Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Nov 30;66(Pt 12):o3359. doi: 10.1107/S1600536810049147

(2-Amino­phen­yl)(p-tol­yl)methanone

Dun-Lin Zhang a,*, Shan Liu b, Xiao-Li Zhang b
PMCID: PMC3011377  PMID: 21589628

Abstract

In the title compound, C14H13NO, the two six-membered rings make a dihedral angle of 52.8 (3)°. An intra­molecular N—H⋯O hydrogen bond involving an amine H atom and the adjacent carbonyl O atom occurs. In the crystal, N—H⋯O and C—H⋯N inter­molecular hydrogen bonds are observed, which may be effective in stabilizing the structure.

Related literature

For the uses of 5-nitro­thio­phene-2-carb­oxy­lic acid, see: Shetty et al. (1999). For the synthesis of the title compound, see: Zhu et al. (2005). For standard bond-length data, see: Allen et al. (1987).graphic file with name e-66-o3359-scheme1.jpg

Experimental

Crystal data

  • C14H13NO

  • M r = 211.25

  • Orthorhombic, Inline graphic

  • a = 7.7720 (16) Å

  • b = 10.490 (2) Å

  • c = 14.114 (3) Å

  • V = 1150.7 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 K

  • 0.30 × 0.20 × 0.10 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968) T min = 0.977, T max = 0.992

  • 2387 measured reflections

  • 1241 independent reflections

  • 984 reflections with I > 2σ(I)

  • R int = 0.023

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.114

  • S = 1.01

  • 1241 reflections

  • 154 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.12 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810049147/su2231sup1.cif

e-66-o3359-sup1.cif (17KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810049147/su2231Isup2.hkl

e-66-o3359-Isup2.hkl (61.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H0A⋯O1 0.87 (3) 2.08 (3) 2.723 (4) 131 (3)
N1—H0B⋯O1i 0.82 (3) 2.45 (3) 3.220 (4) 158 (3)
C11—H11A⋯O1i 0.93 2.53 3.319 (4) 143

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank the Center of Testing and Analysis, Nanjing University, for the data collection.

supplementary crystallographic information

Comment

(2-Aminophenyl)(p-tolyl)methanone and its derivitives are important monomers, being utilized to synthesize oligomers containing a quinoline unit (Shetty et al., 1999). We report herein on the crystal structure of the title compound, (2-Aminophenyl)(p-tolyl)methanone.

In the title molecule (Fig. 1) the bond lengths (Allen et al., 1987) and angles are within normal ranges. An amine H-atom and the adjacent carbonyl O-atom forms an intramolecular N-H···O hydrogen bond (Fig. 1, Table 1). The two aromatic rings are planar, with a dihedral angle of 52.8 (3)°.

In the crystal, N-H···O and C—H···N intermolecular hydrogen bonds are observed, which stabilize the crystal structure (Fig. 2, Table 1).

Experimental

(2-Aminophenyl)(p-tolyl)methanone was prepared by the method reported in the literature (Zhu et al., 2005). Single crystals were obtained by dissolving (2-aminophenyl)(p-tolyl)methanone (0.5 g, 2.37 mmol) in ethyl acetate (50 ml) and evaporating the solvent slowly at room temperature for about 10 d.

Refinement

In the final cycles of refinement, in the absence of significant anomalous scattering effects, Friedel pairs were merged and Δf " set to zero. After checking their presence in a difference map, the NH2 H-atoms were freely refined. The C-bound H-atoms were positioned geometrically [C—H = 0.93 Å] and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level [The intermolecular N-H···O hydrogen bond is shown as a dashed line - Table 1].

Fig. 2.

Fig. 2.

Crystal packing of the title compound viewed along the c-axis [The hydrogen bonds are shown as dashed lines; details are given in Table 1].

Crystal data

C14H13NO F(000) = 448
Mr = 211.25 Dx = 1.219 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 25 reflections
a = 7.7720 (16) Å θ = 9–14°
b = 10.490 (2) Å µ = 0.08 mm1
c = 14.114 (3) Å T = 298 K
V = 1150.7 (4) Å3 Plate, brown
Z = 4 0.30 × 0.20 × 0.10 mm

Data collection

Enraf–Nonius CAD-4 diffractometer 984 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.023
graphite θmax = 25.4°, θmin = 2.4°
ω/2θ scans h = 0→9
Absorption correction: ψ scan (North et al., 1968) k = 0→12
Tmin = 0.977, Tmax = 0.992 l = −17→17
2387 measured reflections 3 standard reflections every 200 reflections
1241 independent reflections intensity decay: 1%

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.114 w = 1/[σ2(Fo2) + (0.077P)2] where P = (Fo2 + 2Fc2)/3
S = 1.01 (Δ/σ)max < 0.001
1241 reflections Δρmax = 0.15 e Å3
154 parameters Δρmin = −0.12 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.029 (5)

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 −0.0723 (5) 0.48772 (18) 0.66689 (13) 0.1072 (11)
N1 0.0516 (5) 0.2583 (3) 0.72595 (18) 0.0903 (13)
C1 −0.0893 (6) 0.8175 (3) 0.2825 (2) 0.0979 (14)
C2 −0.0848 (4) 0.7203 (2) 0.36079 (19) 0.0649 (10)
C3 −0.1864 (4) 0.7310 (2) 0.4405 (2) 0.0668 (10)
C4 −0.1798 (4) 0.6431 (2) 0.51329 (19) 0.0611 (8)
C5 −0.0737 (3) 0.5373 (2) 0.50607 (16) 0.0507 (8)
C6 0.0293 (3) 0.5256 (2) 0.42633 (17) 0.0562 (8)
C7 0.0251 (4) 0.6161 (2) 0.35603 (17) 0.0612 (9)
C8 −0.0684 (4) 0.4450 (2) 0.58631 (17) 0.0626 (9)
C9 −0.0553 (3) 0.3074 (2) 0.56775 (17) 0.0515 (8)
C10 0.0012 (4) 0.2205 (3) 0.63780 (18) 0.0597 (9)
C11 0.0141 (4) 0.0914 (3) 0.6133 (2) 0.0665 (10)
C12 −0.0327 (4) 0.0487 (2) 0.5261 (2) 0.0670 (10)
C13 −0.0940 (4) 0.1319 (2) 0.45806 (19) 0.0632 (9)
C14 −0.1042 (3) 0.2588 (3) 0.47965 (16) 0.0548 (8)
H0B 0.065 (5) 0.203 (3) 0.766 (2) 0.094 (12)*
H1A −0.17140 0.88270 0.29780 0.1470*
H1B −0.12190 0.77690 0.22430 0.1470*
H1C 0.02260 0.85510 0.27550 0.1470*
H0A 0.029 (5) 0.336 (3) 0.743 (2) 0.082 (11)*
H3A −0.26180 0.79950 0.44540 0.0800*
H4A −0.24660 0.65500 0.56720 0.0730*
H6A 0.10210 0.45570 0.42040 0.0670*
H7A 0.09750 0.60730 0.30400 0.0730*
H11A 0.05570 0.03360 0.65770 0.0800*
H12A −0.02340 −0.03760 0.51200 0.0800*
H13A −0.12750 0.10230 0.39880 0.0760*
H14A −0.14530 0.31490 0.43390 0.0660*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.203 (3) 0.0665 (13) 0.0521 (10) 0.0088 (18) −0.0032 (16) −0.0151 (10)
N1 0.135 (3) 0.079 (2) 0.0570 (15) −0.006 (2) −0.0174 (16) 0.0122 (15)
C1 0.139 (3) 0.0648 (19) 0.090 (2) −0.001 (2) −0.013 (2) 0.0186 (16)
C2 0.0806 (19) 0.0466 (14) 0.0675 (16) −0.0038 (15) −0.0133 (16) −0.0008 (13)
C3 0.0709 (17) 0.0412 (13) 0.0882 (19) 0.0067 (13) −0.0089 (17) −0.0106 (14)
C4 0.0668 (16) 0.0459 (13) 0.0706 (15) −0.0026 (13) 0.0056 (14) −0.0141 (13)
C5 0.0588 (15) 0.0404 (12) 0.0529 (13) −0.0011 (11) −0.0032 (12) −0.0103 (10)
C6 0.0600 (15) 0.0458 (13) 0.0627 (14) 0.0027 (13) −0.0049 (13) −0.0089 (12)
C7 0.0746 (18) 0.0525 (14) 0.0566 (13) −0.0028 (15) 0.0018 (14) −0.0057 (12)
C8 0.082 (2) 0.0539 (15) 0.0518 (13) −0.0015 (15) −0.0025 (15) −0.0097 (12)
C9 0.0549 (15) 0.0481 (13) 0.0515 (13) −0.0006 (12) 0.0029 (12) −0.0006 (11)
C10 0.0597 (16) 0.0637 (15) 0.0556 (14) −0.0069 (14) 0.0048 (13) 0.0089 (13)
C11 0.0647 (17) 0.0523 (15) 0.0824 (18) −0.0020 (14) 0.0066 (16) 0.0188 (14)
C12 0.0675 (18) 0.0423 (13) 0.0912 (19) −0.0034 (13) 0.0102 (16) −0.0006 (14)
C13 0.0690 (17) 0.0505 (14) 0.0700 (16) −0.0059 (14) −0.0022 (15) −0.0095 (13)
C14 0.0588 (15) 0.0487 (12) 0.0570 (15) −0.0003 (12) −0.0055 (12) −0.0020 (12)

Geometric parameters (Å, °)

O1—C8 1.223 (3) C10—C11 1.401 (4)
N1—C10 1.363 (4) C11—C12 1.359 (4)
N1—H0B 0.82 (3) C12—C13 1.382 (4)
N1—H0A 0.87 (3) C13—C14 1.368 (4)
C1—C2 1.504 (4) C1—H1A 0.9600
C2—C3 1.379 (4) C1—H1B 0.9600
C2—C7 1.389 (4) C1—H1C 0.9600
C3—C4 1.381 (4) C3—H3A 0.9300
C4—C5 1.386 (3) C4—H4A 0.9300
C5—C6 1.387 (3) C6—H6A 0.9300
C5—C8 1.491 (3) C7—H7A 0.9300
C6—C7 1.374 (3) C11—H11A 0.9300
C8—C9 1.471 (3) C12—H12A 0.9300
C9—C14 1.397 (3) C13—H13A 0.9300
C9—C10 1.415 (4) C14—H14A 0.9300
H0B—N1—H0A 120 (3) C12—C13—C14 118.7 (2)
C10—N1—H0B 118 (2) C9—C14—C13 122.5 (2)
C10—N1—H0A 118 (2) C2—C1—H1A 109.00
C1—C2—C3 122.1 (2) C2—C1—H1B 110.00
C1—C2—C7 120.8 (3) C2—C1—H1C 109.00
C3—C2—C7 117.1 (2) H1A—C1—H1B 109.00
C2—C3—C4 122.1 (2) H1A—C1—H1C 109.00
C3—C4—C5 120.1 (3) H1B—C1—H1C 109.00
C4—C5—C6 118.3 (2) C2—C3—H3A 119.00
C4—C5—C8 118.7 (2) C4—C3—H3A 119.00
C6—C5—C8 122.9 (2) C3—C4—H4A 120.00
C5—C6—C7 120.8 (2) C5—C4—H4A 120.00
C2—C7—C6 121.6 (2) C5—C6—H6A 120.00
C5—C8—C9 120.3 (2) C7—C6—H6A 120.00
O1—C8—C9 121.8 (2) C2—C7—H7A 119.00
O1—C8—C5 117.9 (2) C6—C7—H7A 119.00
C8—C9—C10 122.0 (2) C10—C11—H11A 119.00
C8—C9—C14 119.9 (2) C12—C11—H11A 119.00
C10—C9—C14 118.1 (2) C11—C12—H12A 120.00
C9—C10—C11 118.2 (2) C13—C12—H12A 120.00
N1—C10—C9 122.7 (3) C12—C13—H13A 121.00
N1—C10—C11 119.1 (3) C14—C13—H13A 121.00
C10—C11—C12 121.5 (3) C9—C14—H14A 119.00
C11—C12—C13 120.9 (2) C13—C14—H14A 119.00
C1—C2—C3—C4 −178.7 (3) O1—C8—C9—C14 160.0 (3)
C7—C2—C3—C4 0.4 (4) C5—C8—C9—C10 160.6 (3)
C1—C2—C7—C6 −179.2 (3) C5—C8—C9—C14 −21.2 (4)
C3—C2—C7—C6 1.7 (4) C8—C9—C10—N1 −1.8 (4)
C2—C3—C4—C5 −2.6 (4) C8—C9—C10—C11 −178.4 (3)
C3—C4—C5—C6 2.6 (4) C14—C9—C10—N1 −180.0 (3)
C3—C4—C5—C8 179.4 (2) C14—C9—C10—C11 3.5 (4)
C4—C5—C6—C7 −0.5 (4) C8—C9—C14—C13 179.6 (3)
C8—C5—C6—C7 −177.2 (2) C10—C9—C14—C13 −2.2 (4)
C4—C5—C8—O1 −39.1 (4) N1—C10—C11—C12 −179.3 (3)
C4—C5—C8—C9 142.1 (3) C9—C10—C11—C12 −2.7 (5)
C6—C5—C8—O1 137.6 (3) C10—C11—C12—C13 0.4 (5)
C6—C5—C8—C9 −41.2 (4) C11—C12—C13—C14 1.0 (5)
C5—C6—C7—C2 −1.7 (4) C12—C13—C14—C9 −0.1 (4)
O1—C8—C9—C10 −18.1 (5)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H0A···O1 0.87 (3) 2.08 (3) 2.723 (4) 131 (3)
N1—H0B···O1i 0.82 (3) 2.45 (3) 3.220 (4) 158 (3)
C11—H11A···O1i 0.93 2.53 3.319 (4) 143

Symmetry codes: (i) −x, y−1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2231).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  3. Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  4. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Shetty, A. S., Liu, E. B., Lachicotte, R. J. & Jenekhe, S. A. (1999). Chem. Mater.11, 2292–2295.
  7. Zhu, H.-J., Wang, D.-D., Song, G.-L., Wang, J.-T. & Wang, K.-L. (2005). Acta Cryst. E61, o2209–o2210.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810049147/su2231sup1.cif

e-66-o3359-sup1.cif (17KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810049147/su2231Isup2.hkl

e-66-o3359-Isup2.hkl (61.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES