 (6) −0.0035 (5) 0.0199 (5) −0.0064 (5)
C13 0.0375 (7) 0.0323 (7) 0.0412 (7) −0.0023 (6) 0.0046 (6) −0.0077 (6)
C8 0.0381 (7) 0.0382 (7) 0.0416 (8) 0.0030 (6) 0.0053 (6) −0.0045 (6)
C9 0.0370 (7) 0.0397 (8) 0.0473 (8) −0.0004 (6) −0.0054 (6) 0.0072 (6)
C1 0.0531 (9) 0.0565 (10) 0.0458 (9) 0.0081 (8) −0.0039 (7) −0.0146 (7)
C14 0.0491 (8) 0.0384 (8) 0.0502 (9) 0.0006 (7) −0.0040 (7) −0.0073 (6)
C12 0.0355 (7) 0.0351 (7) 0.0419 (7) −0.0045 (6) 0.0074 (6) −0.0090 (6)
C6 0.0425 (7) 0.0454 (8) 0.0348 (7) 0.0094 (6) 0.0005 (6) −0.0031 (6)
C7 0.0381 (7) 0.0342 (7) 0.0386 (7) 0.0006 (6) 0.0050 (6) −0.0052 (5)
C10 0.0610 (10) 0.0605 (10) 0.0410 (8) 0.0011 (8) −0.0027 (7) 0.0093 (7)
C11 0.0728 (12) 0.0393 (9) 0.0729 (12) 0.0131 (8) 0.0032 (9) 0.0116 (8)
C16 0.1048 (17) 0.0444 (10) 0.0876 (15) −0.0270 (11) −0.0145 (13) −0.0166 (10)
C18 0.0916 (14) 0.0393 (8) 0.0581 (11) −0.0045 (9) −0.0216 (10) −0.0008 (8)
C15 0.0630 (11) 0.0572 (11) 0.0642 (11) −0.0086 (9) −0.0147 (9) −0.0186 (9)
C5 0.0658 (11) 0.0623 (11) 0.0453 (9) 0.0028 (9) 0.0154 (8) 0.0000 (8)
C3 0.0973 (16) 0.1001 (17) 0.0361 (9) 0.0424 (14) 0.0090 (10) −0.0085 (10)
C17 0.144 (2) 0.0329 (9) 0.0878 (16) −0.0147 (11) −0.0269 (15) 0.0046 (9)
C2 0.0803 (13) 0.0757 (13) 0.0483 (10) 0.0247 (11) −0.0089 (9) −0.0237 (9)
C4 0.0884 (15) 0.0955 (17) 0.0549 (11) 0.0159 (13) 0.0311 (11) 0.0092 (11)

Geometric parameters (Å, °)

Cl1—C1 1.7438 (19) C6—C7 1.5169 (19)
N1—C8 1.4884 (17) C7—H7 0.9800
N1—C9 1.5096 (17) C10—H10A 0.9600
N1—H1A 0.9000 C10—H10B 0.9600
N1—H1B 0.9000 C10—H10C 0.9600
O3—C12 1.2704 (17) C11—H11A 0.9600
O2—C12 1.2456 (18) C11—H11B 0.9600
O1—C7 1.4158 (16) C11—H11C 0.9600
O1—H1 0.8200 C16—C15 1.365 (3)
C13—C18 1.378 (2) C16—C17 1.370 (3)
C13—C14 1.384 (2) C16—H16 0.9300
C13—C12 1.5050 (18) C18—C17 1.384 (3)
C8—C7 1.526 (2) C18—H18 0.9300
C8—H8A 0.9700 C15—H15 0.9300
C8—H8B 0.9700 C5—C4 1.390 (3)
C9—C11 1.516 (2) C5—H5 0.9300
C9—C10 1.520 (2) C3—C2 1.363 (3)
C9—H9 0.9800 C3—C4 1.382 (3)
C1—C2 1.380 (2) C3—H3 0.9300
C1—C6 1.391 (2) C17—H17 0.9300
C14—C15 1.386 (2) C2—H2 0.9300
C14—H14 0.9300 C4—H4 0.9300
C6—C5 1.381 (2)
C8—N1—C9 115.08 (11) C6—C7—H7 109.8
C8—N1—H1A 108.5 C8—C7—H7 109.8
C9—N1—H1A 108.5 C9—C10—H10A 109.5
C8—N1—H1B 108.5 C9—C10—H10B 109.5
C9—N1—H1B 108.5 H10A—C10—H10B 109.5
H1A—N1—H1B 107.5 C9—C10—H10C 109.5
C7—O1—H1 109.5 H10A—C10—H10C 109.5
C18—C13—C14 118.61 (14) H10B—C10—H10C 109.5
C18—C13—C12 120.50 (13) C9—C11—H11A 109.5
C14—C13—C12 120.84 (13) C9—C11—H11B 109.5
N1—C8—C7 112.82 (11) H11A—C11—H11B 109.5
N1—C8—H8A 109.0 C9—C11—H11C 109.5
C7—C8—H8A 109.0 H11A—C11—H11C 109.5
N1—C8—H8B 109.0 H11B—C11—H11C 109.5
C7—C8—H8B 109.0 C15—C16—C17 119.85 (16)
H8A—C8—H8B 107.8 C15—C16—H16 120.1
N1—C9—C11 110.87 (13) C17—C16—H16 120.1
N1—C9—C10 107.86 (12) C13—C18—C17 120.49 (17)
C11—C9—C10 112.06 (14) C13—C18—H18 119.8
N1—C9—H9 108.7 C17—C18—H18 119.8
C11—C9—H9 108.7 C16—C15—C14 120.15 (17)
C10—C9—H9 108.7 C16—C15—H15 119.9
C2—C1—C6 122.12 (18) C14—C15—H15 119.9
C2—C1—Cl1 117.95 (15) C6—C5—C4 121.29 (19)
C6—C1—Cl1 119.92 (12) C6—C5—H5 119.4
C13—C14—C15 120.55 (15) C4—C5—H5 119.4
C13—C14—H14 119.7 C2—C3—C4 120.44 (18)
C15—C14—H14 119.7 C2—C3—H3 119.8
O2—C12—O3 124.03 (13) C4—C3—H3 119.8
O2—C12—C13 117.97 (12) C16—C17—C18 120.32 (19)
O3—C12—C13 117.97 (13) C16—C17—H17 119.8
C5—C6—C1 117.24 (15) C18—C17—H17 119.8
C5—C6—C7 120.44 (14) C3—C2—C1 119.36 (19)
C1—C6—C7 122.23 (14) C3—C2—H2 120.3
O1—C7—C6 108.36 (12) C1—C2—H2 120.3
O1—C7—C8 111.07 (12) C3—C4—C5 119.5 (2)
C6—C7—C8 107.95 (11) C3—C4—H4 120.2
O1—C7—H7 109.8 C5—C4—H4 120.2
C9—N1—C8—C7 175.43 (11) C1—C6—C7—C8 −76.00 (17)
C8—N1—C9—C11 57.38 (16) N1—C8—C7—O1 −73.09 (15)
C8—N1—C9—C10 −179.59 (12) N1—C8—C7—C6 168.25 (11)
C18—C13—C14—C15 0.9 (3) C14—C13—C18—C17 −2.0 (3)
C12—C13—C14—C15 −176.53 (15) C12—C13—C18—C17 175.4 (2)
C18—C13—C12—O2 −170.12 (16) C17—C16—C15—C14 −1.3 (4)
C14—C13—C12—O2 7.3 (2) C13—C14—C15—C16 0.7 (3)
C18—C13—C12—O3 7.8 (2) C1—C6—C5—C4 1.8 (3)
C14—C13—C12—O3 −174.79 (13) C7—C6—C5—C4 −174.81 (17)
C2—C1—C6—C5 −1.5 (2) C15—C16—C17—C18 0.2 (4)
Cl1—C1—C6—C5 178.90 (13) C13—C18—C17—C16 1.5 (4)
C2—C1—C6—C7 175.02 (15) C4—C3—C2—C1 1.1 (3)
Cl1—C1—C6—C7 −4.6 (2) C6—C1—C2—C3 0.1 (3)
C5—C6—C7—O1 −19.97 (19) Cl1—C1—C2—C3 179.68 (15)
C1—C6—C7—O1 163.62 (14) C2—C3—C4—C5 −0.8 (3)
C5—C6—C7—C8 100.41 (16) C6—C5—C4—C3 −0.7 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1A···O2 0.90 1.85 2.7231 (15) 162
O1—H1···O3 0.82 1.93 2.7219 (15) 162
N1—H1B···O3i 0.90 1.88 2.7710 (15) 169

Symmetry codes: (i) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2237).

References

  1. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  2. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  3. Feld, R., Lehmann, M. S., Muir, K. W. & Speakman, J. C. (1981). Z. Kristallogr.157, 215–231.
  4. Feng, H., Tang, Z., Xie, L.-J. & Xing, B.-T. (2010). Acta Cryst. E66, o391. [DOI] [PMC free article] [PubMed]
  5. Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  6. Rigaku/MSC (2006). PROCESS-AUTO Rigaku/MSC, The Woodlands, Texas, USA.
  7. Rigaku/MSC (2007). CrystalStructure Rigaku/MSC, The Woodlands Texas, USA.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Tang, Z., Xu, M., Zhang, H.-C. & Feng, H. (2009b). Acta Cryst. E65, o1670. [DOI] [PMC free article] [PubMed]
  10. Tang, Z., Xu, M., Zheng, G.-R. & Feng, H. (2009a). Acta Cryst. E65, o1501. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810040274/rk2237sup1.cif

e-66-o2910-sup1.cif (20KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810040274/rk2237Isup2.hkl

e-66-o2910-Isup2.hkl (198KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES